
PARTITION MERGE

Partition-Merge: Distributed Inference and Modularity Optimization

Vincent Blondel VINCENT.BLONDEL@UCLOUVAIN.BE
Universite Catholique de Louvain, Belgium

Kyomin Jung KJUNG@SNU.AC.KR
Seoul National University, South Korea

Pushmeet Kohli PUSHMEET@GOOGLE.COM
DeepMind, London, UK

Devavrat Shah DEVAVRAT@MIT.EDU
MIT, Cambridge, USA

Seungpil Won SEUNGPIL.WON@SNU.AC.KR

Seoul National University, South Korea

Editor: Editor

Abstract
This paper presents a novel meta algorithm, Partition-Merge (PM), which takes existing central-

ized algorithms for graph computation and makes them distributed and faster. In a nutshell, PM
divides the graph into small subgraphs using our novel randomized partitioning scheme, runs the
centralized algorithm on each partition separately, and then stitches the resulting solutions to pro-
duce a global solution. We demonstrate the efficiency of the PM algorithm on two popular prob-
lems: computation of Maximum A Posteriori (MAP) assignment in an arbitrary pairwise Markov
Random Field (MRF), and modularity optimization for community detection. We show that the
resulting distributed algorithms for these problems essentially run in time linear in the number of
nodes in the graph, and perform as well – or even better – than the original centralized algorithm
as long as the graph has geometric structures1. More precisely, if the centralized algorithm is a
C−factor approximation with constant C ≥ 1, the resulting distributed algorithm is a (C+ δ)-factor
approximation for any small δ > 0; and even if the centralized algorithm is a non-constant (e.g.
logarithmic) factor approximation, then the resulting distributed algorithm becomes a constant fac-
tor approximation. For general graphs, we compute explicit bounds on the loss of performance of
the resulting distributed algorithm with respect to the centralized algorithm. To show efficiency
of our algorithm, we conducted extensive experiments both on real-world networks and on syn-
thetic networks. For the centralized algorithms, we consider the sequential tree-reweighted max-
product message passing for the MAP inference, and Girvan-Newman, Clauset-Newman-Moore,
and Louvain-Method for the modularity optimization problem. The experiments demonstrate that
PM provides a good trade-off between accuracy and running time. It particularly achieves better ef-
ficiency when it is applied to well-distributed regular networks and when the centralized algorithm
has high complexity.
Keywords: Graphical model, Approximate MAP, Modularity Optimization, Partition

1Roughly speaking, a graph is said to have geometric structures, or polynomial growth property, when the number of
nodes within distance r of any given node grows no faster than a polynomial function of r.

1

BLONDEL, JUNG, KOHLI, WON AND SHAH

1. Introduction

Graphical representation for data has become central to modern large-scale data processing applica-
tions. For many of these applications, large-scale data computation boils down to solving problems
defined over massive graphs. While the theory of centralized algorithms for graph problems is get-
ting reasonably well developed, their distributed (as well as parallel) counterparts are still poorly
understood and remain very active areas of current investigation.

Summary of results. In this paper, we take an important step towards this challenge. Specifically,
we present a meta algorithm, Partition-Merge (PM), that makes existing centralized (exact or ap-
proximate) algorithms for graph computation distributed and faster without loss of performance,
and in some cases, even improving performance. The PM meta algorithm is based on our novel
partitioning of the graph into small disjoint subgraphs. In a nutshell, PM partitions the graph into
small subgraphs, runs the centralized algorithm on each partition separately (which can be done in
distributed or parallel manner); and finally stitches the resulting solutions to produce a global solu-
tion. We apply the PM algorithm to two representative classes of problems: the MAP computation
in a pairwise MRF and modularity optimization based graph clustering.

The paper establishes that for any graph that satisfies the polynomial growth property, the re-
sulting distributed PM based implementation of the original centralized algorithm is a (C + δ)-
approximation algorithm whenever the centralized algorithm is a C-approximation algorithm for
some constant C ≥ 1. In this expression, δ is a small number that depends on a tuneable parameter
of the algorithm that affects the size of the induced subgraphs in the partition; the larger the sub-
graph size, the smaller the δ. More generally, if the centralized algorithm is an α(n)-approximation
(with α(n) = o(n)) for a graph of size n, the resulting distributed algorithm becomes a constant
factor approximation for graphs with geometric structure! The computational complexity of the
algorithm scales linearly in n. Thus, our meta algorithm can make centralized algorithms, faster,
distributed and improve its performance.

The algorithm applies to any graph structure, but strong guarantees on performance, as stated
above, require geometric structure. However, it is indeed possible to explicitly evaluate the loss of
performance induced by the distributed implementation compared to the centralized algorithm as
stated in Section 4.2.

A cautionary remark is in order. Indeed, by no means, this algorithm means to answer all
problems in distributed computation. Specifically, for dense graph, this algorithm is likely to exhibit
poor performances and definitely such graph structure would require a very different approach. Our
meta algorithm requires that the underlying graph problem is decomposable or Markovian in a
sense. Not all problems have this structure and these problem therefore require differen t way to
think about them.

In order to verify the validity of the PM algorithm, we have applied it both on real-world net-
works and on synthetic graphs, comparing it with the original centralized algorithms. For MAP
inference, we used the sequential tree-reweighted max-product message passing (TRW-S) Kol-
mogorov (2006) with the energy function defined in Section 7.2. For modularity optimization,
we selected three different algorithms from old-fashioned way to state-of-the-art: Girvan-Newman
(GN) Girvan and Newman (2002), Clauset-Newman-Moore (CNM) Clauset et al. (2004), and
Louvain-Method (LM) Blondel et al. (2008). Overall, as long as the network is decomposable like
grid graphs, PM considerably reduces the running time while maintaining the performance of the
original centralized algorithm. In case of a comparatively dense network, such as Barabasi-Albert

2

PARTITION MERGE

model, PM produces a decent result although the efficiency of PM is relatively low. Furthermore,
PM particularly performs better when applied on well-distributed regular networks and when the
centralized algorithm has high complexity. In addition, we researched what value of partition ra-
dius offers better efficiency for our algorithm. We used a fixed partition radius to understand the
performance of PM according to its value, and it leads to the conclusion that PM generally operates
to its best efficiency when a partition radius is close to the average distance between nodes in the
network.

Related Work and Our contributions. The results of this paper, on one hand, are related to a long
list of works on designing distributed algorithms for decomposable problems. On the other hand,
the applications of our method to MAP inference in pairwise MRFs and clustering relate our work
to a large number of results in these two respective problems. We will only be able to discuss very
closely related work here.

We start with the most closely related work on the use of graph partitioning for distributed
algorithm design. Such an approach is quite old; see, e.g., Awerbuch et al. (1989); Klein et al.
(1993) and Peleg (2000) for a detailed account of the approach until 2000. More recently, such
decompositions have found wide variety of applications including local-property testing Hassidim
et al. (2009). All such decompositions are useful for homogeneous problems, e.g. for finding
maximum-size matching or independent set rather than the heterogenous maximum-weight variants
of it. To overcome this limitation, a different (somewhat stronger) notion of decomposition was
introduced by Jung and Shah Jung and Shah (2007) for minor-excluded graphs that built upon
Klein et al. (1993). All of these results effectively partition the graph into small subgraphs and
then solve the problem inside each small subgraph using exact (dynamic programming) algorithms.
While this results in a (1 + ε)-approximation algorithm for any ε > 0 with computation scaling
essentially linearly in the graph size (n), the computation constant depends super-exponentially in
1/ε. Therefore, even with ε = 0.1, the algorithms become unmanageable in practice.

As the main contribution of this paper, we first propose a novel graph decomposition scheme
for graphs with geometry or polynomial growth structure. Then we establish that by utilizing this
decomposition scheme along with any centralized algorithm (instead of dynamic programming)
for solving the problem inside the partition leads to performance comparable (or better) to that of
the centralized algorithm for graph with polynomial growth. Then the resulting distributed algo-
rithm becomes very fast in practice, unlike the dynamic programming approach, if the centralized
algorithm inside the partition runs fast. We verify the effectiveness of the PM algorithm through ex-
periments, finding that this decomposition scheme actually produces a similar performance (better
in some cases) to that of the centralized algorithm in a very short time. As mentioned earlier, the
result is established for both MAP in pair-wise MRF and modularity optimization based clustering.
Similar guarantees can be obtained for minor-excluded graphs as well using the scheme utilized in
Jung and Shah (2007).

In this work, we focus our attention on two questions as mentioned above. However, the method
suggested here can be applied broadly to generic “optimization” when (i) the constraints are repre-
sented through graph structure over variable nodes, (ii) there is a notion of “default” assignment to
variables that satisfies all the constraints. Indeed, problems such as the maximum weight indepen-
dent set, vertex cover, or MAP inference in generic pair-wise Markov Random Field are instances
of this. And these are instance of NP-complete problems.

3

BLONDEL, JUNG, KOHLI, WON AND SHAH

MAP Inference. Computing the exact Maximum a Posteriori (MAP) solution in a general prob-
abilistic model is an NP-hard problem. A number of algorithmic approaches have been developed
to obtain approximate solutions for these problems. Most of these methods work by making ‘local
updates’ to the assignment of the variables. Starting from an initial solution, the algorithms search
the space of all possible local changes that can be made to the current solution (also called move
space), and choose the best amongst them.

One such algorithm (which has been rediscovered multiple times) is called Iterated Conditional
Modes or ICM for short. Its local update involves selecting (randomly or deterministically) a vari-
able of the problem. Keeping the values of all other variables fixed, the value of the selected vari-
able is chosen which results in a solution with the maximum probability. This process is repeated
by selecting other variables until the probability cannot be increased further. The local step of the
algorithm can be seen as performing inference in the smallest decomposed subgraph possible.

