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Abstract

The goal of deconvolution is in estimating the distribution of a random variable based on its noisy

observations. The goal of matrix estimation is in estimating the entries of a large matrix from

observed entries, which are noisy versions of entries in a small fraction of the entire matrix. We

study the rate of convergence for estimation of matrices with a certain monotonicity property. It

turns out to be equivalent to solving a robust version of the deconvolution problem. As the main

result of this paper, we provide a simple, intuitive algorithm for matrix estimation which extends the

works by Fan (1991) and Delaigle et al. (2008). We show that our computationally efficient method

achieves near optimal minimax rate for the matrix estimation as well as robust deconvolution. This

rate is within a constant factor to the rate achieved by the kernel deconvolution estimator in the

classical setup.

Keywords: Deconvolution, Matrix estimation, Density estimation, Latent variable model, Mini-

max rate

1. Introduction

Deconvolution is a statistical inverse problem to estimate the unknown density fX of a random

variable X based on observations of random variable Z whose density takes the form fZ = T (fX)
for some transformation T . For example, let the observed random variable be Z = X + N , with

N being independent, identically distributed noise; the density fZ = fX ∗ fN with fN being noise

density and ∗ representing convolution. In this case, estimating fX is effectively the process of

deconvolution.

In a large body of such problems, including density deconvolution and errors-in-variables re-

gression, the transformation T is commonly assumed to be known. In the simplest scenario, we have

n independent observations of Z from which its density is estimated, thereby leading to estimation

of fX = T−1(fZ) since T is known. Fan (1991) discussed how well the unknown density and

its cumulative distribution function (CDF) can be estimated by nonparametric kernel methods with

certain smoothness conditions imposed on the density fX . In this celebrated work, they not only

address how to estimate the density and compute the rate of convergence, but they also discuss how

difficult the deconvolution problem is and how the difficulty depends on the noise characteristic.

The work provides insights on the optimal rates of convergence and the best estimators in terms of

the rates of convergence.

However, the noise density fN and hence the transformation T may not be known a priori

in many real-world applications. To overcome the challenge, it is often assumed that additional

samples from replicated or validation data are available to estimate fN . For example, samples of

replicated contaminated data in the form of repeated measurements as in Delaigle et al. (2008), or

sometimes direct samples from the error distribution are assumed available. Another line of works
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have suggested to estimate the scale of the error distribution, but they require a particular parametric

model for the noise density and even restrictive smoothness assumptions on the signal distribution

in some cases.

In this paper, we consider a generalization of the deconvolution problem stated above that arises

naturally in the context of matrix estimation. The problem of matrix estimation is as follows. We

are given a partial observation of a data matrix Z = [Zij ] ∈ R
m×n which is generated as per the

so-called latent variable model. Specifically, each row i ∈ [m] = {1, . . . ,m} and column j ∈ [n]

are associated with latent parameters θ
(i)
row, θ

(j)
col ∈ [0, 1] respectively. There is also a latent function

g : [0, 1] × [0, 1] → R. The random variables Zij are independent across i, j and are generated as

Zij = g(θ
(i)
row, θ

(j)
col)+Nij where Nij are independent, identically distributed noise random variables.

The distribution of noise random variables is unknown. We observe each of Zij with probability

p ∈ (0, 1], independently. The goal is to recover the “mean” matrix A = [Aij ] where Aij = E[Zij ]

= g(θ
(i)
row, θ

(j)
col). Ideally, we wish to retrieve a good estimate of A with as small p as possible.

Now consider row i ∈ [m] of matrix A. Recovering it requires knowing g(θ
(i)
row, ·) where

· ∈ {θ(j)col , j ∈ [n]}. Now learning g(θ
(i)
row, ·), · ∈ [0, 1] boils down to learning distribution of ran-

dom variable Xi = f(θ
(i)
row, U), where U is uniform on [0, 1]. That is, matrix estimation problem is

about learning m distributions, Xi, i ∈ [m] simultaneously from their noisy samples. This is like

the setup of Delaigle et al. (2008), but harder. Because, in the setup of Delaigle et al. (2008), we had

repeated measurements while we have only a single measurement here. To articulate this, consider

m = 1: it is impossible to learn the distribution corresponding to X1 = g(θ
(1)
row, U) when the ad-

ditive noise is unknown because of the lack of repeated measurements as required in Delaigle et al.

(2008). For m large enough, as we shall show, even though above difficulty remains, we can utilize

“commonality” between columns to create a “noisy version” of repeated measurements by looking

across a row. And this requires a robust version of the method introduced in Delaigle et al. (2008)

which is an important contribution of this work. Using this improved “collective deconvolution”

method, we show that for the class of matrix estimation problem considered here, our efficient

algorithm provides a minimax rate that is nearly optimal.

To enable “commonality” as mentioned above, we utilize the monotonicity property of the ma-

trix. Precisely, we assume there exists a permutation of columns which leads to rearranging entries

in all the rows in a monotone nondecreasing manner simultaneously. This assumption has similar-

ity to the strong stochastic transitivity in rank aggregation (see Shah et al. (2016)) context and de-

gree monotonicity in graphon estimation context; see Bickel and Chen (2009) and Chan and Airoldi

(2014) for example. We note that our model is asymmetric unlike graphon which is symmetric. Due

to limitation of space, further reviews on related works can be found in the Appendix.

1.1. Our Contributions

As the main contribution of this work, as noted earlier, we present a robust extension of the works

by Fan (1991) and Delaigle et al. (2008) with the near optimal rate of convergence in terms of mean

squared error. Ours is a neighborhood-based matrix completion method that operates with a very

sparse data set. Technically, the refined use of concentration inequalities and chaining in the proofs

can be interesting in its own right.

The key technical contribution is the noise density estimation algorithm described in Section

4 (see noise density estimation procedure and Algorithm 2 in Appendix E for more details) and
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its analysis. It is aimed at imitating the setup of repeated measurements by detecting the columns

having column features close to each other.

Our estimation algorithm (Algorithm 1) first estimates the column features for every column

by taking average values, and then estimate the noise density using the estimated column features.

The regularity assumption on the latent function with respect to the column features is used in this

noise density estimation step. Thereafter, the latent function, or the inverse of the signal CDF, can

be restored exploiting the estimated noise density. We also analyze the consistency and the rate of

convergence of the proposed algorithm, which is summarized as Theorem 9 (see Theorem 3 for a

simplified version). A full description of the algorithm and its analysis can be found in Appendix E.

The algorithmic upper bounds and the information-theoretic lower bounds for the rates of con-

vergence under three different noise scenarios are summarized in Table 1.

Table 1: Mean Squared Error of function estimation depending on the noise models.

Noise Model Algorithmic upper bound Info-theoretic lower bound

Noiseless O
(

1
(n−1)p

)

Ω
(

1−p
(n−1)p

)

Theorem 1 Theorem 4

Supersmooth O
((

log np
)− 2

β

)

Ω
(

(1− p)
(
log(n− 1)p

)− 3
β

)

known distribution Theorem 2 Theorem 5

Supersmooth O
(

(log np)
− 2

β

)

same as above

unknown distribution Theorem 3

1.2. Organization

The paper is organized as follows. In Section 2, we state the problem of interest and our model as-

sumptions. In Section 3, we present our main theoretical results, exhibiting the rates of convergence

of our algorithm and its near optimality. We describe our proposed algorithm with a generic recipe

and some details for the noisy scenario with unknown noise distribution in Section 4. We provide a

sketch of the proof in Section 5, including core lemmas for analysis, however, the full details of the

analysis and proof are deferred until Appendix E.

The lower bounds on MSE are stated in Theorem 4 and 5. The proof of these two theorems can

be found in Appendix B. For comparison with easier noise scenarios, we discuss the algorithm and

analysis adapted to noiseless setup (Appendix C) and to noisy setup when the noise distribution is

known a priori (Appendix D).

2. Setup

2.1. Problem Statement

We wish to estimate matrix A ∈ R
m×n from its partial, and possibly noisy observations Z ∈ R

m×n.

LetO ⊂ [m]×[n] denote the set of indices for which Zij is observed; Zij are such that E [Z(i, j)] =
A(i, j). In this paper, we assume the additive noise model

Z(i, j) = A(i, j) +N(i, j), ∀(i, j) ∈ O,

3
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where N(i, j) are independent and identically distributed random variable with zero mean: E [N(i, j)] =
0. For (i, j) ∈ [m]× [n] \ O, Z(i, j) is not observed, denoted as Z(i, j) = ⋆. We shall assume that

each entry (i, j) ∈ [m]× [n] belongs to O with probability p ∈ (0, 1] independently.

We assume a nonparametric model for the matrix A: each row i ∈ [m] and column j ∈ [n] is

associated with latent features θ
(i)
row, θ

(j)
col ∈ [0, 1] ⊂ R, and the (i, j)-th entry of matrix A takes the

form

A(i, j) = g
(

θ(i)row, θ
(j)
col

)

(1)

for some latent measurable function g : [0, 1]2 → R. However, this representation is not unique,

because we can apply an invertible transform to the domain (latent feature space) and take the push-

forward of the latent function with respect to the transform, so that A(i, j) remains the same under

the new representation. Therefore, estimation of the latent function g is an ill-posed problem, and

we would rather focus on prediction of the values A(i, j) for (i, j) ∈ [m]× [n].

Problem 1 Given a data matrix Z ∈ R
m×n, can we recover the true parameter matrix A ∈ R

m×n

under the aforementioned setup in an algorithmically efficient manner?

2.2. Performance Metric

Given an estimator ϕ : Rm×n → R
m×n, which returns the estimate Â = ϕ(Z) of matrix A using

Z , we use the mean-squared error (MSE) to evaluate the performance:

MSE(ϕ) = E




1

mn

m∑

i=1

n∑

j=1

(

Â(i, j) −A(i, j)
)2



 . (2)

We call the estimator ϕ to be consistent if MSE vanishes as the problem size (m,n) increases, i.e.

lim
m,n→∞

MSE(ϕ) = 0.

With these notations, the refined problem of interest is as follows.

Problem 2 If consistent recovery in Problem 1 is possible for p large enough, how fast does the

MSE converge to 0 as a function of p,m and n?

2.3. Operating Model Assumptions

In addition to the assumptions for the additive noise model presented in Section 2.1, we assume

some additional properties for the latent function g (see Eq. (1)) and the noise distribution.

2.3.1. ASSUMPTIONS ON THE LATENT FUNCTION

In addition to measurability, cetain types of smoothness conditions are usually imposed on the

latent function, such as Lipschitz- or Hölder continuity. In this paper, we will focus on the class of

functions g : [0, 1]2 → R, which are bounded, monotone increasing (Eq. (3)) and (l, L) bi-Lipschitz

(Eq. (4)) with respect to the second argument. That is to say,

y1 ≤ y2 =⇒ g(x, y1) ≤ g(x, y2), ∀x ∈ [0, 1], and (3)

∃l, L > 0 s.t. 0 < l ≤ g(x, y2)− g(x, y1)

y2 − y1
≤ L <∞, ∀x,∀y1 6= y2. (4)

4
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However, we impose no further restrictions on g with regard to the first argument.

A bi-Lipschitz mapping is injective, and is a bijection onto its image. Therefore, for each x ∈
[0, 1], we can define the inverse of g(x, ·) : [0, 1] → [g(x, 0), g(x, 1)], as g−1

x : [g(x, 0), g(x, 1)] →
[0, 1]. It is easy to check that g−1 is also monotone increasing and ( 1L ,

1
l ) bi-Lipschitz.

2.3.2. ASSUMPTIONS ON THE NOISE

We assume noise is symmetric with mean zero, and sub-Gaussian with parameter σ, i.e., E
[
etX
]
≤

e
t2σ2

2 , ∀t ∈ R. In addition, we assume the noise is supersmooth (see Appendix L.2.1, cf. Fan

(1991); Delaigle et al. (2008) for more detail), i.e., there exist B > 1, and β, γ > 0 such that

B−1 exp
(

−γ|t|β
)

≤ φN (t) ≤ B exp
(

−γ|t|β
)

, ∀t ∈ R, (5)

where φN (t) is the characteristic function of the noise distribution. For example, Gaussian noise is

a typical example of super-smooth noise with parameter β = 2. As the name suggests, supersmooth

noise is smoother than the class of ‘ordinary-smooth’ noise (cf. Fan (1991) for definition), which

has polynomially decaying tail in the Fourier domain.

2.4. Recapping the Model

For a succinct representation of the model introduced so far, we introduce three matrices of the

same size, A,N,M ∈ R
m×n. Specifically, A is the matrix which we would like to estimate. N

is a random matrix of size (m,n), whose entries are drawn i.i.d. as per a noise distribution. M is

a random binary masking matrix with each entry being 1 with probability p and 0 with probability

1−p, independently. The observation matrix Z is such that Z(i, j) = A(i, j)+N(i, j) if M(i, j) =
1, and Z(i, j) = ⋆ if M(i, j) = 0 regardless of the value of A(i, j) +N(i, j).

3. Main Results

We present main results of our work by answering Problems 1 and 2 respectively. We provide

simple estimation algorithms that require robust deconvolution method. The convergence rate for

MSE under these algorithms are contrasted with lower bound results which primarily follow from

the classical literature in function approximation and deconvolution.

3.1. Algorithmic Upper Bounds on MSE

We build up towards our main result by considering increasing order of difficulty in terms of as-

sumption on noise model: (1) Noiseless: N(i, j) = 0 for all (i, j) ∈ [m] × [n]; (2) Known noise:

the noise distribution is known; and (3) Unknown noise: the noise distribution is unknown and has

to be also estimated. Again, the main result is the scenario (3) with unknown noise, however, the

other two cases help in building solution up and are presented for completeness. The following

three main theorems explicitly state upper bounds on the MSE rate for each noise scenario, which

turn out to be (near-) optimal in comparison with Theorems 4 and 5. We present the theorems in the

language of matrix estimation, however, the algorithm proposed in Section 4 essentially recovers

the underlying latent function, namely, graphon.