Another family of methods are related to max-product belief propagation (cf. Pearl (1988) and
Yedidia et al. (2000)). In recent years a sequence of results suggest that there is an intimate relation
between the max-product algorithm and a natural linear programming relaxation – for example,
see Wainwright et al. (2005); Bayati et al. (2005, 2008); Huang and Jebara (2007); Sanghavi et al.
(2007). Many of these methods can be seen as making local updates to partitions of the dual problem
Sontag and Jaakkola (2009); Tarlow et al. (2011).

We also note that Swendsen-Wang algorithm (SW)Swendsen and Wang (1987), a local flipping
algorithm, has a philosophy similar to ours in that it repeats a process of randomly partitioning
the graph, and computing an assignment. However, the graph partitioning of SW is fundamentally
different from ours and there is no known guarantee for the error bound of SW.

In summary, all the approaches thus far with provable guarantees for local update based algo-
rithm are primarily for linear or more generally convex optimization setup.

Modularity Optimization for Clustering. The notion of modularity optimization was introduced
by Newmann Newman (2006) to identify the communities or clusters in a network structure. Since
then, it has become quite popular as a metric to find communities or clusters in variety of networked
data cf. Blondel et al. (2008, 2010). The major challenge has been design of approximation al-
gorithm for modularity optimization (which is computationally hard in general) that can operate
in distributed manner and provide performance guarantees. Such algorithms with provable perfor-
mance guarantees are known only for few cases, notably logarithmic approximation of DasGupta
and Desai (2011) via a centralized solution.

Our contribution in the context of modularity optimization lies in showing that indeed it is a de-
composable problem and therefore admits an distributed and fast approximation algorithm through
our approach.

Organization. The rest of the paper is organized as follows. Section 2 describes the problem
statement and preliminaries. Section 3 describes our main algorithms, and Section 4 presents anal-
yses of our algorithms. Section A.1 and Section A.2 provide the proofs of our main theorems.
Section 5 and Section 6 present the setup and results of an experiment, respectively, and Section 7
presents the conclusion.

4

PARTITION MERGE

2. Setup

Graphs. Our interest is in processing networked data represented through an undirected graph
G = (V,E) with n = |V | vertices and E being the edge set. Let m = |E| be the number of
edges. Graphs can be classified structurally in many different ways: trees, planar, minor-excluded,
geometric, expanding, and so on. We shall establish results for graphs with geometric structure or
polynomial growth which we define next. A graph G = (V,E) induces a natural ‘graph metric’ on
vertices V , denoted by dG : V × V → R+ with dG(i, j) given by the length of the shortest path
between i and j; defined as∞ if there is no path between them.

Definition 1 (Graph with Polynomial Growth). We say that a graph G (or a collection of graphs)
has polynomial growth of degree (or growth rate) ρ, if for any i ∈ V and r ∈ N,

|BG(i, r)| ≤ C · rρ,

where C > 0 is a universal constant and BG(i, r) = {j ∈ V |dG(i, j) < r}.

Note that interesting values of C, ρ are integral between {0, 1, . . . , n}, and it is easy to compute
in O(mn) time. Therefore we will assume knowledge of C, ρ for algorithm design. A large class
of graph model naturally fall into the graphs with polynomial growth. To begin with, the standard
d-dimensional regular grid graphs have polynomial growth rate d. More generally, in recent years
in the context of computational geometry and metric embedding, the graphs with finite doubling
dimensions have become popular object of study Gupta et al. (2003). It can be checked that a graph
with doubling dimension ρ is also a graph with polynomial growth rate ρ. Finally, the popular
geometric graph model where nodes are placed arbitrarily in some Euclidean space with some min-
imum distance separation, and two nodes have an edge between them if they are within certain finite
distance, has finite polynomial growth rate Gummadi et al. (2009).

Pair-wise graphical model and MAP. For a pair-wise Markov Random Filed (MRF) model defined
on a graph G = (V,E), each vertex i ∈ V is associated with a random variable Xi which we shall
assume to be taking value from a finite alphabet Σ; the edge (i, j) ∈ E represents a form of
‘dependence’ between Xi and Xj . More precisely, the joint distribution is given by

P
(
X = x

)
∝
∏
i∈V

φi(xi) ·
∏

(i,j)∈E

ψij(xi, xj) (1)

where φi : Σ → R+ and ψij : Σ2 → R+ are called node and edge potential functions2. The
question of interest is to find the maximum a posteriori (MAP) assignment x∗ ∈ Σn, i.e.

x∗ ∈ arg max
x∈Σn

P[X = x].

Equivalently, from the optimization point of view, we wish to find an optimal assignment of the
problem

maximize H(x) over x ∈ Σn, where

H(x) =
∑
i∈V

lnφi(xi) +
∑

(i,j)∈E

lnψij(xi, xj).

2For simplicity of the analysis we assume strict positivity of φi’s and ψij’s.

5

BLONDEL, JUNG, KOHLI, WON AND SHAH

For completeness and simplicity of exposition, we assume that the function H is finite valued over
Σn. However, results of this paper extend for hard constrained problems such as the hardcore or
independent set model. We call an algorithm α approximation for α ≥ 1 if it always produces
assignment x̂ such that

1

α
H(x∗) ≤ H(x̂) ≤ H(x∗).

Social data and clustering/community detection. Alternatively, in a social setting, vertices of
graph G can represents individuals and edges represent some form of interaction between them.
For example, consider a cultural show organized by students at a university with various acts. Let
there be n students in total who have participated in one or more acts. Place an edge between
two students if they participated in at least one act together. Then the resulting graph represents
interaction between students in terms of acting together.

Based on this observed network, the goal is to identify the set of all acts performed and its
‘core’ participants. The true answer, which classifies each student/node into the acts in which s/he
performed would lead to partitions of nodes in which a node may belong to multiple partitions. Our
interest is in identifying disjoint partitions which would, in this example, roughly mean identifica-
tion of ‘core’ members of acts.

In general, to select a disjoint partition of V given G, it is not clear what is the appropriate
criteria. Newman Newman (2006) proposed the notion of modularity as a criteria. The intuition
behind it is that a cluster or community should be as distinct as possible from being ‘random’.
Modularity of a partition of nodes is defined as the fraction of the edges that fall within the disjoint
partitions minus the expected such fraction if edges were distributed at random with the same node
degree sequences. Formally, the modularity of a subset S ⊂ V is defined as

M(S) =
∑
i,j∈S

(
Aij −

didj
2m

)
, (2)

where Aij = 1 iff (i, j) ∈ E and 0 otherwise, di = |{k ∈ V : (i, k) ∈ E}| is the degree of node
i ∈ V , and m = |E| represents the total number of edges in G. More generally, the modularity of a
partition of V , V = S1 ∪ · · · ∪ S` for some 1 ≤ ` ≤ n with Si ∩ Sj = ∅ for i 6= j, is given by

M(S1, . . . , S`) =
1

2m

(∑̀
i=1

M(Si)
)
. (3)

The modularity optimization approach Newman (2006) proposes to identify the community struc-
ture as the disjoint partitions of V that maximizes the total modularity, defined as per (3), among all
possible disjoint partitions of V with ties broken arbitrarily. The resulting clustering of nodes is the
desired answer.

We shall think of clustering as assigning colors to nodes. Specifically, given a coloring χ :
V → {1, . . . , n}, two nodes i and j are part of the same cluster (partition) iff χ(i) = χ(j). With
this notation, any clustering of V can be represented by some such coloring χ and vice versa.
Therefore, modularity optimization is equivalent to finding a coloring χ such that its modularity
M(χ) is maximized, where

M(χ) =
1

2m

∑
i,j∈V

1{χ(i)=χ(j)}

(
Aij −

didj
2m

)
.

6

PARTITION MERGE

Figure 1: A pictorial description of an iteration of the graph partitioning.

Here 1{·} is the indicator function with 1{true} = 1 and 1{false} = 0. Let χ∗ be a clustering that
maximizes the modularity. Then, as before, an algorithm will be said α-approximate if it produces
χ̂ such that

1

α
M(χ∗) ≤M(χ̂) ≤M(χ∗). (4)

3. Partition-Merge Algorithm

We describe a parametric meta-algorithm for solving the MAP inference and modularity optimiza-
tion. The meta-algorithm uses two parameters; a large constant K ≥ 1 and a small real number
ε ∈ (0, 1) to produce a partition of V = V1 ∪ · · · ∪ Vp so that each partition Vj , 1 ≤ j ≤ p is small.
We will specify the values of K and ε in Section 4. The meta-algorithm uses an existing centralized
algorithm to solve the original problem on each of these partitioned sub-graphs Gj = (Vj , Ej) in-
dependently where Ej = (Vj ×Vj)∩E. The result assignment leads to a candidate solution for the
problem on entire graph. As we establish in Section 4, this becomes a pretty good solution. Next,
we describe the algorithm in detail.

Step 1. Partition. We wish to create a partition of V = V1∪· · ·∪Vp for some pwith Vi∩Vj = ∅ for
i 6= j so that the number of edges crossing partitions are small. The algorithm for such partitioning
is iterative. Initially, no node is part of any partition. Order the n nodes arbitrarily, say i1, . . . , in. In
iteration k ≤ n, choose node ik as the pivot. If ik belongs to ∪k−1

`=1V`, then set Vk = ∅, and move to
the next iteration if k < n or else the algorithm concludes. If ik /∈ ∪k−1

`=1V`, choose a radiusRk ≤ K
at random with distribution

P
(
Rk = `

)
=

{
ε(1− ε)`−1 for 1 ≤ ` < K

(1− ε)K−1, for ` = K.
(5)

Let Vk be the set of all nodes in V that are within distance Rk of ik, but that are not part of V1 ∪
· · · ∪ Vk−1. Since we execute this step only if ik /∈ ∪k−1

`=1V` and Rk ≥ 1, Vk will be non-empty. At
the end of the n iterations, we have a partition of V with at most n non-empty partitions. Let the
non-empty partitions of V be denoted as V = V1 ∪ · · · ∪ Vp for some p ≤ n. A caricature of an
iteration is described in Figure 1.

Step 2. Merge (solving the problem). Given the partition V = V1 ∪ · · · ∪ Vp, consider the
graphs Gk = (Vk, Ek) with Ek = (Vk × Vk) ∩ E for 1 ≤ k ≤ p. We shall apply a centralized

7

BLONDEL, JUNG, KOHLI, WON AND SHAH

algorithm for each of these graph G1, . . . , Gk separately. Specifically, let A be an algorithm for
MAP or for clustering: the algorithm may be exact (e.g. one solving problem by exhaustive search
over all possible options, or dynamic programming) or it may be an approximation algorithm (e.g.
α-approximate for any graph). We apply A for each subgraph separately.

◦ For MAP inference, this results in an assignment to all variables since in each partition each
node is assigned some value and collectively all nodes are covered by the partition. Declare
thus resulting global assignment, say x̂ as the solution for MAP.

◦ For modularity optimization, nodes in each partition Vj are clustered. We declare the union
of all such clusters across partitions as the global clustering. Thus two nodes in different
partitions are always in different clusters; two nodes in the same partition are in different
clusters if the centralized algorithm applied to that partition clusters them differently.

Computation cost. The computation cost of the partitioning scheme scales linearly in the number
of edges in the graph. The computation cost of solving the problem in each of the components
G1, . . . , Gp depends on component sizes and on how the computation cost of algorithm A scales
with the size. In particular, if the maximum degree of any node inG is bounded, say by d, then each
partition has at most dK nodes. Then the overall cost is O(Q(dK)n) where Q(`) is the computation
cost of A for any graph with ` vertices.

4. Main results

4.1 Graphs with polynomial growth

We state sharp results for graphs with polynomial growth. We state results for MAP inference
and for modularity optimization under the same theorem statement to avoid repetition. The proofs,
however, will have some differences.

Theorem 1. Let the graph G = (V,E) have polynomial growth with degree ρ ≥ 1 and constant
C ≥ 1. Then, for a given δ ∈ (0, 1), select parameters

K = K(ρ, C, δ) =
8ρ

ε
log
(8ρ

ε

)
+

4

ε
logC +

4

ε
log

1

ε
+ 2,

ε = ε(ρ, C, δ) =

{
δ

2C2ρ , for MAP
δ

4(2C−1) , for modularity optimization.
(6)

Then, the following holds for the meta algorithm described in Section 3.

(a) IfA solves the problem (MAP or modularity optimization) exactly, then the solution produced
by the algorithm x̂ and χ̂ for MAP and modularity optimization respectively are such that

(1− δ)H(x∗) ≤ E[H(x̂)] ≤ H(x∗)

(1− δ)M(χ∗) ≤ E[M(χ̂)] ≤M(χ∗). (7)

8

PARTITION MERGE

(b) If A is α(n) ≥ 1 approximation algorithm for graphs with n nodes, then(
1

α(K̃)
− δ
)
H(x∗) ≤ E[H(x̂)] ≤ H(x∗),

(1− δ)
α(K̃)

M(χ∗) ≤ E[M(χ̂)] ≤M(χ∗), (8)

where K̃ = CKρ.

4.2 General graph

The theorem in the previous section was for graphs with polynomial growth. We now state results
for general graph. Our result tells us how to evaluate the ‘error bound’ on solutions produced by
the algorithm for any instantiation of randomness. The result is stated below for both MAP and
modularity optimization. The ‘error function’ depends on the problem.

Theorem 2. Given an arbitrary graph G = (V,E) and our algorithm operating on it with param-
eters K ≥ 1, ε ∈ (0, 1) using a known procedure A, the following holds:

(a) IfA solves the problem (MAP or modularity optimization) exactly, then the solution produced
by the algorithm x̂ and χ̂ for MAP and modularity optimization respectively are such that
(with B = E\ ∪pk=1 Ek),

H(x̂) ≥ H(x∗)−
∑

(i,j)∈B

(
ψUij − ψLij

)
,

M(χ̂) ≥ M(χ∗)− |B|
2m

. (9)

(b) If A is instead a α(n)-approximation for graphs of size n, then

H(x̂) ≥ 1

α(K̃)

(
H(x∗)−

∑
(i,j)∈B

(
ψUij − ψLij

))
M(χ̃) ≥ 1

α(K̃)

(
M(χ∗)− |B|

2m

)
, (10)

where K̃ is the maximum number of nodes that are within K hops of any single node in V .

In the expression above, ψUij , maxσ,σ′∈Σ lnψij(σ, σ
′), and ψLij , minσ,σ′∈Σ lnψij(σ, σ

′).

4.3 Discussion of results

Here we dissect implications of the above stated theorems. To start with, Theorem 1(a) suggests
that when graphs have polynomial growth, there exists a Randomized Polynomial Time Approxi-
mation Scheme (PTAS) for MAP computation and modularity optimization that has computation
time scaling linearly with n.

The Theorem 1(b) suggests that, if instead of using exact procedure for each partition, when an
approximation algorithm is used, the resulting solution almost retains its approximation guarantees:

9

BLONDEL, JUNG, KOHLI, WON AND SHAH

if α(n) is a constant, then the resulting approximation guarantee is essentially the same constant; if
α(n) increases with n (e.g. log n), then the resulting algorithm provides a constant factor approxi-
mation ! In either case, even if the approximation algorithm has superlinear computation time in the
number of nodes (e.g. semi-definite programming), then our algorithm provides a way to achieve
similar performance but in linear time for polynomially growing graphs.

The algorithm, for general graph, produces a solution for which we have approximation guar-
antees. Specifically, the error scales with the fraction of edges across partitions that are induced by
our partitioning procedure. This error depends on parameters K, ε utilized by our partitioning pro-
cedure. For graph with polynomial growth, we provide recommendations on what the values should
be for these parameters. However, for general graph, one may try various values of K ∈ {1, . . . , n}
and ε ∈ (0, 1) and then choose the best solution. Indeed, a reasonable way to implement such
procedure would be to take values of K that are 2k for k ∈ {0, . . . , log n} and ε chosen at regular
interval with granularity that an implementor is comfortable with (the smaller the granularity, the
better).

The dependence on ρ and δ in Theorem 1 are inspired by worst-case scenario. While theo-
retically they provide useful bounds, practically even for moderately small δ, it may be exorbitant
amount of computation required if we followed the guidelines of Theorem 1 to implement brute-
force/dynamic programming procedure. However, in practice, use of smaller radius compared to
that suggested by Theorem 1 can lead to better performance as observed in experiments.

5. Experimental Setup

In Sections 5 and 6, we present the experimental evaluations of our algorithm regarding two ques-
tions of interest: computation of Maximum A Posteriori (MAP) inference in a pairwise Markov
Random Field (MRF), and modularity optimization for community detection. For our experi-
ments, PM was applied both on real-world networks and on synthetic networks in order to ver-
ify its efficiency compared to the original centralized algorithm. For the MAP inference, we em-
ployed the sequential tree-reweighted max-product message passing (TRW-S) as the centralized al-
gorithm. For the modularity optimization, Girvan-Newman (GN), Clauset-Newman-Moore (CNM),
and Louvain-Method (LM), have been used as the centralized algorithm.

In the experiments, we fixed the radius (for every iteration) by a specific number to simplify and
to understand the performance of our algorithm according to the radius. Furthermore, we investi-
gated what value of partition radius can be determined as an appropriate value for our algorithm.
All experiments were carried out using a single core3 of an Intel i7 processor with 16GB of RAM,
and PM was implemented in C++.

5.1 Datasets

5.1.1 Real Networks

To cover various aspects of the real-world networks, the experiments were conducted on various
kinds of real-world networks, such as social networks (Facebook, YouTube, Live Journal), citation
or collaboration networks (ArXiv, DBLP), and communication networks (Email-Enron). All the

3When you apply this method in parallel, you can easily allocate different graph partitions to different
cores/computers. This is because PM algorithm divides the whole graph into small disjoint subgraphs which can be
computed almost independently.

10

PARTITION MERGE

Nodes Edges
Average
Degree

Average
Distance

Diameter
90th Effective

Diameter

Facebook 4,039 88,234 43.69 3.7 8 4.7
ArXiv 9,377 24,107 5.14 6.8 19 8.7
Email-Enron 36,692 183,831 10.02 3.2 13 4.8
DBLP 317,080 1,049,866 6.62 5.6 22 8.1
YouTube 1,134,890 2,987,624 5.27 4.2 15 4.9
Live Journal 3,997,962 34,681,189 17.35 4.9 17 6.5

Table 1: Statistics for Real-World Networks

real-world network datasets were downloaded from SNAP4, a web site that offers the information
and statistics of the networks. The network properties are summarized in Table 1. For a directed
real world network, we used the corresponding undirected network in our experiments.

5.1.2 Synthetic Graphs

We also made use of synthetically generated graphs such as Grid graphs, Random k-Regular graph,
Watts-Strogatz networks, and Barabási-Albert networks.

Grid Graphs. We tested our algorithm with two types of grid graph. One is a simple grid, whose
nodes are connected if they are directly adjacent to each other in either the horizontal or the vertical
direction; the other one is the grid graph with diagonal edges.

Random k-Regular Networks. A random k-regular network on n nodes,Gn,k, is a random graph
chosen uniformly at random from all the graphs whose nodes have degree k.

Watts-Strogatz Networks. To construct Watts-Strogatz, we start from a simple grid of n nodes.
First, each node is connected to the other nodes within a radius of r, which represents the length of
the shortest path between the locally connected nodes. Next, we add l long distance edges, one end
node of which remains the same and the other chosen uniformly at random from among all nodes.
This process is repeated for each node in the network.

Barabási-Albert Networks. We begin with the Erdös-Rényi model of m0 nodes with edge prob-
ability p, which will be defined below. In other words, given m0 nodes, each node-pair is connected
with probability p independent of every other node-pair. Then, the network is developed follow-
ing an iterative process until the total number of nodes becomes n. At each discrete time step, we
add a new node, and each new node is connected to m existing nodes with a probability that is
proportional to the degree of each node. We require m to be m0 times p.