5
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Theorem 1 (Informal; noiseless) In the noiseless scenario, there is a polynomial time algorithm

ϕ̆ : Z 7→ Â, which consistently estimates A from a data matrix Z with MSE (ϕ̆) = O
(

1
(n−1)p

)

.

Theorem 2 (Informal; known noise) In the known noise scenario, there is a polynomial time al-

gorithm ϕ̃ : Z 7→ Â, which consistently estimates A from a data matrix Z with MSE (ϕ̃) =

O
(

(log np)
− 2

β

)

.

Theorem 3 (Informal; unknown noise) In the unknown noise scenario, there is a polynomial time

algorithm ϕ̂ : Z 7→ Â, which consistently estimates A from a data matrix Z with MSE (ϕ̂) =

O
(

(log np)
− 2

β

)

.

The full statements and the proofs of these theorems can be found in Appendices C, D, and

E, respectively with corresponding adaptations of the estimation algorithm and their analysis. In

a nutshell, the proposed algorithm consists of a two separate procedures of estimating the column

features (quantiles) of all columns and then estimating the latent function (the inverse of signal

CDF) for all rows. We show our proposed algorithm achieves the (near-) optimal rate of MSE in all

three noise scenarios.

We remark that the MSE converges to 0 as m,n → ∞ as long as p = ω
(
n−1

)
, regardless of

the noise assumption. Even when there is nontrivial noise, our algorithm attains a vanishing MSE

upper bound as long as p = ω(max{m−1, n−1}). This provides a positive answer to Problem 1.

However, answering to Problem 2, we require a technical condition for the aspect ratio between

m and n when there is nontrivial noise. It is necessary to have (log np)
2
β ≪ mp≪ n to achieve the

MSE upper bound as described in the Theorems 2 and 3. This condition stems from our analysis; our

proposed algorithm does not require it. The condition ensures that the error in function estimation

dominates the error in column feature estimation in the noisy scenarios. Note that this condition is

easily satisfied in most setups, and that there is no such restriction in the noiseless scenario.

3.2. Information-theoretic Lower Bounds on MSE

In order to argue the lower bound on the MSE rate for any estimation procedure, we show there

exists a pair of latent functions, which are not possible to distinguish beyond certain resolution (the

lower bound) by any algorithm from given data. Specifically, we show that for any given data θ
(i)
row,

θ
(j)
col , Z(i, j), there exist two functions g and g† which would generate identical data at the sampling

points, yet are significantly different. Suppose that there is an oracle algorithm ϕ∗ which has access

not only to Z(i, j) but also to θ
(i)
row, θ

(j)
col . However, since g

(

θ
(i)
row, θ

(j)
col

)

= g†
(

θ
(i)
row, θ

(j)
col

)

for all

(i, j) such that M(i, j) = 1, even an oracle cannot tell if the data is generated as per either g or g†

based on the given data. No algorithm can outperform the oracle, and therefore, the MSE cannot be

smaller than the squared L2 distance between g and g†. The details of the argument are provided in

Appendix B.

Theorem 4 (Informal; noiseless) In the noiseless scenario, for any estimation algorithm ϕ, there

exists a hard instance for which MSE(ϕ) = Ω
(

1−p
(n−1)p

)

.

Theorem 5 (Informal; additive noise) In the additive noise scenario, for any estimation algo-

rithm ϕ, there exists a hard instance for which MSE(ϕ) = Ω
(

(1− p)
(
log(n− 1)p

)−3/β
)

.

6
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4. Algorithm

4.1. Generic Recipe

We shall use a “generic” recipe for estimation in all three scenarios considered in this work: noise-

less, noisy with known noise distribution, and noisy with unknown noise distribution. The generic

algorithm is adapted for each setup to deal with the effect of the noise. Due to limitation of space, we

shall provide details in Section 4.2 for the scenario when the noise distribution is unknown, which is

the most challenging case. However, details for all the scenarios as well as accompanying analysis

for each setup can be found in the Appendix C (noiseless); D (known noise) and E (unknown noise).

The generic algorithm for each of the three scenarios is as follows:

Algorithm 1: Generic recipe of the algorithm

1. Estimate the latent feature (=quantile) θ
(j)
col of column j. Let it be denoted by q̂(j) j ∈ [n].

2. Estimate F (i) = g−1

x=θ
(i)
row

on row i, which is the inverse of the latent function g
(

θ
(i)
row, ·

)

restricted on the first coordinate. Let it be denoted by F̂ (i), i ∈ [m].

3. Plug in the estimates: Â(i, j) = ĝ(i)(q̂(j)), i ∈ [m], j ∈ [n], where ĝ(i) =
(

F̂ (i)
)−1

.

We note that, by assumption, for any given x ∈ [0, 1] the latent function g(x, ·) : [0, 1] →
R along the second dimension is continuous and monotone increasing in our model, and hence

invertible. The inverse of g (for a fixed x), namely, g−1(x, ·) : R → [0, 1], can be viewed as a

cumulative distribution function for a certain distribution on R. In short, for each row i ∈ [m], we

can consider the latent function restricted to x = θ
(i)
row, i.e., g(x, ·), as the inverse of the cumulative

distribution function of signal along row i. The estimation of F (i) changes depending upon whether

it is noiseless or noisy with known / unknown noise distribution.

4.2. Details

We describe details of the steps outlined in the generic algorithm above for the most challenging

scenario with unknown noise distribution. We will be brief here due to space limitation. However,

further details can be found in the Appendix E.

4.2.1. SOME NOTATIONS

For i ∈ [m], j ∈ [n], let

Bi = {j′ ∈ [n] : M(i, j′) = 1} and Bj = {i′ ∈ [m] : M(i′, j) = 1}. (6)

Define Heaviside step function H : R →
{
0, 12 , 1

}
using the indicator function I as H(x) =

1
2

(
I {x > 0}+ I {x ≥ 0}

)
. That is,

∑n
j2=1 H

(
Z(i, j1)− Z(i, j2)

)
is the number of entries Z(i, j)

in row i whose value smaller than Z(i, j1) while Z(i, j1) (and indices with value equal to it) being

counted with weight 1
2 .

7
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4.2.2. STEP 1: ESTIMATING θ
(j)
col BY q̂marg(j), j ∈ [n].

Given Z ∈ R
m×n, define Zmarg as the column average of observed data. That is, Zmarg(j) =

∑m
i=1 M(i,j)Z(i,j)
∑m

i=1 M(i,j) if Bn 6= ∅. If Bj = ∅, we let Zmarg(j) =
1
2 by default. Then, for j ∈ [n] let

q̂marg(j) =
1

n

n∑

j′=1

H
(
Zmarg(j) − Zmarg(j

′)
)
. (7)

4.2.3. STEP 2: ESTIMATING F (i) = g−1

x=θ
(i)
row

BY F̂ (i), i ∈ [m].

Each entry in the row i can be viewed as a sum of two independent random variables: the first

random variable is g(θ
(i)
row, θ

(j)
col) with the randomness induced due to that in the column parameter

θ
(j)
col that are sampled uniformly from [0, 1]; the second random variable is the additive noise. There-

fore, the empirical CDF of the observations gives good estimation of distribution of the summation

of these two random variables. However, the interest is in recovering the distribution of the first

random variable. If we do know the distribution of the second random variable, we can deconvolute

the effect of noise by deconvolution kernel estimator.

Putting it other way, we wish to recover distribution of random variable X, but we observe sam-

ples of Z = X+N instead of X. And we do not know the distribution of N . Due to independence,

we know that φZ(t) = φX(t)φN (t) for all t ∈ R, where φZ , φX , φN denote the characteristic func-

tion of random variable Z,X and N respectively. To overcome the challenge of unknown noise

distribution, we estimate the noise characteristic function first and then estimate the CDF using

kernel deconvolution, but with an additional ridge parameter to avoid division by zero.

Indeed, this is known as deconvolution kernel density estimator in literature. We shall adopt

prior results Carroll and Hall (1988); Fan (1991); Delaigle et al. (2008) to our setting. In particular,

in the prior setting, to estimate noise distribution, it is assumed that for a given fixed instance of

X, we have multiple noisy observations, e.g. X + N1, . . . ,X + Nk with k large enough. In our

setting, it is effectively one sample per instance of X. So it is not straightforward to estimate noise

distribution. We overcome this challenge as follows (further details can be found in Appendix L).

Noise Density Estimation. We shall explain how to produce estimation φ̂N (t) for noise distri-

bution using pairs of observations from rows i ∈ [m]. To begin with, suppose that we can repeat-

edly observe the same instance Xi of target random variable up to independent additive noise, i.e.,

Zij = Xi + Nij with Nij independent. Although we don’t know the value of Xi, we can see that

the difference in the observed data entries is equal to the difference between two independent noise

instances: Zi1 − Zi2 = (Xi +Ni1)− (Xi +Ni2) = Ni1 −Ni2. Assuming symmetry in the noise

distribution, Ni1−Ni2 ≡ Ni1 +Ni2. Therefore, φNi1−Ni2(t) = φN (t)2. From symmetry of N , we

know that φN (t) is real-valued. Moreover, it is positive because N is supersmooth. Therefore, we

can estimate φN (t) by taking square root of the (the absolute value of) estimate φ̂N1−N2(t) as

φ̂N (t) = φ̂N1−N2(t)
1
2 =

∣
∣
∣
∣
∣

1

n

n∑

i=1

cos [t (Ni1 −Ni2)]

∣
∣
∣
∣
∣

1
2

.

However, the repeated measurement assumption is not feasible because we have at most one mea-

surement for a given index (i, j). Despite this challenge, we can still hope to obtain almost repeated

8
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samples from observations in a given row, if we choose columns j1, j2 ∈ [n] that have very similar

features θ
(j1)
col ≈ θ

(j2)
col so that

Z(i, j1)− Z(i, j2) = [A(i, j1)−A(i, j2)]
︸ ︷︷ ︸

≈0, ∵θ
(j1)
col ≈θ

(j2)
col

+ [N(i, j1)−N(i, j2)] ≈ N(i, j1)−N(i, j2).

This intuition leads to the following procedure. For each i ∈ [m], we produce different estimates

φ̂N , namely, φ̂N,i using data only from the rows i′ ∈ [m] \ i.
1. Let T :=

{
(i, j1, j2) ∈ [m]× [n]2 : M(i, j1) = M(i, j2) = 1 and q̂marg(j1) ≈ q̂marg(j2)

}
.

2. For i ∈ [m], define Ti as Ti :=
{

(i′, j1, j2) ∈ T : i′ 6= i
}

.

3. For i ∈ [m], estimate φ̂N,i(t) =
∣
∣
∣

1
|Ti|
∑

(i,j1,j2)∈Ti cos
[

t (Z(i, j1)− Z(i, j2))
]∣
∣
∣

1/2
.

Intuitively, T is the set of index triples to imitate the repeated measurements: Algorithm 2 in Ap-

pendix E for its construction. For each row i, we estimate the noise characteristic function φ̂N,i by

using Ti, which is a subset of T tailored to exclude the data from row i.

Estimating F̂ (i). Recall Bi = {j ∈ [n] : M(i, j) = 1} (see Eq. (6)). We define the kernel

smoothed CDF estimator with unknown noise density as follows. Given constants D1, D2 such that

D1 ≤ infx,y∈[0,1] g(x, y) and D2 ≥ supx,y∈[0,1] g(x, y),

F̂ (i)(z) =

{∫ z
D1

f̂ (i)(w)dw, if z < D2,

1, if z ≥ D2,
(8)

where

f̂ (i)(z) =
1

h|Bi|
∑

j∈Bi

L̂

(
z − Z(i, j)

h

)

and L̂(z) =
1

2π

∫

e−itz φK(t)

φ̂N,i

(
t
h

)
+ ρ

dt.

The kernel bandwidth parameter h = (4γ)
1
β (log |Bi|)−

1
β where β and γ are smoothness parameters

for the noise (see Eq. (5)). We choose the ridge parameter ρ = |Bi|−7/24. We choose a kernel K
satisfying the following conditions: (i) K is symmetric, i.e., K(x) = K(−x) for all x ∈ R; and (ii)

φK is supported within [−1, 1]. More details can be found in Remark 19 in Appendix D.

4.2.4. STEP 3: ESTIMATING A(i, j) BY Â(i, j), i ∈ [m], j ∈ [n].

For each i ∈ [m], let ĝ(i) =
(

F̂ (i)
)−1

denote the quantile function (right pseudo-inverse) associated

with F̂ (i). Plugging Eq. (7) into it leads to the estimate of matrix entry:

Â(i, j) = ĝ(i) (q̂marg(j)) . (9)

5. Sketch of the Proof of Theorem 3

Here we provide a sketch of the proof of main Theorem 3. Details can be found in Appendix E.

The key to establishing this result is arguing that each of the three steps of the algorithm detailed in

Section 4.2 succeeds. This is what we do next.

9
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5.1. Step 1 Works

Recall D1,D2 are some constants such that D1 ≤ infx,y∈[0,1] g(x, y) and D2 ≥ supx,y∈[0,1] g(x, y).

We define two other constants C1 ≡ l2

2(D2−D1)2
and C2 ≡ l2

8σ2 , which depend on model parameters

l, σ. We define a threshold for quantile estimation t∗q ≡ 4
√
π√

mp

(√
eC1+

√
2√

C1
+

√
eC2+

√
2√

C2

)

. Next we

establish that the quantile estimates concentrate around the true column features.

Lemma 6 For any t ≥ 2t∗q = Θ
(

1√
mp

)

,

P

(∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ > t

)

≤ exp
(

−n

6

(

t− t∗q
))

+ exp

(

−nt2

2

)

+ exp
(

−mp

8

)

.

Proof [Sketch] Consider an ideal estimator q̂∗(j) =
1
n

∑n
j′=1 H

(

θ
(j)
col − θ

(j′)
col

)

, which has access to

the hidden column features. Now
∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ ≤

∣
∣q̂marg(j) − q̂∗(j)

∣
∣ +
∣
∣
∣q̂∗(j)− θ

(j)
col

∣
∣
∣ .

Due to uniform distribution on [0, 1] for column parameters, one expects

∣
∣
∣q̂∗(j) − θ

(j)
col

∣
∣
∣ ≈ Θ(

1√
n
).

Therefore, to obtain error bound of t ≥ t∗q (we assume mp ≪ n), it boils down to controlling
∣
∣q̂marg(j) − q̂∗(j)

∣
∣. We obtain a probabilistic tail upper bound for |q̂marg(j) − q̂∗(j)| by rewriting it

as the sum of indicator which is dominated by a certain binomial random variable. This leads to the

desired claimed bound. Please see Appendix G for details.

5.2. Step 2 Works

We define thresholds t∗0 and T ∗
0 relevant for CDF estimation in AppendixE.2.2 (cf. Eqs. (57), (58)).

In effect, they are such that t∗0 = O
((

log np
)−1/β

)

and T ∗
0 = t∗0+C

(
log 2np

)1/β

(np)5/24
for some constant

C . We define an event which we shall show to hold with high-probability as follows: for i ∈ [m],

E(i) ≡
{np

2
≤ |Bi| ≤ 2np

}

.

Finally, we take a note of “remainder term” Ψ̃m,n,p, defined precisely in Eq. (59) which turns out to

be o(1) with scaling of m,n, p. Now we state the main result about Step 2 of the algorithm working.

Lemma 7 For any i ∈ [m], and for any t ≥ T ∗
0 ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z) − F (i)(z)

∣
∣
∣ > t

∣
∣
∣
∣
∣
E(i)

)

≤ (2np)
1
6 exp

(

−
(np

2

)5/12
(t− t∗0)

2

8C2
4 (log(2np))

2
β

)

+ Ψ̃m,n,p.

The constant C4 = BKmax(D2−D1)

π(4γ)
1
β

, where B ≥ 1 is a noise model parameter (see Eq. (5)) and

Kmax = supt |φK(t)|.

10
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Proof [Sketch] Details can be found in Appendix I, here we provide a very succinct summary.

The main idea of the proof is to decompose the desired probability into three pieces using triangle

inequality and the union bound: (1) the variance of F̂ (i)(z) (Eq. (99)); (2) the bias of the CDF

estimator in the known noise setup (Eq. (100)); and (3) the discrepancy in the estimator between the

known noise and the unknown noise scenarios, i.e., E
[

F̂ (i)(z)
]

−E

[

F̃ (i)(z)
]

(letting F̃ denote the

estimator with known φN ) (Eq. (101)). Since [D1,D2] is a compact set, we can obtain the desired

bound by chaining technique whenever the supremum over [D1,D2] is considered.

Controlling (1) is accomplished by applying McDiarmid’s inequality and the result is stated as

Lemma 44. There is an upper bound for (2), which is stated in Lemma 29 and its proof is based on

the upper bound result by Fan (1991).

The most challenging aspect of this Lemma (and of this paper) is to establish that (3) is well-

behaved. This requires us to identify a set of events that hold with high-enough-probability, and

conditioned on those events, the desired bound holds. The set of events are listed in Appendix I.6.

A sequence of Lemmas in the first three subsections of I precisely argue what the above statement

claims. All in all, when the dust settles, we obtain the desired claim of this Lemma.

5.3. Step 3 Works

Using Lemmas 6 and 7, we establish a probabilistic tail bound on |Â(i, j) − A(i, j)| and then

integrate it to obtain a bound on Mean-Squared-Error (MSE).

5.3.1. PROBABILISTIC TAIL BOUND

For given choice of parameters t > 0 and L,m, n, p, t∗q , T
∗
0 , we define two conditions:

E1 =
{

t ≤ 4Lt∗q
}

and E2 =
{

t ≤ 2LT ∗
0

}

. (10)

Theorem 8 For each (i, j) ∈ [m]× [n], for any t ≥ 0,

P

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ exp

(

−
n(t− 2Lt∗q)

12L

)

I {Ec
1}

+ (2np)
1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

(t− t∗0)
2

)

I {Ec
2}

+ exp

(

− nt2

8L2

)

+ I {E1}+ I {E2}+Ψm,n,p, (11)

where t∗0, T
∗
0 and Ψm,n,p are some functions of m,n, p, which do not depend on t.

In above, Ψm,n,p is defined in (63). It can be seen that the terms in the last line of (11) decay to 0 at

an exponential rate as min(m,n)p→∞, independent of t.

Proof Let θ∗ ≡ F (i)
(

Â(i, j)
)

= F (i)
(
ĝ(i) (q̂marg(j))

)
. Now |θ∗ − q̂marg(j)| ≤

∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞

because F̂ (i) is continuous. Since Â(i, j) = ĝ(i) (q̂marg(j)) = g
(

θ
(i)
row, θ∗

)

, and g is (l, L)-

biLipschitz,
∣
∣
∣Â(u, i) −A(i, j)

∣
∣
∣ =

∣
∣
∣g
(

θ(i)row, θ
(j)
col

)

− g
(

θ(i)row, θ
∗
)∣
∣
∣ ≤ L

(∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣+
∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞

)

.

11
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If

∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ ≤ t

2L ,

∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞
≤ t

2L then

∣
∣
∣Â(u, i) −A(i, j)

∣
∣
∣ ≤ t. Therefore

P

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ >

t

2L

)

+ P

(

sup
z∈R

∣
∣
∣F̂ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

∣
∣
∣
∣
E(i)

)

+ P

(

Ec
(i)

)

by applying the union bound. Now, we can conclude the proof by applying Lemmas 6 and 7.

5.3.2. MEAN SQUARED ERROR

Let ϕ̂ denote the estimator which maps Z to Â. The mean squared error of estimator ϕ̂ is given as

MSE (ϕ̂) =

∫ ∞

0
2uP

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > u

)

du. (12)

Define

c(n, p) ≡
(np

2

)5/12

8C2
4 (log(2np))

2
β

.

Theorem 9 (The Full Version of Main theorem 3) The mean squared error of the deconvolution

kernel estimator ϕ̂ is bounded above as follows:

MSE (ϕ̂) ≤ 4L2T ∗
0
2 + (4Lt∗q)

2 + 4Lt∗q

√

3Lπ

n

+ 4L2(2np)
1
6

[
1

c(n, p)
+ t∗0

√
π

c(n, p)

]

+
8L2

n
+

288L2

n2
+Ψm,n,p

(

D2 −D1

)2
.

We remark that 4L2T ∗
0
2 is the dominant term, which scales as O

(

(log np)−
2
β

)

(see Eq. (56)

for definition of T ∗
0 ). As a result, the upper bound diminishes to 0 at the rate of (log np)

− 2
β as

mp, np→∞.

6. Discussion

We end this paper with two remarks. First, there is an exponential gap in the mean squared error

between the noiseless setup and noisy setup where measurements are corrupted by super-smooth

additive noise. The gap is natural because recovery from noisy measurements should be more

difficult, but it is surprising to observe an exponential gap. We note that the exponential degradation

stems from the super-smooth assumption on the noise, and we strongly believe it is possible to

obtain a similar result with only a polynomial gap when the noise is ordinary smooth (i.e., the noise

characteristic function has a polynomially decaying tail).

Second, it is noteworthy that we do not have column features available at our hand, unlike the

setup in those existing literature. However, we are still able to evaluate our estimated function at

unknown points to reconstruct the matrix and the asymptotically optimal rate is achieved. This

was possible because we are not estimating a single function, but collectively estimating a set of

functions and a kind of collaboration is happening between the functions. If the column features

(or extrinsic covariates) need not be estimated but are available from other sources, our task truly

reduces to learning row-wise distributions and we obtain the same bounds.
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Appendix A. Related Works

Early works on the problem of density estimation under the assumption of known measurement

error distribution focused on addressing how to estimate the unknown density and compute the

rates of convergence of the methods for specific error distributions. These early works include

Carroll and Hall (1988), Devroye (1989), Fan (1993), Mendelsohn and Rice (1982), Stefanski and Carroll

(1990), Stefanski (1990). Among those vast amount of literature, Fan (1991) discusses how diffi-

culty of the deconvolution problem depend on the dispersion of the noise by introducing the notion

of supersmooth and ordinary smooth noise, thereby providing insights on the nonparametric decon-

volution.

Subsequently, the problem of density estimation with unknown error density, which is also

estimated from samples of the error itself, has been considered; see Diggle and Hall (1993) and

Neumann and Hössjer (1997), for example. In particular, the setup where there are replicated mea-

surements for each inherently different samples–with errors being independent and the intrinsic

signal of the observations being the same among repeated measurements–drew much attention. For

example, Jaech (1985) described an experimental setup where the uranium concentration is repeat-

edly measured for several fuel pellets; Biemer et al. (2011) discusses repeated observations in a

social science context, e.g., in surveys. There are also a plenty of works under the setup on med-

ical and clinical research, for example, Bland and Altman (1986) on lung function, Dunn (1989)

on a brain-related study, Eliasziw et al. (1994) on physiotherapy for the knee, etc. Further medical

examples can be found in Carroll et al. (2006) and Dunn (2009).

Delaigle et al. (2008) argues that even in such a setting of unknown error density with repeated

measurements, a modified kernel deconvolution estimator using the estimated error density and

a ridge parameter to avoid division-by-zero achieves the same first order property as the original

kernel deconvolution estimator considered in Carroll and Hall (1988), Fan (1991).

Our problem of interest is closely related to, but not limited to the problem of matrix completion.

It is because we are not only recovering the matrix as a stack of numbers, but the underlying latent

functions and column features.

There have been a huge amount of intellectual advances in the matrix completion, especially in

spectral approaches such as matrix factorization. This method is based on the observation that all

matrices admit a unique singular value decomposition, and its goal is to recover the target matrix by

estimating row and column singular vectors from the partial noisy observation. Since Srebro et al.

(2004) suggested to use low-rank matrix approximation in this context, many statistically efficient

estimators based on optimization have been suggested. They prove that rn log n samples out of n2

entries suffice to impute the missing entries by matrix factorization, where r is rank of the matrix to

recover; see Candès and Recht (2009), Candès and Tao (2010), Rohde et al. (2011), Keshavan et al.

(2009), Negahban and Wainwright (2012), Jain et al. (2013), for example.

However, many of these approaches require that the matrix is of low rank (r ≪ n) to achieve a

sensible sample complexity. As Ganti et al. (2015) pointed out, a simple nonlinear entrywise trans-

formation can produce a matrix of high rank, although there are only a few free model parameters.

Latent variable model is a more general model and it subsumes the low rank model as a special

case where the latent features are r dimensional vectors and the latent function is given as their inner

product (or a bilinear function). Chatterjee (2015) proposed the universal singular value threshold-

ing (USVT) estimator inspired by low-rank matrix approximation and he argued that the USVT

estimator provides an accurate estimate for any Lipschitz function under latent variable model.
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However, with his analysis based on step function approximation (stochastic block model approx-

imation), to obtain a consistent estimate for an n × n matrix, Ω
(

n2− 2
r+2

)

observations out of n2

are required, where r stands for the dimension of the latent spaces where the row and column latent

variables are drawn from. The rate of USVT is further investigated in a more recent work by Xu

(2017).

In contrast, Lee et al. (2016) suggested a similarity-based estimator for collaborative filtering

and they proved that their estimator requires Ω
(

n
3
2
+δ
)

for any small δ > 0 out of n2 for con-

sistency of the estimator, as long as r = o (log n). They reported that the bottleneck in sample

complexity was the overlap requirement between pairs of rows, which necessitates np2 ≫ 1, which

is a commonly observed phenomenon in neighbor-based approaches.

When interpreted as matrix completion method, the algorithm suggested in this paper can avoid

this restrictive overlap requirement by using distribution signatures, such as moments of distribution

(in fact, the characteristic function is used). For that purpose we additionally assumed monotonicity

of the latent function with respect to the column feature. We will discuss later that this monotonicity

assumption is required only 1) when our goal is to estimate the matrix entries, or 2) when the

noise density has to be estimated. The assumption is not necessary if we are to estimate only the

distributions, or equivalently, the latent function.

This flavor of monotonicity assumption is quite common in crowdsourcing and ranking liter-

ature. For example, the Dawid-Skene model suggested in Dawid and Skene (1979) and its gen-

eralization (see Zhou et al. (2015), Khetan and Oh (2016)) assumes each worker i and task j are

respectively assigned latent features pi and qj in the interval [0, 1]. Roughly, pi denotes the com-

petence of worker i and qj denotes the difficulty of task j. Actually our assumption is weaker than

this, because we assume monotonicity only for the column features while this line of works assumes

monotonicity in both directions.

Similarly, in the literature of rank aggregation from pairwise comparison, the Bradley-Terry-

Luce model ( Bradley and Terry (1952), Luce (1959)) and the Thurstone model (Thurstone (1927))

are in the mainstreams. Some generalization of it such as nonparametric Bradley-Terry model by

Chatterjee (2015) and Strong Stochastic Transitivity Shah et al. (2016) are suggested, but they still

share the monotonicity at the core.

Another related field of research is that of graphon estimation. A graphon is a measurable

function W : [0, 1]2 → [0, 1], which was originally introduced as a limit object of the connectivity

pattern in graph instances, but it is now also widely used as a generative model in the study of large

networks.