5.2 Centralized Algorithms

To facilitate understanding of the effectiveness of our algorithm, we selected TRW-S for MAP
inference and three popular community detection algorithms for modularity optimization, which
are taken as a centralized algorithm for PM. The algorithms used for our experiments are briefly
summarized as follows:

4SNAP(http://snap.stanford.edu)

11

BLONDEL, JUNG, KOHLI, WON AND SHAH

5.2.1 MAP inference

Sequential tree-reweighted max product message passing (TRW-S). The TRW-S algorithm is
used for minimizing energy functions of discrete variables with unary and pairwise terms. It is the
modified version of TRW that is not guaranteed to increase a lower bound on the energy and does
not always converge. By adding a weak tree agreement (WTA) condition, TRW-S guarantees to find
at least a local maximum of the bound, and it has a subsequence converging to a vector satisfying
WTA Kolmogorov (2006).

Energy Function. For the MAP inference, we considered an energy function with binary labels
(i.e. Σ = {0, 1}) on a graph G = (V,E):

E(x) =
∑
i∈V

θixi +
∑

(i,j)∈E

θijxixj , for x ∈ {0, 1}. (11)

We consider the following scenario for choosing parameters, where U [a, b] is the uniform distribu-
tion over the interval [a, b]:

1. For each i ∈ V , choose θi independently as per the distribution U [−1, 1].

2. For each (i, j) ∈ E, choose θij independently from U [−α, α]. Here, the interaction parameter
α is chosen from {0.25, 1, 4, 16}.

5.2.2 Modularity Optimization

Girvan and Newman (GN). The GN algorithm is the first known modularity-based method for
community detection. Starting from the original network, the edges are iteratively removed to
uncover the underlying community structure of the network. This process is based on the concept
of the edge betweenness, which represents the number of shortest paths between pairs of nodes that
pass through the edge, and it is repeated until no edges remain. The algorithm is somewhat slow
and has a computational complexity O(N3) on a sparse network Girvan and Newman (2002).

Clauset-Newman-Moore (CNM). The CNM algorithm, which utilizes efficient data structures
such as a max-heap, is a kind of fast version of Girvan-Newman algorithm. Every node begins as
a single community of the network. At each time step, the two communities that yield the largest
increase of modularity among all the pairs of communities are combined together. The algorithm
allows analysis of the community structure of large graphs, up to 106 nodes, with a computational
complexity O(n log2 n) on a sparse network Clauset et al. (2004).

Louvain Method (LM). The LM algorithm is known as one of the best for detecting community
structure. As a state-of-the-art algorithm, it finds good divisions in terms of modularity even on large
networks, and it reveals a hierarchical community structure that is based on the two-step sequential
processes (local maximization of the modularity and aggregation of communities). The algorithm is
fast enough to be limited in its applicable network size due to restricted storage capacity rather than
restricted computation time, with a computational complexity that is essentially linear to network
size Blondel et al. (2008).

12

PARTITION MERGE

6. Experimental Results

As a measure of performance, we compared (i) energy and running time for MAP inference, and
(ii) modularity and running time for modularity optimization, calculated by our algorithm, against
those obtained by using the original centralized algorithms. In addition, we investigated what value
of partition radius can be determined as appropriate for our algorithm, which will be described in
Subsection 6.2. We lay out the experimental results in several changes of the network factors to
determine the conditions under which our algorithm perform well.

For MAP inference, the simulation was carried out over the 30 different samples of the same prob-
lem. Then, the average energy was computed over those samples for 100 trials for each case. While
the average value obtained from our setup is a negative quantity, we report it as a non-negative
value regardless of its sign for the unity of expression. For the modularity optimization, the average
modularity is simply calculated for the 100 trials for each case.

This section is organized as follows: Section 6.1 presents the overall result of the experiment. Sec-
tion 6.2 describes how to obtain the proper partition radius. Sections 6.3 and 6.4 present the analyses
of the experimental results on real-world networks and synthetic graphs, respectively. Section 6.5
describes the results and their explanation in regard to the two problems.

Plot. To be conducive to performance comparison, we used ratio of energy/modularity and run-
ning time, and these quantities are plotted as functions of the partition radius. In other words, the
partition radius is plotted on the x-axis, the ratio of the results of the PM algorithm to that of the
centralized algorithm on the y-axis.

6.1 Overall results

Overall, PM provides a decent trade-off between high accuracy and low complexity, with particu-
larly good efficiency when a proper partition radius is chosen. That is to say, our algorithm produces
a good approximation in a relatively short time for most networks. In particular, PM substantially
reduces the running time for the centralized algorithms with high computational complexity, while
energy/modularity remains at similar levels – even better in some cases – to that of the centralized
algorithms.

To sum up, PM performs better under the following conditions: (i) when applied on well-distributed
regular networks; (ii) when the centralized algorithm has high complexity; and (iii) generally when
the network has a large size.

In some cases, PM shows different tendencies towards the two problems we dealt with, even under
the same conditions, which is due to the two problems being different: MAP inference is based on
assignment and modularity optimization is based on graph clustering. Furthermore, we empirically
prove that modularity optimization are indeed decomposable problems as long as the network has
geometric structures.

Energy and Modularity. Energy/Modularity typically tends to increase along with the partition
radius. Our partitioning scheme involves the removal of the edges that are not included in any par-
tition. As we have previously proved, the experimental results demonstrate that the error actually
scales with the fraction of edges across partitions. That is, as partition radius increases, the number

13

BLONDEL, JUNG, KOHLI, WON AND SHAH

of edges crossing partition decreases. Accordingly, the error is reduced, and we can take into ac-
count the connectivity between more nodes. This leads us to find better assignment/division, which
means an increase in energy/modularity.

Running Time. Running time is also prone to increase along with the partition radius. As shown
in Section 3, the overall computation cost increases as an exponential function of radius. However,
some experimental results show that this is not the only case; an exceptional case can be observed
when large numbers of partitions are generated because of a small partition radius. Thus, we assume
that it is due to the wall-clock time. In our experiments, the time required for the partitioning
procedure is just within 0.1 - 0.2 seconds even on the network of 106 nodes, and it is so small as
to be almost insignificant in total running time. In addition, it should be noted that, even if the
efficiency of PM decreases, the actual gain of running time generally increases due to the large
growth in running time of the centralized algorithms.

6.2 Partition Radius

The primary question of interest: “what value of partition radius should we choose?” Theoretical
results presented earlier in this work provide guidelines. It is definitely worth following. In addi-
tion, practically, we find a simple heuristic rule works well for “regular” enough graphs. To that
end, define the average distance of a graph as the average shortest path length between all pairs of
nodes. To estimate it, one can simply sample 1,000 random node pairs and calculate average over
them. Then the following is a heuristic we suggest to choose partition radius:

choose dAvg.De or dAvg.De − 1 as the partition radius.

The intuition behind this rule is as follows. If the graph is “regular” enough, then the pair-
wise distance distribution between nodes is “uni-modal” and in which case the average distance
is precisely that covers good fraction of interactions. It may make sense to choose a little smaller
radius (by 1) if the graph has few very high degree nodes.

6.3 On Real-World Networks

Figures 2 and 3 show the experimental results from applying our algorithm on the real-world net-
works. In Figure 2(a) and 2(b), on Facebook, PM finds solutions with higher energy than those
obtained by using the original TRW-S within half the time in regards to MAP inference. For modu-
larity optimization, on the same network, PM also achieves similar modularity to the original CNM
in a relatively short time, as shown in Figure 3(c) and 3(d). These particularly good results are due
to the very high average degree (evenly distributed) of Facebook nodes (about 43). Note that in this
case R(Avg.D) - 1, which is smaller than the value of general cases, could be a better choice for the
partition radius. ArXiv has an intractable size for GN. Although it requires a long time to analyze
large partitions, solving the problem inside small partitions brings decent results. This is possible
because the network is well distributed. Figure 3(a) and 3(b) shows that PM gives around 78%
modularity of GN in about 50 minutes. Considering that it takes about 22 hours for GN to apply on
the entire network, this is a decent result. On the whole, PM shows good results on the real-world
networks.

14

PARTITION MERGE

� � � � � �
	
���

�

���

���

���

���

���

���

	
���

α=0.25
α=1
α=4
α=16

(a) Facebook (Energy)

� � � � � �
	
���

�

���

���

���

���

���

���

	
���

α=0.25
α=1
α=4
α=16

(b) Facebook (Time)

� � � � � � � 	
 �� �� �� �� �� ��
�����

�

���

���

���

��	

���

���

��
��

α=0.25
α=1
α=4
α=16

(c) ArXiv (Energy)

� � � � � � � 	
 �� �� �� �� �� ��
�����

�

���

���

���

��	

���

���
��
��

α=0.25
α=1
α=4
α=16

(d) ArXiv (Time)

� � � � � �
	
���

�

���

���

���

���

���

���

	
���

α=0.25
α=1
α=4
α=16

(e) Email-Enron (Energy)

� � � � � �
	
���

�

���

���

���

���

���

���

	
���

α=0.25
α=1
α=4
α=16

(f) Email-Enron (Time)

Figure 2: Real-World Networks for MAP inference

15

BLONDEL, JUNG, KOHLI, WON AND SHAH

� � � � � �
	
���

�

���

���

���

���

���

	
���

(a) ArXiv (Energy, GN)

� � � � 	

������

���

���

���

��

���

���

��
���

�

���

���

��

���

����

����

�
��

��
���

�
��

�
��

�

(b) ArXiv (Time, GN)

� � � � � � 	
 � �� �� �� ��
������

�

���

���

���

��

���

���

��
���

��������
�����
���������

(c) Facebook, ArXiv, Email-Enron (Energy, CNM)

� � � � � � 	
 � �� �� �� ��
������

�

���

���

���

��

���

���
��
���

��������
�����
���������

(d) Facebook, ArXiv, Email-Enron (Time, CNM)

� � � � � � 	
 � ��
������

�

���

���

���

��

���

���

��
���

���
�������
������������

(e) ArXiv (Energy, GN)

� � � � � � 	
 � ��
������

�

���

���

���

��

���

���

��
���

���
�������
������������

(f) ArXiv (Time, GN)

Figure 3: Real-World Networks for Modularity Optimization. In Figure 3(b), the actual running
time (unit : minute) can be read out from the right y-axis. Note that it takes 22 hours for
GN to analyze the ArXiv network.