Suggested as a nonparametric framework for the analysis of networks, estimating graphon has

gained huge interest in the scene of modern statistics. The framework relates to stochastic block-

models Airoldi et al. (2008), Rohe et al. (2011) and degree-based models Bickel and Chen (2009),

Chatterjee et al. (2011), Bickel et al. (2011). Theory and algorithm for the consistency and the rate

of convergence for the graphon estimation have been pursued via numerous approaches including

Wolfe and Olhede (2013), Airoldi et al. (2013), Zhang et al. (2015). Recently, Gao et al. (2015)

and Klopp et al. (2017) discussed the optimal minimax rate of convergence, but unfortunately their

algorithms are not computationally tractable.
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Appendix B. Lower bounds: Proofs of Theorems 4 and 5

B.1. Lower Bounding MSE By L2 Function Distance

Here, we establish that the MSE of any estimator can be lower bounded by L2 distance between

“estimated” latent function and actual latent function. This will be useful steps towards establishing

the desired bounds in Theorems 4 and 5 since for each context, we will identify hard instance of

latent functions that will be difficult to estimate in terms of L2 distances. To that end, we shall

assume that our estimator φ has access to an oracle that provide information about latent parameter

associated with each column. Clearly, the lower bound on MSE for such a powerful estimator will

be lower bound on MSE for any valid estimator.

Recall that the L2 norm of a function g defined on [0, 1] is defined as

‖g‖L2[0,1] =

(∫ 1

0
|g(x)|2 dx

)1/2

. (13)

We use a subscript to explicitly indicate the function is estimated from a certain number of sample

observations, i.e., we let ĝν denote an estimated function for g from ν sample points. Also recall

the definition of MSE from Eq. (2): for estimator ϕ : Z 7→ Âϕ,

MSE(ϕ) = E




1

mn

m∑

i=1

n∑

j=1

(

Âϕ(i, j) −A(i, j)
)2



 .

Lemma 10 For any algorithm ϕ : Z 7→ Âϕ,

MSE (ϕ) ≥ (1− p)E
θ
(1)
row,θ

(−1)
col ,ν

[∥
∥
∥ĝϕν (θ

(1)
row, ·) − g(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]

]

,

where ν ∼ Binomial(n− 1, p) and θ
(−1)
col denotes {θ(j)col : j ∈ [n], j 6= 1}.

Proof Given an algorithm ϕ : Z 7→ Âϕ, we first reduce the expression of MSE as follows:

MSE(ϕ) = E




1

mn

m∑

i=1

n∑

j=1

(

Âϕ(i, j) −A(i, j)
)2





=
1

m

m∑

i=1

E




1

n

n∑

j=1

(

Âϕ(i, j) −A(i, j)
)2





=
1

n

n∑

j=1

E

[(

Âϕ(1, j) −A(1, j)
)2
]

∵ rows are exchangeable

= E

[(

Âϕ(1, 1) −A(1, 1)
)2
]

∵ columns are exchangeable

= E

[(

ĝϕ(θ(1)row, θ
(1)
col )− g(θ(1)row, θ

(1)
col )
)2
]

. (14)

Note that ĝϕ is a function estimated based on the data {Z(i, j) : (i, j) ∈ O}.
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Now suppose that the algorithm ϕ is equipped with an oracle, i.e., it can access to the true value

of the latent features for (i, j) ∈ O. For an oracle algorithm having access to θ
(j)
col , there is no

information utilized to estimate Âϕ(1, 1) from the observations {Z(i, j) : (i, j) ∈ O, i 6= 1}. Note

that no regularity is assumed over the first coordinate of latent functions g in our model other than

the monotonicity assumption. The restriction of function g at two different row features, g(θ
(1)
row, ·)

and g(θ
(2)
row, ·), can be very different and the only information transferrable from one row to another

is the pairwise order between column features. Since ϕ already has access to the true column

features, the mutual information between Âϕ(1, 1) and {Z(i, j) : (i, j) ∈ O, i 6= 1} is zero.

Recall that M is the masking matrix, i.e., M(i, j) = 1 if and only if (i, j) ∈ O; otherwise,

M(i, j) = 0. We let M(1, ·) denote the first row of the matrix M , and let ν =
∑n

j=2M(1, j)
denote the number of observed entries in row 1, excluding (1, 1). Note that ν is a random variable

distributed as per binomial distribution Binomial(n − 1, p). We use θ
(−1)
col as a shorthand notation

to denote {θ(j)col : j ∈ [n], j 6= 1}. Assuming ϕ perfectly restores g at
{(

θ
(i)
row, θ

(j)
col

)

: (i, j) ∈ O
}

,

it follows that

Eq.(14) = E
θ
(1)
row

[

E
θ
(1)
col,θ

(−1)
col ,M

[(

ĝϕ(θ(1)row, θ
(1)
col )− g(θ(1)row, θ

(1)
col )
)2
∣
∣
∣
∣
θ(1)row

]]

= E
θ
(1)
row

[

E
θ
(1)
col,θ

(−1)
col ,M(1,·)

[(

ĝϕ(θ(1)row, θ
(1)
col)− g(θ(1)row, θ

(1)
col )
)2
∣
∣
∣
∣
θ(1)row

]]

∵ oracle

≥ E
θ
(1)
row

[

E
θ
(1)
col,θ

(−1)
col ,M(1,·)

[(

ĝϕ(θ(1)row, θ
(1)
col)− g(θ(1)row, θ

(1)
col )
)2

I {M(1, 1) 6= 1}
∣
∣
∣
∣
θ(1)row

]]

≥ (1− p)E
θ
(1)
row,θ

(−1)
col ,ν

[∥
∥
∥ĝϕν (θ

(1)
row, ·) − g(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]

]

.

In the subsequent sections, we investigate lower bounds on

∥
∥
∥ĝ

ϕ
ν (θ

(1)
row, ·)− g(θ

(1)
row, ·)

∥
∥
∥

2

L2[0,1]
to es-

tablish Theorems 4 and 5. Without loss of generality, we may assume our matrix is a 1 by n matrix

due to the oracle argument. To further establish lower bound, we shall suppose that given {θ(1)row},
{θ(j)row}j∈[n], {Z(1, j) : j ∈ [n] and M(1, j) = 1}, the algorithm ϕ can perfectly estimate the func-

tion g(θ
(1)
row, x) for x ∈ {θ(j)col : j ∈ [n],M(1, j) = 1}. Then we show that there exists an adversarial

function g† such that

1. g
(

θ
(1)
row, θ

(j)
col

)

= g†
(

θ
(1)
row, θ

(j)
col

)

for all j ∈ [n] such that M(1, j) = 1, and

2.

∥
∥
∥g(θ

(1)
row, ·)− g†(θ(1)row, ·)

∥
∥
∥
L2[0,1]

is sufficiently large.

Then, there is no way for ϕ to distinguish g† from g based on the data, ϕ would return the same out-

put g even if the latent function g were replaced with g†. Therefore,

∥
∥
∥g(θ

(1)
row, ·)− g†(θ(1)row, ·)

∥
∥
∥
L2[0,1]

establishes a lower bound on MSE(ϕ). More detailed argument for the noiseless case (Appendix

B.2) and noisy case (Appendix B.3) will follow.
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B.2. Proof of Theorem 4

In this section, we show that for any slice of true latent function g1 := g(θ
(1)
row, ·) : [0, 1] → R and

for any set of sampling points y1, . . . , yν ∈ [0, 1], there exists an adversarial function g†1 : [0, 1]→ R

such that g1(y) = g†1(y) for all y ∈ {y1, . . . , yν}, yet ‖g1 − g†1‖22 ≥ c
ν for some universal constant

c, independent of g1 and ν. This claim follows from a classical result in function approximation

theory.

We define some notations before introducing the function approximation lemma. Recall that

the L1 norm of a function g : [0, 1] → R is defined as ‖g‖L1[0,1] :=
∫ 1
0 |g(x)|dx (see Eq. (13) for

comparison with L2 norm). We let L1[0, 1] :=
{
g : [0, 1]→ R : ‖g‖L1[0,1] <∞

}
denote the space

of functions with finite L1 norm, i.e., integrable functions. We also recall that C∞[0, 1] is the space

of functions defined on [0, 1], which are infinitely differentiable. Lastly, we call a function g to be

δ-Lipschitz if ‖g(y1)− g(y2)‖ ≤ δ‖y1 − y2‖ for any two points y1, y2 in the domain of g.

Theorem 11 (Kudryavtsev (1991), Lemma 4.4, simplified) There exists a universal constant c
such that for every ν ∈ N, and for any y1, . . . , yν ∈ [0, 1], there exists a δ-Lipschitz function

h ∈ L1[0, 1] ∩ C∞[0, 1] for which

1. h(yi) = 0, for all i = 1, . . . , ν, and

2. ‖h‖L2[0,1] ≥ c δ√
ν

.

We use this theorem to prove Theorem 4.

Theorem 12 (Full version of Theorem 4) In the noiseless scenario, for any estimation algorithm

ϕ, there exists a hard instance for which

MSE(ϕ) ≥ (1− p)
c2δ2

(n − 1)p
.

Proof [Proof of Theorem 12] Choose a positive real number δ < L−l
2 . Consider a bounded function

g : [0, 1]2 → R, which is (l+δ, L−δ) bi-Lipschitz with respect to the second argument. We suppose

that given any data {θ(1)row}, {θ(j)row}j∈[n], {g(θ(1)row, θ
(j)
col) : j ∈ [n] and M(1, j) = 1}, algorithm ϕ

can perfectly restore the function g(θ
(1)
row, ·) from data.

Let ν :=
∑n

j=2M(1, j) denote the number of samples observed. By Theorem 11, there exists

a δ-Lipschitz function h ∈ L1[0, 1] ∩ C∞[0, 1] which satisfies

1. h(θ
(j)
col) = 0, for all j ∈ [n] such that M(1, j) = 1, and

2. ‖h‖L2[0,1] ≥ c δ√
ν

.

Now we consider an adversarial function g† : [0, 1]2 → R (for given data), which is defined as

g†(x, y) = g(x, y) + h(y)I
{

x = θ(1)row

}

.

First of all, we remark that g† is a valid latent function which satisfies every criterion in our

model (see Section 2), because h is continuous and δ-Lipschitz. If the latent function g were re-

placed with g† by an adversary, the algorithm ϕ could not recognize that from given data because
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h(θ
(j)
col) = 0, for all j ∈ [n] such that M(1, j) = 1. Therefore, ϕ would still return ĝϕ = g instead

of yielding ĝϕ = g† even though the true latent function is now g†.

This leads to the following lower bound, regardless of θ
(1)
row ∈ [0, 1]:

∥
∥
∥ĝϕν (θ

(1)
row, ·)− g†(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]
=
∥
∥
∥g(θ(1)row, ·)− g†(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]
= ‖h‖2L2[0,1] ≥

c2δ2

ν
.

Inserting this back to Lemma 10, we can conclude the following MSE lower bound even if ϕ is

an algorithm which can perfectly estimate g from a finite number of samples. Recall that ν de-

notes the number of observations used to estimate ĝϕ and it is a random variable distributed as per

Binomial(n− 1, p).

MSE (ϕ) ≥ (1− p)E
θ
(1)
row,θ

(−1)
col ,ν

[∥
∥
∥ĝϕν (θ

(1)
row, ·)− g†(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]

]

≥ (1− p)E
θ
(−1)
col ,ν

[

min
θ
(1)
row∈[0,1]

∥
∥
∥ĝϕν (θ

(1)
row, ·)− g†(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]

]

≥ (1− p)E
θ
(−1)
col ,ν

[
c2δ2

ν

]

≥ (1− p)Eν

[
c2δ2

ν

]

≥ (1− p)
c2δ2

Eν [ν]
∵ Jensen’s inequality

= (1− p)
c2δ2

(n − 1)p
.

The lower bound essentially quantifies the uncertainty between two functions g and g† which could

have generated the same data to feed algorithm ϕ. We have shown a lower bound for an oracle

algorithm, which has access to the latent features θ
(1)
row and {θ(j)col}j∈[n]:M(1,j)=1 and can perfectly

restore a certain latent function. Since no algorithm can outperform an oracle, this lower bound

holds for any algorithm, i.e., for any algorithm ϕ, there exists a hard instance to estimate.

B.3. Proof of Theorem 5

When the measurements are convoluted by a supersmooth additive noise (see Eq. (5) for definition),

it gets exponentially harder to estimate the underlying function. We adopt the lower bound result

from Fan (1991) to prove our MSE lower bound which supports this claim.

For that purpose, we first remark that we can interpret a slice of latent function, g(θ
(1)
row, ·), as

the (pseudo-) inverse of a cumulative distribution function F (1). That is to say, if g(θ
(1)
row, y) = z

for y ∈ [0, 1], we can rewrite it as F (1)(z) = y with the support of the distribution F (1) being the

same with the range of g(θ
(1)
row, ·). Since the latent function g is bi-Lipschitz, the distribution F (1) is

absolutely continuous, and it which admits a probability density f (1).

Fan (1991) defined the following class of density parametrized by three parameters m,B, and

0 ≤ α < 1.

Cm,α,B =
{

f(x) :
∣
∣
∣f (m)(x)− f (m) (x+ δ)

∣
∣
∣ ≤ Bδα

}

,
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Since our density f (i) is the derivative of F (i), it satisfies f (i)(z) ≤ 1
l by the inverse function

theorem. Therefore, for any valid latent function g : [0, 1]2 → R, f (1) = d
dzF

(1) = d
dzg

−1
(

θ
(1)
row, ·

)

belongs to Fan’s class C0,0, 1
l
.

The following hardness result is excerpted from Fan (1991). We let ν denote the number of

measurements corrupted by additive noise.

Theorem 13 (Fan (1991), Theorem 4, simplified) For any x0, no estimator T̂N can estimate T (f) =

f (λ)(x0) with the constraint f ∈ Cm,α,B faster than O
(

(log ν)−(m+α−λ)/β
)

, i.e., there is a univer-

sal constant c > 0 such that

sup
f∈Cm,α,B

E

[(

T̂ν − T (f)
)2
]

> c (log ν)−2(m+α−λ)/β . (15)

Since the cumulative distribution function can be considered as the anti-derivative of the density,

or the derivative of “order −1” as discussed in Fan (1991) Theorem 6 and Section 4, we have for

any x ∈ R,

sup
f∈C

0,0, 1
l

E

[

(F̂ν(x)− F (x))2
]

> c (log ν)−2/β , (16)

by inserting m = 0, α = 0, B = 1
l , and λ = −1 to Eq. (15).

Now we are ready to use this result to prove Theorem 5.

Theorem 14 (Full version of Theorem 5) In the additive noise scenario, for any estimation algo-

rithm ϕ, there exists a hard instance for which

MSE(ϕ) ≥ (1− p)l2c3/2

6
√
2

(
log(n− 1)p

)−3/β
.

Proof [Proof of Theorem 14] We let F̂ and F denote the pseudo-inverse of ĝ
(

θ
(1)
row, ·

)

and g
(

θ
(1)
row, ·

)

,

respectively. Since we assumed the latent function g
(

θ
(1)
row, ·

)

is (l, L) bi-Lipschitz for any θ
(1)
row ∈

[0, 1], its inverse function F = g−1
(

θ
(1)
row, ·

)

is continuous, monotone increasing over [0, 1] and
(
1
L ,

1
l

)
bi-Lipschitz. Therefore, we can treat F as an absolutely continuous distribution function

and its derivative f belongs to Fan’s class Cm,α,B with m = 0, α = 0, and B = 1
l .

Suppose that given any data {θ(1)row}, {θ(j)row}j∈[n], {g(θ(1)row, θ
(j)
col) : j ∈ [n] and M(1, j) = 1},

algorithm ϕ returns an estimate of the latent function ĝϕν (θ
(1)
row, ·). Here, ν :=

∑n
j=2M(1, j) in the

subscript denotes the number of samples used for estimation of ĝϕν .

Let F̂ϕ
ν := (ĝϕν )−1(θ

(1)
row, ·). We may assume ĝϕν is nondecreasing, because g is monotone

increasing from the model assumption. In fact, g
(

θ
(1)
row, ·

)

is assumed to be not only monotone

increasing, but (l, L) bi-Lipschitz. Therefore, F is
(
1
L ,

1
l

)
bi-Lipschitz.

Let z∗ := argmaxz∈RE

[

(F̂ϕ
ν (z)− F (z))2

]

. Then let y∗ = F (z∗) and ŷ∗ν := F̂ϕ
ν (z∗) denote

the image of z∗ under F and F̂ϕ
ν , respectively. Note that F̂ϕ

ν is a random function, and hence, ŷ∗ν is

a random variable. Subsequently, we define ẑ∗ν := F−1(ŷ∗ν).
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Without loss of generality, we may assume y∗ ≤ ŷ∗ν and it follows that ẑ∗ν ≥ z∗. Then for

y ∈ [y∗, ŷ∗ν ],

g
(

θ(1)row, y
)

− ĝϕν

(

θ(1)row, y
)

≥ g
(

θ(1)row, y
)

− ĝϕν

(

θ(1)row, ŷ
∗
ν

)

= g
(

θ(1)row, y
)

− g
(

θ(1)row, y
∗
)

≥ l(y − y∗).

From the definition of L2 distance, it follows that

∥
∥
∥ĝϕν

(

θ(1)row, ·
)

− g
(

θ(1)row, ·
)∥
∥
∥

2

L2[0,1]
=

∫ 1

0

∣
∣
∣ĝϕν

(

θ(1)row, y
)

− g
(

θ(1)row, y
)∣
∣
∣

2
dy

≥
∫ ŷ∗ν

y∗

∣
∣
∣ĝϕν

(

θ(1)row, y
)

− g
(

θ(1)row, y
)∣
∣
∣

2
dy

≥
∫ ŷ∗ν

y∗
l2 |y − y∗|2 dy

=
l2

3
|ŷ∗ν − y∗|3

=
l2

3

∣
∣
∣F̂ϕ

ν (z
∗)− F (z∗)

∣
∣
∣

3
. (17)

Recall from Lemma 10 that for any algorithm ϕ : Z 7→ Âϕ,

MSE (ϕ) ≥ (1− p)E
θ
(1)
row,θ

(−1)
col ,ν

[∥
∥
∥ĝϕν (θ

(1)
row, ·) − g(θ(1)row, ·)

∥
∥
∥

2

L2[0,1]

]

,

where ν ∼ Binomial(n − 1, p) and θ
(−1)
col denotes {θ(j)col : j ∈ [n], j 6= 1}. If we restrict our latent

function to take the form g
(

θ
(i)
row, θ

(j)
col

)

= g2(θ
(j)
col) for some g2 : [0, 1] → R, then we can remove

the expectation with respect to θ
(1)
row. From Eq. (17), it follows that

MSE (ϕ) = (1− p)E
θ
(−1)
col ,ν

[
l2

3

∣
∣
∣F̂ϕ

ν (z
∗)− F (z∗)

∣
∣
∣

3
]

≥ (1− p)l2

3
Eν

[

E
θ
(−1)
col

[∣
∣
∣F̂ϕ

ν (z
∗)− F (z∗)

∣
∣
∣

2
]3/2

]

∵ Jensen’s inequality

By Theorem 13–more precisely, by Eq. (16)–for any ν, there exists a latent function g2 (and

corresponding f ∈ C0,0, 1
l

such that for any oracle algorithm ϕ,

E
θ
(−1)
col

[∣
∣
∣F̂ϕ

ν (z
∗)− F (z∗)

∣
∣
∣

2
]

≥ c

2
(log ν)−2/β .
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All in all, there exists a hard instance of latent function g such that

MSE (ϕ) ≥ (1− p)l2

3
Eν

[( c

2
(log ν)−2/β

)3/2
]

=
(1− p)l2c3/2

6
√
2

Eν

[

(log ν)−3/β
]

≥ (1− p)l2c3/2

6
√
2

(
logEν [ν]

)−3/β
∵ Jensen’s inequality

=
(1− p)l2c3/2

6
√
2

(
log(n − 1)p

)−3/β
.

We can apply Jensen’s inequality because (log x)−3/β
is convex when x > 1, for any β > 0.

Appendix C. Proof of Theorem 1: Noiseless Scenario

In this section, we prove Theorem 1 establishing an upper bound on MSE achievable in the noiseless

setup. This is done by evaluating MSE for a specific algorithm. We start by describing the algorithm

followed by evaluating its performance in terms of MSE.

C.1. Algorithm Description

We shall use a “generic” recipe for estimation in all three scenarios considered in this work: noise-

less, noisy with known noise distribution and noisy with unknown noise distribution. The only

change in each case would be how we handle the noise.

C.1.1. GENERIC DESCRIPTION

1. Estimate the latent feature (or quantile) θ
(j)
col of column j ∈ [n]. Let it be q̂(j).

2. Estimate F (i) = g−1

x=θ
(i)
row

on row i, which is the inverse of the latent function g
(

θ
(i)
row, ·

)

restricted on the first coordinate. Let it be F̂ (i), i ∈ [m].

3. Estimate ĝ(i) =
(

F̂ (i)
)−1

, i ∈ [m].

4. Plug in estimate: Â(i, j) = ĝ(i)(q̂(j)), i ∈ [m], j ∈ [n], where ĝ(i) =
(

F̂ (i)
)−1

.

By assumption, the function g(x, ·) is invertible for every x ∈ [0, 1] since g(x, ·) : [0, 1]→ R is

continuous and monotonically increasing. Let the inverse (given fixed x) be denoted as g−1(x, ·) :
R → [0, 1]. That is, g−1(x, ·) can be viewed as a cumulative distribution function for distribution

on R. In short, for each row i ∈ [m], we can consider the hidden latent function restricted to

x = θ
(i)
row, g(x, ·), as the inverse of the cumulative distribution function along row i (see Appendix

J, Definitions 46 and 47 for details).

The first two steps of the algorithm will vary across scenarios to account for noise.
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C.1.2. DETAILED DESCRIPTION: NOISELESS SETUP

Notations. For i ∈ [m], we let Bi denote the set of column indices for which Z(i, j) is observed

(similarly, Bj denotes the set of row indices for j ∈ [n], respectively), that is

Bi = {j′ ∈ [n] : M(i, j′) = 1} and Bj = {i′ ∈ [m] : M(i′, j) = 1}. (18)

Define indicator function

I{condition} =
{

1, if condition is true,

0, if condition is false.
(19)

Define Heaviside step function H : R→
{
0, 12 , 1

}
as

H(x) =
1

2

(
I {x > 0}+ I {x ≥ 0}

)
=







1, if x > 0,
1
2 , if x = 0,

0, if x < 0.

(20)

That is,
∑n

j2=1H
(
Z(i, j1)−Z(i, j2)

)
is the number of entries Z(i, j) in row i whose value smaller

than Z(i, j1) while Z(i, j1) itself is counted with weight 1
2 .

Now the details of the steps of the algorithm.

1. q̂(j): Estimate of θcol(j), j ∈ [n]. Given Z ∈ R
m×n and j ∈ [n], for i ∈ Bj define

q̂i(j) =

∑n
j′=1 M(i, j′)H

(
Z(i, j) − Z(i, j′)

)

∑n
j′=1 M(i, j′)

. (21)

Subsequently, define estimation of θcol(j) as

q̂(j) =

{
1
2 , if Bj = ∅, else

q̂i∗(j)(j), where i∗(j) is randomly chosen from Bj.
(22)

2. F̆ (i): Estimate of F (i) = g−1

x=θ
(i)
row

, i ∈ [m]. For z ∈ R, define

F̆ (i)(z) =

∑n
j=1M(i, j)I {Z(i, j) ≤ z}

∑n
j=1M(i, j)

. (23)

3. and 4. Ă(i, j): Estimate of A(i, j), i ∈ [n], j ∈ [m]. For each i ∈ [m], let ğ(i) =
(

F̆ (i)
)−1

denote the quantile function (right pseudo-inverse) associated with F̆ (i). Plugging in Eq. (22) into

it leads to the estimate of matrix entry:

Ă(i, j) = ğ(i) (q̂(j)) , ∀(i, j) ∈ [m]× [n]. (24)

By definition, F̆ (i) is simply the empirical cumulative distribution function. Hence, by Glivenko-

Cantelli theorem, it follows that it is a consistent estimator for F (i). Using the Dvoretzky-Kiefer-

Wolfowitz inequality (see Appendix J, Lemma 49), we obtain concentration of F̆ (i) around F (i).

This is summarized in Lemma 16.
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C.2. Algorithm Analysis

We start by establishing two key results needed for establishing proof of Theorem 1. To that end,

note that q̂i(j) is the average of
∑n

j′=1M(i, j′) independent random variables as per our model.

Therefore, by Chernoff bound, for each i, it concentrates around its expectation, which is the true

parameter θ
(j)
col of interest. This explain the choice of (21)-(22). This is summarized in Lemma 15.

By definition, F̆ (i) is simply the empirical cumulative distribution function. Hence, by Glivenko-

Cantelli theorem, it follows that it is a consistent estimator for F (i). Using the Dvoretzky-Kiefer-

Wolfowitz inequality (see Appendix J, Lemma 49), we obtain concentration of F̆ (i) around F (i).

This is summarized in Lemma 16.

Finally, we obtain the error bound for estimation Ă(i, j) in Lemma 17. This will further lead to

proof of Theorem 1.

We will use the following definition in what follows.

Dmax ≡ sup
x,y∈[0,1]

g(x, y) and Dmin ≡ inf
x,y∈[0,1]

g(x, y),

L ≡ sup
x,y1 6=y2∈[0,1]

g(x, y2)− g(x, y1)

y2 − y1
and l ≡ inf

x,y1 6=y2∈[0,1]

g(x, y2)− g(x, y1)

y2 − y1
.

C.2.1. CONCENTRATION OF q̂(j) AROUND θcol(j)

We state the following.

Lemma 15 When there is no noise (N = 0) in the model, for any j ∈ [n], the quantile estimator

q̂(j) (see Eq. (22)) concentrates to θ
(j)
col with high probability:

P

(∣
∣
∣q̂(j) − θ

(j)
col

∣
∣
∣ ≥ t

)

≤ 2 exp
(
−2 |Bi∗ | t2

)
,

where i∗ denote the row index chosen in Eq. (22).

Note that, when Bj = ∅ and q̂(j) is chosen to be 1
2 , we shall use i∗ as any index leading to Bi∗ ⊂ Bj

being ∅ and hence P

(∣
∣
∣q̂(j) − θ

(j)
col

∣
∣
∣ ≥ t

)

≤ 2, which is always true! The proof of the above Lemma

can be found in Section F.

C.2.2. CONCENTRATION OF F̆ (i)
AROUND F (i).

We state the following.

Lemma 16 (Concentration of noiseless CDF estimation) When there is no noise in the model,

the empirical cumulative distribution function (ECDF) F̆ (i) (Eq. (23)) uniformly concentrates to

the true CDF F (i) = g−1

x=θ
(i)
row

, that is for each i ∈ [m],

P

(

sup
z∈R

∣
∣
∣F̆ (i)(z)− F (i)(z)

∣
∣
∣ > t

)

≤ 2 exp
(
−2|Bi|t2

)
.

Proof The proof is a direct application of Dvoretzky-Kiefer-Wolfowitz inequality (see Lemma 49).
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C.3. Completing Proof of Theorem 1

We complete the proof of Theorem 1 using Lemmas 15 and 16. To that end, we first state exponential

tail bound on error in estimation, |Ă(i, j) − A(i, j)| in Lemma 17 and then using it, obtain bound

on Mean-Square-Error (MSE) to conclude the proof in Theorem 18.

C.3.1. TAIL BOUND ON |Ă(i, j) −A(i, j)|.
Theorem 17 (Probabilistic bound: noiseless) For each (i, j) ∈ [m]× [n] and t ≥ 0,

P

(∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ 2 exp (−mp) + 4 exp

(

−(n− 1)p

(

1− exp

(

− 2t2

9L2

)))

. (25)

Proof Let ğ(i) =
(

F̆ (i)
)−1

denote the quantile function (right pseudo-inverse) associated with

F̆ (i). Note that A(u, i) = g
(

θ
(i)
row, θ

(j)
col

)

and Ă(i, j) = ğ(i) (q̂(j)). Let θ∗ := F (i)
(

Ă(i, j)
)

=

F (i)
(
ğ(i) (q̂(j))

)
. We can observe that |θ∗ − q̂(j)| ≤ 2

∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞

.