16

PARTITION MERGE

6.4 On Synthetic Graphs

On Grid Graph. PM shows a tremendous performance on the types of grid graphs stated in
Section 5.1. For MAP inference, Figure 4 demonstrates that our algorithm produces a similar value
of the energy to the original TRW-S in about 1 - 2 percent of the time on the simple grid of 106

nodes. With diagonal edges, it takes about 6 - 7 percent of the time under the same conditions,
as shown in Figure 5. The substantial decrease in running time underlines the effectiveness of our
algorithm and strongly supports the conclusion that PM performs well on regular networks. In
addition, the increase in the number of neighbor nodes makes networks more complex, which leads
to large errors, and, thus, a decrease in the efficiency of PM. As shown in Figure 6 and 7, PM also
yields good results for modularity optimization. Moreover, PM achieves a better performance on
larger graphs.

123 5 10 20 30 50
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(a) Energy

123 5 10 20 30 50
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(b) Time

Figure 4: 1000-by-1000 Grid Graph for MAP inference

123 5 10 20 30 50
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(a) Energy

123 5 10 20 30 50
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(b) Time

Figure 5: 1000-by-1000 Grid Graph with Diagonal edges for MAP inference

17

BLONDEL, JUNG, KOHLI, WON AND SHAH

1235 10 20 30 50 80
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

500x500
750x750
1000x1000
1500x1500

(a) Energy

1235 10 20 30 50 80
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

500x500
750x750
1000x1000
1500x1500

(b) Time

Figure 6: Grid Graphs for Modularity Optimization (LM)

1235 10 20 30 50 80
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

500x500
750x750
1000x1000
1500x1500

(a) Energy

1235 10 20 30 50 80
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

500x500
750x750
1000x1000
1500x1500

(b) Time

Figure 7: Grid Graphs with Diagonal edges for Modularity Optimization (LM)

Random k-Regular Network. For MAP inference, PM shows almost the same efficiency for a
fixed degree, irrespective of the network size. In Figure 8, the results show that PM gives around
80% of the energy of TRW-S in about 20% of the time in all cases. On the other hand, for modularity
optimization, PM performs better as the network size increases, as shown in Figure 10. For the same
size of networks, the increase in degree makes our algorithm less effective, as shown in Figures 9 and
11. These results show that increasing randomness and complexity of networks have detrimental
effects on our algorithm. As is the case of grid graphs, PM produces better efficiency on well-
distributed regular networks.

18

PARTITION MERGE

1 2 3 4 5 6 7 8 9 10 11 12
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

n=40,000
n=80,000
n=120,000
n=160,000

(a) Energy

1 2 3 4 5 6 7 8 9 10 11 12
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

n=40,000
n=80,000
n=120,000
n=160,000

(b) Time

Figure 8: Random k-Regular Networks for MAP inference (For fixed k = 4, α = 1)

1 2 3 4 5 6 7 8 9
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

k=4
k=6
k=8
k=12

(a) Energy

1 2 3 4 5 6 7 8 9
radius

0

0.2

0.4

0.6

0.8

1.0

1.2
ra
tio

k=4
k=6
k=8
k=12

(b) Time

Figure 9: Random k-Regular Networks for MAP inference (For fixed n = 105, α = 1)

1 2 3 4 5 6 7 8 9
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

n=10,000
n=30,000
n=50,000
n=80,000

(a) Energy

1 2 3 4 5 6 7 8 9
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

n=10,000
n=30,000
n=50,000
n=80,000

(b) Time

Figure 10: Random k-Regular Networks for Modularity Optimization (For fixed k = 6 / CNM)

19

BLONDEL, JUNG, KOHLI, WON AND SHAH

1 2 3 4 5 6 7 8 9 10 11 12 13 14
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

k=4
k=6
k=8
k=12

(a) Energy

1 2 3 4 5 6 7 8 9 10 11 12 13 14
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

k=4
k=6
k=8
k=12

(b) Time

Figure 11: Random k-Regular Networks for Modularity Optimization (For fixed n = 106 / LM)

On Watts-Strogatz Network. Note that a Watts-Strogatz network has an underlying regular struc-
ture with a small amount of randomness. First, the randomness increases with the number of long
distance edges. Increasing randomness could have adverse effects on our algorithm. For both the
problems, the experimental results are better for our algorithm with the small number of long dis-
tance edges, as shown in Figure 12 and 14. In addition, long distance edges reduce distributed
processing capability by making the networks denser, leading to deterioration in the efficiency of
our algorithm.
On the other hand, two problems produce slightly different results regarding to the change in the
radius. For MAP inference, a large radius serves as an advantage for the small partition radius.
This is attributed to the growth in the number of neighbor nodes, which is proportional to 2rad2.
However, the performance deteriorates rapidly with the increase in the partition radius. In Figure
13, the results show that our algorithm is very efficient, producing nearly 81% energy compared
to TRW-S but within just 2% of the time for very small partition radii, while the performance is
drastically degraded as the partition radius increases. For modularity optimization, the increase in
radius largely improves the efficiency of PM, as shown in Figure 15. The proximity-based connec-
tivity is reinforced by a larger radius, offsetting the impact of randomness, and thereby promoting
the efficiency of clustering. However, as is the case with long distance edges, the increasing radius
reduces the distributed effects.

20

PARTITION MERGE

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

l=0.5
l=1
l=2
l=4

(a) Energy

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

l=0.5
l=1
l=2
l=4

(b) Time

Figure 12: Watts-Strogatz Networks for MAP inference
(For fixed n = 300-by-300, r = 1, α = 1)

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

r=1
r=2
r=3
r=4

(a) Energy

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2
ra
tio

r=1
r=2
r=3
r=4

(b) Time

Figure 13: Watts-Strogatz Networks for MAP inference
(For fixed n = 250-by-250, l = 1, α = 1)

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

l=0.1
l=0.3
l=1
l=2

(a) Energy

1 2 3 4 5 6 7 8 9 10
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
tio

l=0.1
l=0.3
l=1
l=2

(b) Time

Figure 14: Watts-Strogatz Networks for Modularity Optimization
(For fixed n = 150-by-150, r = 2 / CNM)

21

BLONDEL, JUNG, KOHLI, WON AND SHAH

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

r=1
r=2
r=3
r=4

(a) Energy

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

r=1
r=2
r=3
r=4

(b) Time

Figure 15: Watts-Strogatz Networks for Modularity Optimization
(For fixed n = 100-by-100, l = 1 / CNM)

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

m=2
m=5
m=10
m=15

(a) Energy

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

m=2
m=5
m=10
m=15

(b) Time

Figure 16: Barabási-Albert Networks for MAP inference (For fixed n = 50,000, α = 1)

On Barabási-Albert Network. For both the problems, as the number of additional edges at each
time step increases, the advantage of our algorithm decreases. The results for this case are shown
in Figures 16 and 16. Hubs could exist due to the generative processes of Barabási-Albert network.
These hubs greatly shorten the average distance between two nodes compared to the regular net-
works, such as grid graphs. For this reason, Barabási-Albert networks become more complex and
dense, and thus the efficiency of our algorithm, including the distributed effects, is reduced. For
fixed additional edges, larger networks lead to better results. In Figure 18, the results show that
increasing network size brings about distributed effects that are more efficient.

22

PARTITION MERGE

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

m=2
m=5
m=10
m=15

(a) Energy

1 2 3 4 5 6 7 8
radius

0

0.5

1

1.5

2

2.5

3

ra
ti
o

m=2
m=5
m=10
m=15

(b) Time

Figure 17: Barabási-Albert Networks for Modularity Optimization (For fixed n = 106 / LM)

1 2 3 4 5 6
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=105
α=3x105
α=5x105
α=106

(a) Energy

1 2 3 4 5 6
radius

0

0.2

0.4

0.6

0.8

1.0

1.2
ra
ti
o

α=105
α=3x105
α=5x105
α=106

(b) Time

Figure 18: Barabási-Albert Networks for Modularity Optimization (For fixed m = 5 / LM)

6.5 Discussion for each problem

6.5.1 MAP inference

Interaction parameter α. We defined energy functions of discrete variables with unary and pair-
wise terms, where parameter α of (11) determines the strength of relationship between pairs of
nodes. Accordingly, the increasing value of α assigns a larger weight to edges, which consequently
incur more errors caused by our partitioning scheme. Therefore, our algorithm generally yields
better approximation when α has a relatively small value, as shown in Figure 19. However, it re-
quires comparatively more time for better assignment when α has a small value. This is because the
amount of reduced errors decreases as the partitions grow.

23

BLONDEL, JUNG, KOHLI, WON AND SHAH

1 2 3 4 5 6 7 8 9 10 11 12 13
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(a) Energy

1 2 3 4 5 6 7 8 9 10 11 12 13
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

α=0.25
α=1
α=4
α=16

(b) Time

Figure 19: Results as the value of α changes
Random k-Regular Networks for MAP (For fixed n = 105, k = 4)

Average Degree. It is observed that MAP inference is more affected by the average degree than
in the case of modularity optimization. When partitions are very small, there is a tendency to
produce better approximation as the average degree gets bigger. In particular, when the average
degree is very high, our algorithm obtains outstanding results even for very small partitions, such
as in Facebook. However, one cannot always obtain good results with a high average degree. As
appears by our general experimental results, the increase of average degree that leads to an increase
in randomness can negatively influence our algorithm. Our algorithm accomplishes better efficiency
generally when the increase of average degree improves the regularity. However, in like manner to
α, it requires relatively more time for better assignment as the partition radius increases, when the
average degree is high.