By definition of uniform norm, at the point of continuity, we have that |θ∗ − q̂(j)| ≤
∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞

.

Else if ğ(i) (q̂(j)) is a jump discontinuity of F̆ (i), then it follows that for any δ > 0, F̆ (i)
(
ğ(i) (q̂(j)) − δ

)
≤

q̂(j) ≤ F̆ (i)
(
ğ(i) (q̂(j))

)
. Since F (i) is assumed to be continuous,

∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞
≥ 1

2 supy limδ→0+ F̆ (i) (y)−

F̆ (i) (y − δ). Therefore, |θ∗ − q̂(j)| ≤ 2
∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞

.

Since Ă(i, j) = ğ(i) (q̂(j)) = g
(

θ
(i)
row, θ∗

)

, and g is (l, L)-biLipschitz,

∣
∣
∣A(i, j) − Ă(i, j)

∣
∣
∣ =

∣
∣
∣g
(

θ(i)row, θ
(j)
col

)

− g
(

θ(i)row, θ
∗
)∣
∣
∣

≤ L
∣
∣
∣θ

(j)
col − θ∗

∣
∣
∣

≤ L
(∣
∣
∣θ

(j)
col − q̂(j)

∣
∣
∣ + |q̂(j)− θ∗|

)

≤ L
(∣
∣
∣θ

(j)
col − q̂(j)

∣
∣
∣ + 2

∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞

)

.

If

∣
∣
∣θ

(j)
col − q̂(j)

∣
∣
∣ ≤ t

3L and

∥
∥
∥F̆ (i) − F (i)

∥
∥
∥
∞
≤ t

3L , then

∣
∣
∣A(u, i)− Ă(i, j)

∣
∣
∣ ≤ t. Therefore,

P

(∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ P

(∣
∣
∣q̂(j)− θ

(j)
col

∣
∣
∣ >

t

3L

)

+ P

(

sup
z∈R

∣
∣
∣F̆ (i)(z)− F (i)(z)

∣
∣
∣ >

t

3L

)

≤ 2 exp

(

−2 |Bi∗ | t2
9L2

)

+ 2exp

(

−2 |Bi| t2
9L2

)

,

where the last inequality follows from Lemma 15 and Lemma 16. Recall that i∗ denote the row

index chosen in the algorithm (see Eq. (22))

Note that |Bi| is the sum of n independent Bernoulli random variables with parameter p under

our Bernoulli model. Therefore, it takes integral value in {0, 1, . . . , n} following Binomial(n, p)
distribution.
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|Bi∗ | follows a slightly different distribution. By algorithm description (see Eq. (22)), |Bi∗ | = 0
if and only if Bj = ∅, whose probability is (1 − p)m. For i ∈ Bj , it is already conditioned that

M(i, j) = 1. Therefore,

P (|Bi∗ | = k) =

{

(1− p)m, if k = 0,

[1− (1− p)m]
(n−1
k−1

)
pk−1(1− p)n−k, if k ≥ 1.

As a last step, we will marginalize out |Bi| and |Bi∗ |.

P

(∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ > t

)

=
∑

k1,k2

[

P

(∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ > t

∣
∣
∣ |Bi| = k1, |Bi∗ | = k2

)

× P (|Bi| = k1, |Bi∗ | = k2)
]

≤
∑

k1

2 exp

(

−2k1t
2

9L2

)

P (|Bi| = k1) (26)

+
∑

k2

2 exp

(

−2k2t
2

9L2

)

P (|Bi∗| = k2) . (27)

We can further simplify the last two terms as follows:

Eq.(26) =
∑

k1

2 exp

(

−2k1t
2

9L2

)(
n

k1

)

pk1(1− p)n−k1

= 2
∑

k1

(
n

k1

)[

p exp

(

− 2t2

9L2

)]k1

(1− p)n−k1

= 2

[

1− p

(

1− exp

(

− 2t2

9L2

))]n

∵ binomial theorem

= 2

[

1− np

n

(

1− exp

(

− 2t2

9L2

))]n

≤ 2 exp

(

−np
(

1− exp

(

− 2t2

9L2

)))

.

The inequality in the last line holds because
(
1 + a

n

)n ≤ ea for any a ∈ R and any n ∈ N.

In a similar manner,

Eq.(27) = 2(1 − p)m + 2 [1− (1− p)m]

×
n∑

k2=1

exp

(

−2k2t
2

9L2

)(
n− 1

k2 − 1

)

pk2−1(1− p)n−k2

≤ 2(1 − p)m + 2 [1− (1− p)m]

× exp

(

− 2t2

9L2

)

exp

(

−(n− 1)p

(

1− exp

(

− 2t2

9L2

)))

≤ 2 exp (−mp) + 2 exp

(

−(n− 1)p

(

1− exp

(

− 2t2

9L2

)))

.
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Putting everything together

P

(∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ 2 exp (−mp) + 4 exp

(

−(n− 1)p

(

1− exp

(

− 2t2

9L2

)))

.

C.3.2. MEAN SQUARED ERROR

Let ϕ̆ denote the estimator which maps Z to Ă. Then

MSE (ϕ̆) = E




1

mn

m∑

i=1

n∑

j=1

(

Ă(i, j) −A(i, j)
)2





=
1

mn

m∑

i=1

n∑

j=1

E

[(

Ă(i, j) −A(i, j)
)2
]

∵ linear

= E

[(

Ă(1, 1) −A(1, 1)
)2
]

∵ exchangeable

=

∫ ∞

0
P

((

Ă(1, 1) −A(1, 1)
)2

> t

)

dt ∵ positive

=

∫ ∞

0
P

(∣
∣
∣Ă(1, 1) −A(1, 1)

∣
∣
∣ >
√
t
)

dt ∵ u =
√
t

=

∫ ∞

0
2uP

(∣
∣
∣Ă(1, 1) −A(1, 1)

∣
∣
∣ > u

)

du. (28)

Now it remains to integrate the tail bounds obtained in the previous section to conclude our first

main theorem. In general, we can derive the following formulae from integration by substitution
∫ ∞

0
ue−au2

ds =

∫ ∞

0

1

2a
e−zdz = − 1

2a
e−z

∣
∣
∣
∣

∞

0

=
1

2a
, (29)

∫ ∞

0
ue−audu =

∫ ∞

0

z

a2
e−zdz =

Γ(2)

a2
=

1

a2
. (30)

These formulae will be frequently used, because many of our error bound have such forms. Also,

from the model assumption and the construction of the estimators, the estimation error is bounded
∣
∣
∣Ă(i, j) −A(i, j)

∣
∣
∣ ≤ Dmax −Dmin ≡ D,

where D ≡ Dmax −Dmin, a constant independent of m,n.

Theorem 18 (The Full Version of Main theorem 1; Noiseless MSE) The mean squared error of

the noiseless estimator ϕ̆ is bounded above as follows:

MSE (ϕ̆) ≤ 18L2 exp
(

2
9L2

)

(n− 1)p

+D2
[

2 exp(−mp) + 4 exp
(

−(n− 1)p
(

1− e−
2

9L2

))]

.
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It can be seen that as long as mp≫ log np, the dominant term on the right hand side is
18L2 exp

(

2
9L2

)

(n−1)p

which scales as O
(

1
np

)
. And MSE (ϕ̆)→ 0 as long as p = ω

(
1
m , 1

n

)
.

Proof [Proof of Theorem 18] We can prove the MSE upper bound by integrate the probabilistic tail

bound in Theorem 17. We first observe that for c > 0, 1− e−cu2 ≥ ce−cu2 for 0 ≤ u ≤ 1; and for

u ≥ 1, 1− e−cu2 ≥ 1− e−c.

Plugging in Eq. (25) to Eq. (28) leads to (with notation c = 2
9L2 below)

MSE (ϕ̆) =

∫ D

0
2uP

(∣
∣
∣A(i, j) − Ă(i, j)

∣
∣
∣ > u

)

du

≤
∫ D

0
4u exp (−mp) du

+

∫ D

0
8u exp

(

−(n− 1)p

(

1− exp

(

− 2u2

9L2

)))

du

≤ 2D2 exp (−mp) +

∫ 1

0
8u exp

(
−(n− 1)pce−cu2

)
du

+

∫ D

1
8u exp

(
−(n− 1)p

(
1− e−c

))
du

≤ 18L2 exp
(

2
9L2

)

(n− 1)p

+D2
[

2 exp(−mp) + 4 exp
(

−(n− 1)p
(

1− e−
2

9L2

))]

.

Appendix D. Proof of Theorem 2

In this section, we shall establish Theorem 2 bounding Mean-Squared-Error for an estimator in a

noisy setting with the known noise distribution. We shall start by describing the estimation algo-

rithm followed by its analysis that will lead to the desired bound.

D.1. Algorithm Description

The generic algorithm remains the same as that described in Section C.1.1. However, the details of

step 1 (estimating θ
(j)
col , j ∈ [n]) and step 2 (estimating F (i), i ∈ [m]) of the algorithm change due

to presence of noise. We shall explicitly use the knowledge of noise distribution in step 2.

1. q̂marg(j): Estimate of θ
(j)
col , j ∈ [n]. Unlike noiseless case, we can not simply use empirical

quantile along a given row i, q̂i(j) as a proxy since noise in data can non-trivially corrupt the

estimation.

Instead, we need to overcome the effect of noise by “averaging” it out. To that end, we shall

use empirical quantile estimation with respect to “column average” value rather than simply with

respect to a given row. Formally, we define this below.
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Let gmarg(y) ≡
∫ 1
0 g(x, y)dx. Then gmarg(·) is increasing since g(x, ·) is. Given observations

Z ∈ R
m×n, define

Zmarg(j) =

{∑m
i=1 M(i,j)Z(i,j)
∑m

i=1 M(i,j)
, if Bj 6= ∅

1
2 , if Bj = ∅.

(31)

Then, we estimate the column feature of j ∈ [n] as

q̂marg(j) =
1

n

n∑

j′=1

H
(
Zmarg(j) − Zmarg(j

′)
)
, (32)

where H is the Heaviside step function cf. (20).

2. F̃ (i): Estimate of F (i) = g−1

x=θ
(i)
row

, i ∈ [m]. In the noiseless setting, we simply used the

empirical CDF as the estimation for F (i) by using observations along row i in matrix Z . Since there

is noise added in each entry, such an estimator will provide estimate that is corrupted by additive

noise.

Effectively, each entry in the row i can be viewed as summation of two independent random

variables: the first random variable is g(θ
(i)
row, θ

(j)
col) with the randomness induced due to that in

the column parameter θ
(j)
col that are sample uniformly from [0, 1]; the second random variable is

the additive noise. Therefore, the empirical CDF of the observations gives good estimation of

distribution of the summation of these two random variables. However, the interest is to recover the

distribution of the first random variable. And we do know the distribution of the second random

variable.

Some Background. Putting it other way, we wish to recover distribution of random variable X, but

we observe samples of Z = X + N instead of X. And we do know distribution of N . Due to

independence, we know that φZ(t) = φX(t)φN (t) for all t ∈ R, where φZ , φX , φN denote the

characteristic function of random variable Z,X and N respectively.

Since we know noise distribution, equivalently φN (·), if we can estimate φZ(·) from observa-

tions, say φ̂Z(·), then we can “de-convolve” it to obtain estimation φX(·) as

φ̂X(t) =
φ̂Z(t)

φN (t)
, t ∈ R.

Now to produce estimate φ̂Z(·), the first step is a non-parametric estimator of distribution of Z . The

Kernel smoothing is a well-studied non-parametric approach which would attempt to estimate the

density (which exists in our setting) through interpolation. Precisely, given a kernel K : R → R≥0

and bandwidth parameter h > 0, the density of Z is estimated as

f̂Z(z) =
1

hn

n∑

i=1

K

(
z − Zi

h

)

, z ∈ R. (33)

Denote Fourier transformation operator F : L1(R) → Cb(R) which maps the space of absolutely

integrable functions L1(R) to the space of continuous bounded functions. Recall that F maps

f ∈ L1(R) to F{f} ∈ Cb(R) where for all t ∈ R,

F
{

f
}

(t) =

∫ ∞

−∞
exp(i ts)f(s)ds.
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We use notation i ≡
√
−1. Similarly, for any absolutely integrable function g ∈ L1(R) and for all

s ∈ R, it is possible to define an operator F−1 : L1(R)→ Cb(R) as

F−1
{

g
}

(s) =
1

2π

∫ ∞

−∞
exp(−i ts)g(t)dt.

The Fourier inversion theorem ensures that F−1Ff = f if f satisfies certain conditions. For

example, if the function is absolutely integrable and piecewise continuous (which is the case in our

model), then F−1 (Ff) (s) = 1
2 (f(s−) + f(s+)).

Applying Fourier operator to (33) and using linearity of F , we obtain

φ̂Z(t) = F
{

f̂Z

}

=
1

hn

n∑

i=1

F
{

K

( · − Zi

h

)}

.

Now, applying inverse Fourier operator, F−1, to φ̂Z/φN we obtain

f̂X = F−1

{

φ̂Z

φN

}

=
1

hn

n∑

i=1

F−1







F
{

K
(
·−Zi
h

)}

φN







=
1

hn

n∑

i=1

F−1

{
h exp(iZi · )φK(h · )

φN

}

, (34)

where we used the following properties of Fourier operator:

F {f(· − a)} (t) = exp(i a t)F{f}(t)

F {f(b · )} (t) = 1

|b|F {f(·)}
(
t

b

)

.

Applying similar properties to inverse Fourier operator, F−1, we obtain

F−1

{
h exp(iZi · )φK(h · )

φN ( · )

}

(x) = F−1

{
φK( · )

φN ( ·h−1)

}(
x− Zi

h

)

. (35)

Define function L as

L ≡ F−1

{
φK( · )

φN ( ·h−1)

}

, i.e., L(z) =
1

2π

∫

exp(−i tz) φK(t)

φN

(
t
h

)dt, z ∈ R. (36)

From (34) and (35), and definition of L, we obtain

f̂X(x) =
1

hn

n∑

i=1

L
(x− Zi

h

)

. (37)
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Indeed, this is known as deconvolution kernel density estimator in literature. We shall adopt prior

results Carroll and Hall (1988); Fan (1991); Delaigle et al. (2008) on its consistency to establish our

results. Appendix L provides their summary.

Summary of Estimator. Recall Bi = {j ∈ [n] : M(i, j) = 1}. Let φN be Fourier transform of

density of noise which is known. Let K be symmetric Kernel with φK being its Fourier transform.

We define F̃ (i), estimate of F (i) as follows: for any choice of constants D1, D2 such that D1 ≤
Dmin ≤ Dmax ≤ D2,

F̃ (i)(z) =

{∫ z
D1

f̃ (i)(w)dw, if z < D2,

1, if z ≥ D2.
(38)

where following (37) we define

f̃ (i)(z) =
1

h|Bi|
∑

j∈Bi

L

(
z − Z(i, j)

h

)

. (39)

The kernel bandwidth parameter h = (4γ)
1
β (log |Bi|)−

1
β where β and γ are smoothness parameters

for the noise N (see Eq. (5)).

Remark 19 [Constraints on kernel K .] We choose kernel K to satisfy the following conditions:

1. It is symmetric, i.e. K(x) = K(−x) for all x ∈ R.

2. supt∈R |φK(t)| <∞.

3. Support of φK is assumed to be within [−1, 1]. For K ∈ L1(R), F{K} is uniformly contin-

uous, so there exists Kmax = maxt∈[−1,1] |φK(t)| <∞.

3. Ã(i, j): Estimate of A(i, j), i ∈ [m], j ∈ [n] For each i ∈ [m], let g̃(i) =
(

F̃ (i)
)−1

denote

the quantile function (right pseudo-inverse) associated with F̃ (i). Plugging Eq. (32) into it leads to

the estimate of matrix entry:

Ã(i, j) = g̃(i)
(
q̂marg(j)

)
. (40)

D.2. Algorithm Analysis

Similar to Section C.2, we shall establish proof of Theorem 2 by establishing concentration of quan-

tile estimation, q̂marg(j) around θ
(j)
col for j ∈ [n] in Lemma 20 and concentration of CDF estimator

F̃ (i) around F (i) for i ∈ [m] in Lemma 21 to se tup key results needed to conclude the desired

Mean-Squared-Error bound on the eventual estimator.

D.2.1. CONCENTRATION OF q̂MARG(j) AROUND θ
(j)
col , j ∈ [n]

The quantile estimator, q̂marg(j) as defined in (32) is shown to be concentrated around θ
(j)
col under the

assumption on the noise as stated in Section 2.3.2. We define function Q∗ : R+ → R+ as

Q∗ (x) = 2
√
π

(

1√
C1x

+
1√
C2x

+
1

√

mpC1e−C1
+

1
√

mpC2e−C2

)

, (41)

where C1 =
l2

2(Dmax−Dmin)2
and C2 =

l2

8σ2 are model dependent constants.
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Lemma 20 For any t ≥ 4Q∗(mp
2 ) = Θ

(
1√
mp

)

,

P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ > t

)

≤ exp

(

−nt2

2

)

+ exp

(

−n( t2 −Q∗ (mp
2

)
)

3

)

+ exp
(

−mp

8

)

.

In the main text, we defined t∗q = Q∗ (mp
2

)
for simplicity. Proof can be found in Section G.

D.2.2. CONCENTRATION OF F̃ (i)
AROUND F (i), i ∈ [m]

Here we shall establish that F̃ (i) converges uniformly to F (i) in large sample limit. Specifically,

we obtain the following Lemma that provides an exponentially decaying probabilistic tail bound for

this uniform convergence.

Before stating the lemma, we recall C3 = C(l) (see Lemma 29) is an absolute constant which

depends only on the parameter l and define a new constant C4 =
BKmax(D2−D1)

π(4γ)
1
β

which also depends

only on the model parameter. Let C = C3 + C4 denote the sum of those two constants.

Lemma 21 For any i ∈ [m], and for any t > C (log |Bi|)−1/β
,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ > t

)

≤ 2 |Bi|
1
4 (log |Bi|)

2
β exp

(

− |Bi|1/2

2C2
4 (log |Bi|)

2
β

(

t−C (log |Bi|)−1/β
)2
)

.

We state a useful consequence of the above result. To that end, for any i ∈ [m], define

Erow,(i) ≡
{

|Bi| ≥
np

2

}

, and E′
row,(i) ≡

{

|Bi| ≤ 2np
}

. (42)

We define another constant for brevity

cn,p = 2(2np)
1
4 (log (2np))

2
β .

Corollary 22 For any i ∈ [m], and any t > C
(
log np

2

)−1/β
,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ > t

∣
∣
∣
∣
∣
Erow,(i), E

′
row,(i)

)

≤ cn,p exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(

t−C
(

log
np

2

)−1/β
)2
)

.

D.3. Completing Proof of Theorem 2

In this section, we complete the proof of Theorem 2 by using Lemma 20 and Corollary 22. The proof

follows similar structure as that of Theorem 1. First, we establish tail bound on |Ã(i, j) − A(i, j)|
and then integrate it to obtain bound on Mean-Squared-Error (MSE). The details differ due to extra

care required to handle noisy setting.
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D.3.1. TAIL BOUND ON |Ã(i, j) −A(i, j)|
For given choice of parameters t > 0 and L, β,Q∗,m, n and p as defined before along with a

universal constant C , define conditions

E1 =
{

t ≤ 8LQ∗
(mp

2

)}

and E2 =
{

t ≤ 4LC
(

log
np

2

)−1/β }

. (43)

Theorem 23 For each (i, j) ∈ [m]× [n], for any t ≥ 0,

P

(∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ I {E1}+ I {E2}+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

I {Ec
1}

+ cn,p exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(
t

2L
−C

(

log
np

2

)−1/β
)2
)

I {Ec
2}

+ exp

(

− nt2

8L2

)

+ exp
(

−mp

8

)

+ 2exp
(

−np

8

)

.

Note that the terms in the last line which are independent of t, decays to 0 as n → ∞ at the

exponential rate of np as long as the sampling probability is sufficiently large, i.e., p = ω
(
1
n

)
, .

Proof Let θ∗ ≡ F (i)
(

Ã(i, j)
)

= F (i)
(
g̃(i)

(
q̂marg(j)

))
. Since F̃ (i) is continuous,

∣
∣θ∗ − q̂marg(j)

∣
∣ ≤

∥
∥
∥F̃ (i) − F (i)

∥
∥
∥
∞

. By the same line of argument as in the proof of Theorem 17, since Ã(i, j) =

g̃(i)
(
q̂marg(j)

)
= g

(

θ
(i)
row, θ∗

)

, and g is (l, L)-biLipschitz,

∣
∣
∣Ã(u, i) −A(i, j)

∣
∣
∣ =

∣
∣
∣g
(

θ(i)row, θ
(j)
col

)

− g
(

θ(i)row, θ
∗
)∣
∣
∣

≤ L
∣
∣
∣θ

(j)
col − θ∗

∣
∣
∣

≤ L
(∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ +
∣
∣
∣q̂marg(j)− θ∗

∣
∣
∣

)

≤ L
(∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ +
∥
∥
∥F̃ (i) − F (i)

∥
∥
∥
∞

)

.

Again, if both

∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ ≤ t

2L and

∥
∥
∥F̃ (i) − F (i)

∥
∥
∥
∞
≤ t

2L are satisfied, then

∣
∣
∣Ã(u, i) −A(i, j)

∣
∣
∣ ≤

t. We can achieve the following upper bound by applying the union bound on the contraposition.

We let E(i) := Erow,(i) ∩ E′
row,(i) in this proof. Then it follows that

P

(∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ > t

)

(44)

≤ P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ >

t

2L

)

+ P

(

sup
z∈R

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

)

≤ P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ >

t

2L

)

+ P

(

sup
z∈R

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

∣
∣
∣
∣
E(i)

)

+ P

(

Ec
(i)

)

.
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Because we have a trivial upper bound 1 on probability, it follows from Lemma 20 that

P

(∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ >

t

2L

)

≤ I

{

t ≤ 8LQ∗
(mp

2

)}

+ I

{

t ≥ 8LQ∗
(mp

2

)}

×
[

exp

(

− nt2

8L2

)

+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

+ exp
(

−mp

8

)
]

.

In a similar manner, we have

P

(

sup
z∈R

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

∣
∣
∣
∣
E(i)

)

≤ I

{

t ≤ 4LC
(

log
np

2

)−1/β
}

+ I

{

t ≥ 4LC
(

log
np

2

)−1/β
}

× cn,p exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(
t

2L
− C

(

log
np

2

)−1/β
)2
)

.

Note that t ≥ 4LC
(
log np

2

)−1/β
implies that t

2L ≥ C
(
log np

2

)−1/β
.

We used an upper bound on P

(

Ec
(i)

)

obtained from the binomial Chernoff bound:

P

(

Ec
(i)

)

= P

(

|Bi| <
np

2
or |Bi| > 2np

)

≤ P

(

|Bi| <
np

2

)

+ P (|Bi| > 2np)

≤ exp
(

−np

8

)

+ exp
(

−np

3

)

≤ 2 exp
(

−np

8

)

.

36



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

Substituting these three upper bounds back to Eq. (44), we can conclude that

P

(∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ I

{

t ≤ 8LQ∗
(mp

2

)}

+ I

{

t ≤ 4LC
(

log
np

2

)−1/β
}

+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

I

{

t ≥ 8LQ∗
(mp

2

)}

+ I

{

t ≥ 4LC
(

log
np

2

)−1/β
}

× cn,p exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(
t

2L
− C

(

log
np

2

)−1/β
)2
)

+ exp

(

− nt2

8L2

)

+ exp
(

−mp

8

)

+ 2exp
(

−np

8

)

.

D.3.2. MEAN SQUARED ERROR

Let ϕ̃ denote the estimator which maps Z to Ã. By the same line of arguments as in Eq. (28), the

mean squared error of estimator ϕ̃ is given as

MSE (ϕ̃) =

∫ ∞

0
2uP

(∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ > u

)

du (45)

Also, from the model assumption and the construction of the estimators, the estimation error is

bounded above: ∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ ≤ D2 −D1,

Let D = D2 −D1 denote the upper bound. Note that D is a constant independent of m,n.

Theorem 24 (The Full Version of Main theorem 2; MSE with known noise) The mean squared

error of the deconvolution kernel estimator ϕ̃ is bounded above as follows:

MSE (ϕ̃) ≤ 16L2C2
(

log
np

2

)−2/β
+ 64

4
√
8L2C2

4

(log (2np))
2
β

(np)
1
4

+ 64L2Q∗
(mp

2

)2

+
8L2

n
+

288L2

n2
+ 8LQ∗

(mp

2

)
√

3Lπ

n
+D2

[

exp
(

−mp

8

)

+ 2exp
(

−np

8

)]

.

First of all, we note that MSE (ϕ̃)→ 0 as m,n→∞ as long as the sample complexity satisfies

p = ω
(

max
{

1
m , 1

n

})

.

Recall from Eq. (41) that Q∗ (mp
2

)
= Θ

(
1√
mp

)

. We can observe that the term 16L2C2
(
log np

2

)− 2
β

dominates in MSE, while the other terms decay faster unless the matrix is highly imbalanced so that
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mp = O (log np). This MSE bound achieves the asymptotically optimal rate of convergence as

long as mp = ω(log np).
Proof [Proof of Theorem 24] In order to achieve an upper bound on the MSE for the kernel density

estimator with known noise, ϕ̃, we integrate the tail probability bound from Theorem 23.

First of all, we recall from Eqs. (29) and (30) that

∫ ∞

0
ue−au2

du =
1

2a
, and

∫ ∞

0
ue−audu =

1

a2
.

Now, the mean squared error can be written in the following form:

MSE (ϕ̃) =

∫ D

0
2uP

(∣
∣
∣Ã(i, j) −A(i, j)

∣
∣
∣ > u

)

du

≤
∫ D

0
2u
[

exp
(

−mp

8

)

+ 2exp
(

−np

8

)]

du

+

∫ 8LQ∗(mp
2 )

0
2u du+

∫ 4LC(log np
2 )

−1/β

0
2u du

+

∫ D

0
2u exp

(

−nu2

8L2

)

du (46)

+

∫ D

8LQ∗(mp
2 )

2u exp

(

−n( u
4L −Q∗ (mp

2

)
)

3

)

du (47)

+

∫ D

4LC(log np
2 )

−1/β
4cn,pu

× exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(
u

2L
−C

(

log
np

2

)−1/β
)2
)

du. (48)

Recall that Q∗ : R+ → R+ is the monotone decreasing function defined in front of Lemma 20:

Q∗ (x) = 2
√
π

(

1√
C1x

+ 1√
C2x

+ 1√
mpC1e−C1

+ 1√
mpC2e−C2

)

, where C1 = l2

2(Dmax−Dmin)2
and

C2 =
l2

8σ2 are some constants which depend only on model parameters. C = C3 +C4 is the sum of

two model dependent constants, where C3 = C(l) (see Lemma 29) and C4 = BKmax(D2−D1)

π(4γ)
1
β

. We

also recall cn,p = 2(2np)
1
4 (log (2np))

2
β .