Taken together, the best circumstances for our algorithm in regards to MAP inference is when α
has a small value with a high average degree. However, our algorithm can only realize positive
effects when the increase of average degree improves the regularity. In other words, PM shows
better results when applied on well-distributed regular networks, while taking less consideration of
the relationship between nodes.

6.5.2 Modularity optimization

Due to its high computational complexity, it is difficult for GN to analyze networks under several
conditions. Accordingly, we present the experimental results of GN separately, and PM shows a
good performance in this case, as shown in Figure 20. In addition, we observe that the three cen-
tralized algorithms we used to extract the community structure show somewhat different tendencies
when it comes to the change in the partition radius. Focusing on these differences, we split the
analysis of the experimental results into two parts for closer examination:

Modularity. As shown in Figure 21(a), GN produces the largest modularity on the small parti-
tions, followed by CNM and LM in order. This differs from the results we could get by applying
the original centralized algorithms on the entire network. This observation indicates that fast ap-
proximation algorithms, giving a good trade-off between high accuracy and low complexity, do not

24

PARTITION MERGE

guarantee a good result in this situation. Indeed, LM finds the smallest number of the communities
on the small partitions out of the three algorithms. By the same token, GN is likely to reduces the
error most rapidly as the partition radius increases.

Running Time. In Figure 21(b) and 21(c), GN and CNM both show a tendency of dramatically
increasing running time gap between two consecutive radius steps along with partition radius. Com-
pared to GN and CNM, LM shows a relatively small change of the gap. When the algorithm with
high computational complexity is taken as a centralized algorithm, the running time is more prof-
itable for our algorithm.

Taken together, the experimental results show that GN and CNM offer better conditions than LM
for our algorithm. That is to say, they provide better approximations of modularity in a relatively
short time. Furthermore, this brings a new advantage to our algorithm. The algorithms with high
complexity, such as GN, are limited in terms of the size of networks that they can adopt. PM
enables them to analyze the networks that had been considered too large to be tractable, as long
as the networks are well distributed. As demonstrated in the previous section, PM actually allows
them to get an adequate result, although it is still difficult to tackle large partitions.

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

Random k-Regular
Watts-Strogatz
Barabasi-Albert

(a) Energy

1 2 3 4 5 6 7 8
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

Random k-Regular
Watts-Strogatz
Barabasi-Albert

(b) Time

Figure 20: The Experimental Results for Girvan and Newman algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

GN
CNM
LM

(a) Energy

1 2 3 4 5 6 7 8 9 10 11 12 13
radius

0

0.2

0.4

0.6

0.8

1.0

1.2

ra
ti
o

GN
CNM
LM

(b) Time

1 2 3 4 5 6 7 8 9 10 11 12 13
radius

10−2

10−1

100

101

102

103

104

ra
ti
o

GN
CNM
LM

(c) Time

Figure 21: A Comparison on Results of three algorithms for Modularity Optimization

25

BLONDEL, JUNG, KOHLI, WON AND SHAH

7. Conclusion

In recent years, it has become increasingly important to design distributed high-performance graph
computation algorithms that can deal with large-scale networked data in a cloud-like distributed
computation architecture. Inspired by this, in this paper, we have introduced Partition-Merge, a
simple meta-algorithm, that takes an existing centralized algorithm and produces a distributed im-
plementation. The resulting distributed implementation, with the underlying graph having polyno-
mial growth property, runs in essentially linear time and is as good as, and sometimes even better
than the centralized algorithm. The experiments demonstrate the efficiency of the PM algorithm,
finding that it actually produces a similar performance (better in some cases) to that of the central-
ized algorithm in a relatively short time.

The algorithm is applicable to any graph in general, and its computation time as well as per-
formance guarantees depend on the underlying graph structure – interestingly enough, we have
evaluated the performance guarantees for any graph. We strongly believe that such an algorith-
mic approach would be of great value for developing large-scale cloud-based graph computation
facilities.

Acknowledgments

Part of this work appeared in the preliminary version Jung et al. (2009). This work is supported
in parts by Army Research Office under MURI Award 58153-MA-MUR, ARO MURI 133668-
5079809, NSF CMMI-1462158 and in part by Basic Science Research Program through the Na-
tional Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Tech-
nology(2012032786).

26

PARTITION MERGE

Appendix A. Proofs of Theorems 1, 2

A.1 MAP inference

In this Section, we first prove Theorem 1, and Theorem 2 for MAP inference.

Bound on |E\ ∪pk=1 Ek|. We first state the following Lemma which shows the essential property
of the partition scheme. Lemma 1 will be used in the proofs of Theorems 1, 2 both for MAP and
modularity optimization. The proof of Lemma 1 is stated at the end of this Section.

Lemma 1. Given G = (V,E) with polynomial growth of rate ρ ≥ 1 and associated constant
C ≥ 1, by choosing K = K(ρ, C, δ) and ε = ε(ρ, C, δ) = δ

4(2C−1) , the partition scheme satisfies
that for any edge e ∈ E,

P(e ∈ B) ≤ 2ε. (12)

Lower bound on H(x∗). Here we provide a lower bound on H∗ = H(x∗) that will be useful to
obtain multiplicative approximation property.

Lemma 2. Let H∗ = maxx∈Σn H(x) denote the maximum value of H for a given pair-wise MRF
on a graph G. If G has maximum vertex degree d∗, then

(d∗ + 1)H(x∗) ≥
∑

(i,j)∈E

(
ψUij − ψLij

)
. (13)

Proof. Assign weight wij = ψUij to an edge (i, j) ∈ E. Since graph G has maximum vertex degree
d∗, by Vizing’s theorem there exists an edge-coloring of the graph using at most d∗+1 colors. Edges
with the same color form a matching of the G. A standard application of Pigeon-hole’s principle
implies that there is a color with weight at least 1

d∗+1(
∑

(i,j)∈E wij). Let M ⊂ E denote these set
of edges. Then ∑

(i,j)∈M

ψUij ≥
1

d∗ + 1

 ∑
(i,j)∈E

ψUij

 .

Now, consider an assignment xM as follows: for each (i, j) ∈M set

(xMi , x
M
j) = arg max

(x,x′)∈Σ2
ψij(x, x

′),

27

BLONDEL, JUNG, KOHLI, WON AND SHAH

for remaining i ∈ V , set xMi to some value in Σ arbitrarily. Note that for above assignment to be
possible, we have used matching property of M . Therefore, we have

H(xM) =
∑
i∈V

φi(x
M
i) +

∑
(i,j)∈E

ψij(x
M
i , x

M
j)

=
∑
i∈V

φi(x
M
i) +

∑
(i,j)∈E\M

ψij(x
M
i , x

M
j) +

∑
(i,j)∈M

ψij(x
M
i , x

M
j)

(a)

≥
∑

(i,j)∈M

ψij(x
M
i , x

M
j)

=
∑

(i,j)∈M

ψUij

≥ 1

d∗ + 1

 ∑
(i,j)∈E

ψUij

 . (14)

Here (a) follows because ψij , φi are non-negative valued functions. Since H(x∗) ≥ H(xM) and
ψLij ≥ 0 for all (i, j) ∈ E, we prove Lemma 2.

Decomposition of H∗. Here we show that by maximizing H(·) on a partition of V separately and
combining the assignments, the resulting x̂ has H(·) value as good as that of MAP with penalty in
terms of the edges across partitions.

Lemma 3. For a given MRF defined on G, the algorithm the partition scheme produces output x̂
such that

H(x̂) ≥ H(x∗)−

 ∑
(i,j)∈B

(
ψUij − ψLij

) ,

where B = E\ ∪Kk=1 Ek, ψUij , maxσ,σ′∈Σ lnψij(σ, σ
′), and ψLij , minσ,σ′∈Σ lnψij(σ, σ

′).

Proof. Let x∗ be a MAP assignment of the MRF X defined on G. Given an assignment x ∈ Σ|V |

defined on a graph G = (V,E) and a subgraph S = (W,E′) of G, let an assignment x′ ∈ Σ|W |

be called a restriction of x to S if x′(v) = x(v) for all v ∈ W . Let S1, . . . , SK be the connected
components of G′ = (V,E − B), and let x∗k be the restriction of x∗ to the component Sk. Let Xk

be the restriction of the MRF X to Gk = (Sk, Ek), where Ek = {(u,w) ∈ E|u,w ∈ Sk}.
For xk ∈ Σ|Sk|, define

Hk(xk) =
∑
i∈Sk

φi(xi) +
∑

(i,j)∈Ek

ψij(xi, xj).

Let x̂ be the output of the partition scheme, and let x̂k be the restriction of x̂ to the component
Sk. Note that since x̂k is a MAP assignment of Hk(·) by the definition of our algorithm, for all
k = 1, 2, . . .K,

Hk(x̂k) ≥ Hk(x∗k). (15)

28

PARTITION MERGE

Now, we have

H(x̂)−H(x∗) =
K∑
k=1

[Hk(x̂k)−Hk(x∗k)] +
∑

(i,j)∈B

ψij(x̂i, x̂j)− ψij(x∗i , x∗j)

(a)

≥
K∑
k=1

[Hk(x̂k)−Hk(x∗k)]−
∑

(i,j)∈B

(ψUij − ψLij)

(b)

≥ −
∑

(i,j)∈B

(ψUij − ψLij). (16)

Here (a) follows from the definitions of ψUij and ψLij , and (b) follows from (15). This completes the
proof of Lemma 3.

Completing Proof of Theorem 1(a). Recall that the maximum vertex degree d∗ of G is less than
2ρC by the definition of polynomially growing graph. Remind our definition ε = δ

2C2ρ for MAP
inference. Now we have that

E[H(x̂)]
(a)

≥ H(x∗)− E

 ∑
(i,j)∈B

(
ψUij − ψLij

) (17)

(b)

≥ H(x∗)− 2ε

 ∑
(i,j)∈E

(
ψUij − ψLij

) (18)

(c)

≥ H(x∗) (1− 2ε(d∗ + 1)) (19)
(d)

≥ (1− δ)H(x∗). (20)

Here (a) follows from Lemma 3, (b) follows from Lemma 1, (c) from Lemma 2, and (d) follows
from the definition of ε for MAP inference. This completes the proof of Theorem 1(a) for MAP
inference.

Completing Proof of Theorem 1(b). Suppose that we use an approximation procedure A to pro-
duce an approximate MAP assignment x̂k on each partition Sk in our algorithm. LetA be such that
the assignment produced satisfies thatHk(x̂k) has value at least 1/α(n) times the maximumHk(·)
value for any graph of size n. Now sinceA is applied to each partition separately, the approximation
is within α(K̃) where K̃ = CKρ is the bound on the number of nodes in each partition.

H(x̂k) ≥
1

α(K̃)
M(x∗k). (21)

By the same proof of Lemma 3 together with (21), we have that

E[H(x̂)] ≥ 1

α(K̃)
H(x∗)− E

 ∑
(i,j)∈B

(
ψUij − ψLij

) . (22)

29

BLONDEL, JUNG, KOHLI, WON AND SHAH

Hence we have that

E[H(x̂)] ≥ 1

α(K̃)
H(x∗)− E

 ∑
(i,j)∈B

(
ψUij − ψLij

) (23)

(a)

≥ 1

α(K̃)
H(x∗)− 2ε

 ∑
(i,j)∈E

(
ψUij − ψLij

) (24)

(b)

≥ H(x∗)

(
1

α(K̃)
− 2ε(d∗ + 1)

)
(25)

(c)

≥
(1

α(K̃)
− δ
)
H(x∗). (26)

Here (a) follows from Lemma 1, (b) follows from Lemma 2, and (c) from the definition of ε for
MAP inference. This completes the proof of Theorem 1(b) for MAP inference.

Completing Proof of Theorem 2. The same arguments as in the proof Theorem 1 together with
Lemma 3 completes the proof of Theorem 2 for MAP inference.

Proof of Lemma 1. Now we prove Lemma 1. First, we consider property of the partition scheme ap-
plied to a generic metric space G = (V,dG), where V is the set of points over which metric dG

is defined. We state the result below for any metric space (rather than restricted to a graph) as
it’s necessary to carry out appropriate induction based proof. Note that the algorithm the partition
scheme can be applied to any metric space (not just graph as well) as it only utilizes the property of
metric in it’s definition. The edge set E of metric space G is precisely the set of all vertices that are
within distance 1 of each other.

Proposition 1. Consider a metric space G = (V,dG) defined over an n point set V , i.e. |V | = n.
Let B = E\∪pk=1Ek be the boundary set of the partition scheme applied to G. Then, for any e ∈ E,

P[e ∈ B] ≤ ε+ PK · |B(e,K)|,

where B(e,K) = BG(e,K) is the union of the two balls of radius K in G with respect to the dG

centered around the two end vertices of e, and PK = (1− ε)K−1.

Proof. The proof is by induction on the number of points n. When n = 1, the algorithm chooses as
the only point the point u0 in the initial iteration and hence no edge can be part of the output set B.
That is, for any edge, say e,

P[e ∈ B] = 0 ≤ ε+ PK |B(e,K)|.

Thus, we have verified the base case for induction (n = 1).
As induction hypothesis, suppose that the Proposition 1 is true for any graph with n nodes

with n < N for some N ≥ 2. As the induction step, we wish to establish Proposition 1 for any
G = (V,dG) with |V | = N . For this, consider any v ∈ V . Now consider the last iteration of the
the partition scheme applied to G. The algorithm picks i1 ∈ V uniformly at random in the first

30

PARTITION MERGE

iteration. Given e, depending on the choice of i1 we consider three different cases (or events). We
will show that in these three cases,

P[e ∈ B] ≤ ε+ PK |B(e,K)|

holds.

Case 1. Suppose i1 is such that dG(i1, e) < K, where the distance of a point and an edge of G
is defined as a minimum distance from the point to one of the two end-points of the edge. Call this
event E1. Further, depending on choice of random number R1, define the following events

E11 = {dG(i1, e) < R1}, E12 = {dG(i1, e) = R1}, and E13 = {dG(i1, e) > R1}.

By the definition of the partition scheme, when E11 happens, e can never be a part of B. When
E12 happens, e is definitely a part of B. When E13 happens, it is said to be left as an element
of the set W1. This new vertex set W1 has points less than N . The original metric dG is still
considered as the metric on the points5 ofW1. By its definition, the partition scheme excluding the
first iteration is the same as the partition scheme applied to (W1,dG). Therefore, we can invoke
induction hypothesis which implies that if event E13 happens then the probability of v ∈ B is
bounded above by ε + PK · |B(e,K)|, where B(e,K) is the ball with respect to (W1,dG) which
has no more than the number of points in the ball B(e,K) defined with respect to the original metric
space G. Finally, let us relate the P[E11|E2] with P[E12|E1]. Suppose dG(i1, e) = ` < K. By the
definition of probability distribution of Q, we have

P[E12|E1] = ε(1− ε)`−1, (27)

P[E11|E1] = (1− ε)K−1 +
K−1∑
j=`+1

ε(1− ε)j−1

= (1− ε)`. (28)

That is,
P[E12|E1] =

ε

1− ε
P[E11|E1].

Let q
4
= P[E11|E1]. Then,

P[e ∈ B|E1] = P[e ∈ B|E11 ∩ E1]P[E11|E1] + P[e ∈ B|E12 ∩ E1]P[E12|E1]

+ P[e ∈ B|E13 ∩ E1]P[E13|E1]

≤ 0× q + 1× εq

1− ε
+ (ε+ PK |B(e,K)|)

(
1− q

1− ε

)
= ε+ PK |B(e,K)|+ q

1− ε
(ε− ε− PK |B(e,K)|)

= ε+ PK |B(e,K)| − qPK |B(e,K)|
1− ε

≤ ε+ PK |B(e,K)|. (29)
5Note the following subtle but crucial point. We are not changing the metric dG after we remove points from the

original set of points.

31

BLONDEL, JUNG, KOHLI, WON AND SHAH

Case 2. Now, suppose i1 ∈ V is such that dG(i1, e) = K. We will call this event E2. Further,
define the event E21 = {R1 = K}. Due to the independence of selection of R1, P[E21|E2] = PK .
Under the event E21 ∩ E2, e ∈ B with probability 1. Therefore,

P[e ∈ B|E2] = P[e ∈ B|E21 ∩ E2]P[E21|E2] + P[e ∈ B|Ec21 ∩ E2]P[Ec21|E2]

= 1× PK + P[e ∈ B|Ec21 ∩ E2](1− PK). (30)

Under the event Ec21∩E2, we have e ∈ W1, and the remaining metric space (W1,dG). This metric
space has < N points. Further, the ball of radius K around e with respect to this new metric space
has at most |B(e,K)|−1 points (this ball is with respect to the original metric space G onN points).
Now we can invoke the induction hypothesis for this new metric space to obtain

P[e ∈ B|Ec21 ∩ E2] ≤ ε+ PK · (|B(e,K)| − 1). (31)

From (30) and (31), we have

P[e ∈ B|E3] ≤ PK + (1− PK)(ε+ PK · (|B(e,K)| − 1))

= ε(1− PK) + PK |B(e,K)|+ P 2
K(1− |B(e,K)|)

≤ ε+ PK |B(e,K)|.

In above, we have used the fact that |B(e,K)| ≥ 1 (or else, the bound was trivial to begin with).

Case 3. Finally, let E3 be the event that dG(i1, e) > K. Then, at the end of the first iteration of
the algorithm, we again have the remaining metric space (W1,dG) such that |W1| < N . Hence, as
before, by induction hypothesis we have

P[e ∈ B|E3] ≤ ε+ PK |B(e,K)|.

Now, the three cases are exhaustive and disjoint. That is, ∪3
i=1Ei is the universe. Based on the

above discussion, we obtain the following.

P[e ∈ B] =
3∑
i=1

P[e ∈ B|Ei]P[Ei]

≤
(

3
max
i=1

P[e ∈ B|Ei]
)(3∑

i=1

P[Ei]

)
≤ ε+ PK · |B(e,K)|. (32)

This completes the proof of Proposition 1.

Now, we will use Proposition 1 to complete the proof of Lemma 1. The definition of growth rate
implies that,

|B(e,K)| ≤ C ·Kρ.

From the definition PK = (1− ε)K−1, we have

PK |B(e,K)| ≤ C(1− ε)K−1Kρ.

Therefore, to show Lemma 1, it is sufficient to show that our definition of K satisfies the following
Lemma.

32

PARTITION MERGE

Lemma 4. We have that
C(1− ε)K−1Kρ ≤ ε.

Proof. We will show the following equivalent inequality.

(K − 1) log(1− ε)−1 ≥ ρ logK + logC + log
1

ε
. (33)

First, note that for all ε ∈ (0, 1),

log(1− ε)−1 ≥ log(1 + ε) ≥ ε

2
.

Hence to prove (33), it is sufficient to show that

K ≥ 2ρ

ε
logK +

2

ε
logC +

2

ε
log

1

ε
+ 1. (34)

Recall that

K = K(ε, ρ) =
8ρ

ε
log

(
8ρ

ε

)
+

4

ε
logC +

4

ε
log

1

ε
+ 2.

From the definition of K, we will show that

K

2
≥ 2ρ

ε
logK

and
K

2
≥ 2

ε
logC +

2

ε
log

1

ε
+ 1,

which will prove (34). The following is straightforward:

K

2
≥ 2

ε
logC +

2

ε
log

1

ε
+ 1. (35)

Now, let K̂ = 8ρ
ε log

(
8ρ
ε

)
. Then

K̂

2
=

4ρ

ε
log

(
8ρ

ε

)
≥ 2ρ

ε

(
log

(
8ρ

ε

)
+ log log

(
8ρ

ε

))
=

2ρ

ε
log K̂.

That is, K̂2 −
2ρ
ε log K̂ ≥ 0. Since the function φ(x) = x

2 −
2ρ
ε log x is an increasing function of x

when x ≥ 4ρ
ε , and from the fact that K ≥ K̂ ≥ 4ρ

ε , we have

K

2
≥ 2ρ

ε
logK. (36)

From (35) and (36), we have (34), which completes the proof of Lemma 4.

33

BLONDEL, JUNG, KOHLI, WON AND SHAH

A.2 Modularity optimization

In this Section, we prove Theorem 1, and Theorem 2 for modularity optimization.

Lower bound onM∗. Here we provide a lower bound onM∗ that will be useful to obtain multi-
plicative approximation property.

Lemma 5. LetM∗ = maxχM(χ) denote the maximum value of modularity for graph G. Then,

M∗ ≥ 1

2(2C − 1)

(
1− C2

2m

)
.

Proof. Since the graph has polynomial growth with degree ρ and associated constant C, it follows
that the number of nodes within one hop of any node i ∈ V (i.e. its immediate neighbors) is at most
C. That is, di ≤ C for all i ∈ V . Given this bound, it follows that there exists a matching of size at
least m/(2C − 1) in G. Given such a matching, consider the following clustering (coloring). Each
edge in the matching represent a community of size 2, while all the nodes that are unmatched lead to
community of size 1. By definition, the individual (unmatched) nodes contribute 0 to the modularity.
The nodes that are part of the two node communities, each contribute at least 1

2m

(
1 − C2

2m

)
since

vertex degree of each node is bounded above by C. Since there are m/(2C − 1) edges in the
matching, it follows that the net modularity of such community assignment is at least 1

2(2C−1)

(
1−

C2

2m

)
. This completes the proof of Lemma 5 (Similar result, with tighter constant, follows from Han

(2008)).

Decomposition ofM∗. Here we show that by maximizing modularity on a partition of V separately,
the resulting clustering has modularity as good as that of optimal partitioning with penalty in terms
of the edges across partitions. To that end, let V = V1∪· · ·∪Vp be a partition of V , i.e. Vi∩Vj = ∅
for i 6= j. LetGk = (Vk, Ek), where Ek = (Vk×Vk)∩E, denote the subgraph ofG for 1 ≤ k ≤ p.
Let χk be a coloring (clustering) of Gk with maximum modularity. Let χ∗ be a coloring of G with
maximum modularity (M∗) and let χ∗,k be the restriction of χ∗ to Gk. Let χ̂ denote the clustering
of G obtained by taking union of clusterings χ1, . . . , χp. Then we claim the following.

Lemma 6. For any partition V = V1 ∪ · · · ∪ Vp,

M(χ̂) ≥M(χ∗)− 1

2m
|E\ ∪pk=1 Ek|.

Proof. Consider the following:

2mM(χ̂) =
∑
i,j∈V

1{χ̂(i)=χ̂(j)}

(
Aij −

didj
2m

)
(a)
=

p∑
k=1

∑
i,j∈Vk

1{χk(i)=χk(j)}

(
Aij −

didj
2m

)
(b)

≥
p∑

k=1

∑
i,j∈Vk

1{χ∗,k(i)=χ∗,k(j)}

(
Aij −

didj
2m

)
=
∑
i,j∈V

1{χ∗(i)=χ∗(j)}

(
Aij −

didj
2m

)
−

∑
(i,j)∈V 2\∪pk=1V

2
k

1{χ∗(i)=χ∗(j)}

(
Aij −

didj
2m

)
(37)

≥
∑
i,j∈V

1{χ∗(i)=χ∗(j)}

(
Aij −

didj
2m

)
− |E\ ∪pk=1 Ek|, (38)

34

PARTITION MERGE

where the last inequality follows because the term inside the summation in (37) is positive only
if Aij = 1, i.e. (i, j) ∈ E or else it is negative. Therefore, for the purpose of lower bound, we
only need to worry about (i, j) ∈ E such that (i, j) /∈ ∪pk=1Vk × Vk. This is precisely equal to
E\ ∪pk=1 Ek. The (a) follows because χ̂, by definition, assigns nodes in V i and V j for i 6= j to
different clusters. The (b) follows because χk has maximum modularity in Gk and hence it is at
least as large (in terms of modularity) as that of the χ∗,k, the restriction of χ∗ to Gk. This completes
the proof of Lemma 6 since the first term in (38) is precisely 2mM(χ∗) = 2mM∗.

Approximation factor forM(χ̂). Let β = |E\ ∪pk=1 Ek|/m denote the fraction of edges that are
across partitions for a given partition V = V1 ∪ · · · ∪ Vp. Then, from Lemmas 5 and 6, it follows
that for m ≥ C2,

M(χ̂) ≥M(χ∗)
(

1− β

2M(χ∗)

)
≥M(χ∗)

(
1− 2(2C − 1)β

)
. (39)

Therefore, if 2(2C − 1)β ≤ δ, thenM(χ̂) is at leastM∗ · (1 − δ). Now from Lemma 1 and the
linearity of expectation, we have

E
[
|E\ ∪pk=1 Ek|

]
≤ δ

2(2C − 1)
m. (40)

Completing Proof of Theorem 1(a). When A produces exact solution to the modularity optimiza-
tion for each partition, the resulting solution of our algorithm is χ̂. Therefore, from (39) and (40), it
follows that

E[M(χ̂)] ≥M(χ∗)(1− δ). (41)

Completing Proof of Theorem 1(b). Suppose we use an approximation procedure A to produce
clustering on each partition in our algorithm. Let A be such that the clustering produced has modu-
larity at least 1/α(n) times the optimal modularity for any graph of size n. Now since A is applied
to each partition separately, the approximation is within α(K̃) where K̃ = CKρ is the bound on
the number of nodes in each partition. Let χ̃1, . . . , χ̃p be the clustering (coloring) produced by A
on graphs G1, . . . , Gp. Then by the approximation property of A, we have

M(χ̃k) ≥ 1

α(K̃)
M(χk). (42)

Therefore, for the overall clustering χ̃ obtained as union of χ̃1, . . . , χ̃p, we have

M(χ̃) =

p∑
k=1

M(χ̃k) ≥ 1

α(K̃)

p∑
k=1

M(χk) =
1

α(K̃)
M(χ̂). (43)

Since E[M(χ̂)] is at least (1− δ)M∗, it follows that E[M(χ̃)] ≥ (1−δ)
α(K̃)
M∗.

Completing Proof of Theorem 2. Lemma 6 directly proves Theorem 2(a), and the same arguments
as in the proof Theorem 1(b) completes the proof of Theorem 2(b).

35

BLONDEL, JUNG, KOHLI, WON AND SHAH

References

B. Awerbuch, M. Luby, A.V. Goldberg, and S.A. Plotkin. Network decomposition and locality in
distributed computation. In Foundations of Computer Science (FOCS). IEEE, 1989.

M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-product belief propaga-
tion. In IEEE ISIT, 2005.

M. Bayati, D. Shah, and M. Sharma. Max-Product for Maximum Weight Matching: Convergence,
Correctness, and LP Duality. IEEE Transactions on Information Theory, 54(3):1241–1251, 2008.

V. Blondel, G. Krings, and I. Thomas. Regions and borders of mobile telephony in belgium and in
the brussels metropolitan zone. Brussels Studies, 42(4), 2010.

V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008:P10008, 2008.

A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large networks.
Physical Review E, 70(066111), 2004.

B. DasGupta and D. Desai. On the complexity of newman’s community finding approach for bio-
logical and social networks. Arxiv preprint arXiv:1102.0969, 2011.

M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceed-
ings of the National Academy of Sciences, 99(12):7821–7826, 2002.

R. Gummadi, K. Jung, D. Shah, and R. Sreenivas. Computing the capacity region of a wireless
network. In IEEE International Conference on Computer Communications (INFOCOM), 2009.

A. Gupta, R. Krauthgamer, and J.R. Lee. Bounded geometries, fractals, and low-distortion embed-
dings. In Foundations of Computer Science (FOCS), 2003.

Y. Han. Matching for graphs of bounded degree. Frontiers in Algorithmics, pages 171–173, 2008.

A. Hassidim, J.A. Kelner, H.N. Nguyen, and K. Onak. Local graph partitions for approximation
and testing. In Foundations of Computer Science (FOCS), 2009.

B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum weight b-matching. Arti-
ficial Intelligence and Statistics (AISTATS), 2007.

K. Jung and D. Shah. Local algorithms for approximate inference in minor-excluded graphs. In
Annual Conference on Neural Information Processing Systems (NIPS), 2007.

K. Jung, P. Kohli, and D. Shah. Local rules for global map: When do they work? Advances in
Neural Information Processing Systems (NIPS), 22:871–879, 2009.

P. Klein, S.A. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity
flow. In ACM symposium on Theory of computing (STOC), 1993.

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28:1568–1583, 2006.

36

PARTITION MERGE

M.E.J. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577, 2006.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San
Francisco, CA: Morgan Kaufmann, 1988.

D. Peleg. Distributed computing: a locality-sensitive approach, volume 5. Society for Industrial
Mathematics, 2000.

S. Sanghavi, D. Shah, and A. Willsky. Message-passing for Maximum Weight Independent Set. In
Advances in Neural Information Processing Systems (NIPS), 2007.

D. Sontag and T. Jaakkola. Tree block coordinate descent for map in graphical models. Journal of
Machine Learning Research - Proceedings Track, 5:544–551, 2009.

R. Swendsen and J. Wang. Nonuniversal critical dynamics in monte carlo simulations. Phys. Rev.
Letter., 58:86–88, 1987.

D.l Tarlow, D. Batra, P. Kohli, and V. Kolmogorov. Dynamic tree block coordinate ascent. In ICML,
2011.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map estimation via agreement on (hyper)trees:
Message-passing and linear-programming approaches. IEEE Transactions on Information The-
ory, 2005.

J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. Mitsubishi Elect. Res. Lab.,
TR-2000-26, 2000.

37