First of all, Eq. (46) is bounded above by

Eq.(46) ≤
∫ ∞

0
2u exp

(

−nu2

8L2

)

du =
8L2

n
.
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Next, we can achieve the following upper bound on Eq. (47):

Eq.(47) =

∫ D

8LQ∗(mp
2 )

2u exp

(

−n
(
u− 4LQ∗ (mp

2

))

12L

)

du

=

∫ D

0
2
(

u′ + 8LQ∗
(mp

2

))

exp

(

−n
(
u′ + 4LQ∗ (mp

2

))

12L

)

du′

≤
∫ D

0
2
(

u′ + 8LQ∗
(mp

2

))

exp

(

− nu′

12L

)

du′ ∵ Q∗
(mp

2

)

≥ 0

≤
∫ ∞

0
2
(

u′ + 8LQ∗
(mp

2

))

exp

(

− nu′

12L

)

du′

=
288L2

n2
+ 8LQ∗

(mp

2

)
√

3Lπ

n
.

Lastly, we compute an upper bound of the term Eq. (48). For brevity’s sake, we let c1 =
1

2C2
4 (log(2np))

2
β

(np
2

) 1
2 , and c2 = C

(
log np

2

)−1/β
and divide the region of integration into two parts

pivoting on u = 2Lc2:

Eq.(48) =

∫ D

4Lc2

4cn,pu exp

(

−c1
( u

2L
− c2

)2
)

du

≤
∫ D

4Lc2

4cn,pu exp

(

−c1
( u

4L

)2
)

du ∵
u

2L
− c2 ≥

u

4L
,∀u ≥ 4Lc2

≤
∫ ∞

0
4cn,pu exp

(

− c1
16L2

u2
)

du ∵ u exp
(

− c1
16L2

u2
)

≥ 0,∀u ≥ 0

=
32cn,pL

2

c1
.

Plugging these upper bounds back into Eqs. (46), (47) and (48) , we can obtain the following

upper bound

MSE (ϕ̃) ≤ D2
[

exp
(

−mp

8

)

+ 2exp
(

−np

8

)]

+
[

8LQ∗
(mp

2

)]2
+

[

4LC
(

log
np

2

)−1/β
]2

+
8L2

n
+

288L2

n2
+ 8LQ∗

(mp

2

)
√

3Lπ

n
+ 64

4
√
8L2C2

4

(log (2np))
4
β

(np)
1
4

.

Rearranging the terms in the increasing order of convergence rates concludes the proof.

Appendix E. Proof of Theorem 3

In the previous section, we proposed an estimation procedure assuming the noise distribution is

known. Here, we discuss consistent estimation procedure for similar setting with the only difference

that noise distribution is unknown. Specifically, we shall establish Theorem 3. The structure of the

section is the same with the preceding sections.
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E.1. Algorithm Description

In the absence of knowledge of noise distribution, the CDF estimation algorithm presented in the

previous section is no longer valid because the noise characteristic function φN in Eq. (36) is not

available. To overcome the challenge of unknown noise distribution, we estimate the noise charac-

teristic function first and then estimate the CDF using kernel deconvolution in a similar manner, but

with an additional ridge parameter to avoid division by zero. It is important to recall that knowl-

edge of noise distribution was not used for the column feature estimation in D.1. And hence it still

remains valid.

The generic algorithm remains the same as that described in Section C.1.1. Step 1 (estimating

θ
(j)
col , j ∈ [n]) remains the same as in Section D.1, but Step 2 (estimating F (i), i ∈ [m]) of the

algorithm requires an additional procedure of estimating the noise density because φN is unknown.

1. q̂marg(j): Estimate of θ
(j)
col , j ∈ [n] The same as in Section D.1: see Eqs. (31) and (32).

2. F̂ (i): Estimate of F (i) = g−1

x=θ
(i)
row

, i ∈ [m] We estimate the distribution over each row by

essentially same procedure as in section D.1. Recall that the characteristic function of the additive

noise, φN , is unknown and has to be estimated from data which we describe next.

2-1. φ̂N (t): Estimate for φN (t) Since the noise distribution is unknown, we need an auxiliary

procedure to estimate the noise density. Here we explain an algorithm to estimate the noise charac-

teristic function φ̂N (t).

Some Background. Before presenting the noise estimation procedure, we provide intuition behind

that. Suppose that we can repeatedly observe the same instance Xi of target random variable up to

independent additive noise, i.e., Zij = Xi + Nij with Nij independent. Although we don’t know

the value of Xi, we can see that the difference in the observed data entries is equal to the difference

between two independent noise instances: Zi1 − Zi2 = (Xi +Ni1) − (Xi +Ni2) = Ni1 − Ni2.

Assuming symmetry in the noise distribution, N ≡ −N in distribution, and Ni1 − Ni2 follows

the same distribution with the sum of two independent copies of noise: Ni1 − Ni2 ≡ Ni1 + Ni2.

Therefore, φNi1−Ni2(t) = φN (t)2.

From symmetry of N , we know that φN (t), the Fourier transform of the noisy density is real-

valued. In fact, we know φN (t) is not only real-valued but positive from the model assumption of

the supersmooth noise (see Eq. (5)). It implies φN1−N2(t) = φN (t)2 is also positive real-valued.

Hence,

φN1−N2(t) = E

[

eit(N1−N2)
]

= E

[

eit(N1−N2) + e−it(N1−N2)

2

]

= E [cos t(N1 −N2)] .

Therefore, we can estimate φN (t) by taking square root of the (the absolute value of) estimate

φ̂N1−N2(t), which is computed as the sample-analog estimator with n independent copies of noise

difference {Ni1 −Ni2}ni=1. Specifically,

φ̂N (t) = φ̂N1−N2(t)
1
2 =

∣
∣
∣
∣
∣

1

n

n∑

i=1

cos [t (Ni1 −Ni2)]

∣
∣
∣
∣
∣

1
2

.
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However, the repeated measurement assumption may not be realistic, because we may not be

allowed to measure the same entry multiple times. Therefore, we imitate the setup of repeated

measurements by considering two columns j1, j2 ∈ [n] with similar column features θ
(j1)
col ≈ θ

(j2)
col

so that

Z(i, j1)− Z(i, j2) = [A(i, j1) +N(i, j1)]− [A(i, j2) +N(i, j2)]

= [A(i, j1)−A(i, j2)]
︸ ︷︷ ︸

≈0, ∵θ
(j1)
col ≈θ

(j2)
col

+ [N(i, j1)−N(i, j2)]

≈ N(i, j1)−N(i, j2).

Summary of the Noise Density Estimation Procedure.

1. Construct T :=
{
(i, j1, j2) ∈ [m] × [n]2 : M(i, j1) = M(i, j2) = 1and q̂marg(j1) ≈

q̂marg(j2)
}

as described in Algorithm 2.

2. For each i ∈ [n], define Ti as Ti :=
{

(i′, j1, j2) ∈ T : i′ 6= i
}

.

3. For each i ∈ [n], estimate the noise characteristion function φN with the triples in Ti as

φ̂N,i(t) =

∣
∣
∣
∣
∣
∣

1

|Ti|
∑

(i,j1,j2)∈Ti

cos
[

t (Z(i, j1)− Z(i, j2))
]

∣
∣
∣
∣
∣
∣

1/2

, (49)

Roughly speaking, T is the set of index triples to mimic the repeated measurements. For row i, we

use Ti, which is a subset of T tailored to exclude the data from row i. This refinement of T to Ti
for each row i is done for the convenience in analysis.

2-2. Computing F̂ (i) If we blindly replace φN with φ̂N,i in Eq. (36), it might happen that

φ̂N,i

(
t
h

)
= 0 while φK(t) 6= 0 for some t. To avoid the division-by-zero problem, we intro-

duce a ridge parameter ρ in the denominator of deconvolution kernel. By choosing an appropriate

value of ρ, it vanishes fast enough as the number of samples increases so that we can achieve a

consistent CDF estimator even when the noise distribution is unknown.

Summary of Estimator. Recall that Bi is the set of column indices j for which Z(i, j) is observed;

Bi = {j ∈ [n] : M(i, j) = 1} (see Eq. (18)). We define the kernel smoothed CDF estimator with

unknown noise density as follows: for any choice of constants D1, D2 such that D1 ≤ Dmin and

D2 ≥ Dmax,

F̂ (i)(z) =

{∫ z
D1

f̂ (i)(w)dw, if z < D2,

1, if z ≥ D2,
(50)

where

f̂ (i)(z) =
1

h|Bi|
∑

j∈Bi

L̂

(
z − Z(i, j)

h

)

and (51)

L̂(z) =
1

2π

∫

e−itz φK(t)

φ̂N,i

(
t
h

)
+ ρ

dt. (52)

41



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

Algorithm 2: Construction of the set T for noise density estimation.

Result: Return the set of triples T for noise density estimation

J ←
{
j ∈ [n] : |Bj| ≥ mp

2

}
;

I ←
{

i ∈ [m] : |Bi ∩ J | ≥ |J |p
2

}

;

T ← ∅ ;

Sort j ∈ [n] in the increasing order of q̂marg(j), i.e., find a permutation π such that

q̂marg (j) ≤ q̂marg (j
′) if π(j) < π(j′);

for i ∈ I do

Renumber j ∈ Bi ∩ J with j′ ∈ [|Bi ∩ J |] in the increasing order of q̂marg (j);
(let σi : Bi ∩ J ⊆ [n]→ [|Bi ∩ J |]; this map can be induced from π)

j′ ← 0;

while j′ ≤ |Bi ∩ J | − 1 do

if q̂marg

(
σ−1
i (j′ + 1)

)
− q̂marg

(
σ−1
i (j′)

)
≤ 1√

|Bi∩J |
then

T ← T ∪
{
(i, σ−1

i (j′) , σ−1
i (j′ + 1))

}
;

j′ ← j′ + 2;

else

j′ ← j′ + 1;

end

end

end

The kernel bandwidth parameter h = (4γ)
1
β (log |Bi|)−

1
β where β and γ are smoothness parameters

for the noise (see Eq. (5)) though the exact density of noise is unknown. In this paper, we choose

the ridge parameter ρ = |Bi|−7/24.

3. Â(i, j): Estimate of A(i, j), i ∈ [m], j ∈ [n] For each i ∈ [m], let ĝ(i) =
(

F̂ (i)
)−1

denote

the quantile function (right pseudo-inverse) associated with F̂ (i). Plugging Eq. (32) into it leads to

the estimate of matrix entry:

Â(i, j) = ĝ(i)
(
q̂marg(j)

)
. (53)

E.2. Algorithm Analysis

The analysis is done in parallel to those in sections C.2 and D.2. Since the quantile estimator is

the same as before, we can reuse Lemma 20 to show that the quantile estimates for all j ∈ [n]
concentrate to the true values (the column features in our model) with high probability. It suffices to

show the regularized deconvolution kernel ECDF consistently estimates the true CDF even when the

distribution of the additive noise is unknown. Lemma 25 ensures the deconvolution kernel ECDF

F̂ (i) uniformly converges to F (i) with high probability.

E.2.1. CONCENTRATION OF q̂MARG(j) AROUND θ
(j)
col , j ∈ [n]

The quantile estimator, q̂marg(j) as defined in (32) is shown to be concentrated around θ
(j)
col under the

assumption on the noise as stated in Section 2.3.2. See Lemma 20 for detailed statement.
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E.2.2. CONCENTRATION OF F̂ (i)
AROUND F (i), i ∈ [m]

Here we shall establish that F̂ (i) converges uniformly to F (i) in large sample limit. Specifically, we

obtain a Lemma (Lemma 25) that provides an exponentially decaying probabilistic tail bound for

this uniform convergence (See Lemma 21 for comparison with the known noise case).

Notation. We recall absolute constants C1 ≡ l2

2(Dmax−Dmin)2
, C2 ≡ l2

8σ2 and define

c∆A ≡ 8
√
π

(√
eC1 +

√
2√

C1
+

√
eC2 +

√
2√

C2

)

.

Define a monotone increasing function sφ : Z+ → R+ with c∆A as (see item 6 in section I.6 for

reasons behind this definition)

sφ(x) =
8σ(log x)

1
β

(4γ)
1
β

√

log(4mnp)

(mnp)
1
4

+
2(log x)

1
β

(4γ)
1
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]

. (54)

Note that σ, β, γ are model parameters for noise, and L, l are lipschitz constants for the class of

latent functions. The absolute constant C3 = C3(l) (see Lemma 29) depends only on l. The

bandwidth parameter h is chosen as h = (4γ)
1
β (log |Bi|)−

1
β and the ridge parameter ρ = |Bi|−

7
24 .

Kmax = maxt∈[−1,1] |φK(t)| <∞ is the maximum modulus of the kernel used.

Error thresholds. Our objective in this section is to obtain a probabilistic tail bound on the uniform

convergence of F̂ (i) to F (i). However, we cannot expect convergence up to arbitrary precision, but

there exists a fundamental limit. We define thresholding values for the error in CDF estimation for

the convenience in presenting the results. For i ∈ [m], we let

t
(i)
0 ≡ C3 (log |Bi|)−1/β +

2Kmax(D2 −D1)

πh

(
sφ
(
|Bi|
)
+ ρ
)
, and (55)

T
(i)
0 ≡ t

(i)
0 +

4Kmax(D2 −D1)

π (4γ)
1
β

|Bi|−
5
24 (log |Bi|)

1
β . (56)

Note that these are not constants but functions which depend on |Bi|. We also remark that C3 (log |Bi|)−1/β

is the essential limit for the convergence, while the other slack terms are introduced for the conve-

nience of analysis.

Recall we defined the following conditioning events (see Eq. (42)) to make the probabilistic tail

bound more amenable for the analysis: for any i ∈ [m],

Erow,(i) ≡
{

|Bi| ≥
np

2

}

, and E′
row,(i) ≡

{

|Bi| ≤ 2np
}

.

We define t∗0 (resp. T ∗
0 ) as the supremum of t

(i)
0 (resp. T

(i)
0 ) under Erow,(i) ∩ E′

row,(i):

t∗0 ≡ C3

(

log
(np

2

))−1/β
+

2Kmax(D2 −D1)

πh

(

sφ
(
2np

)
+ ρ
)

, and (57)

T ∗
0 ≡ t∗0 +

4Kmax(D2 −D1)

π (4γ)
1
β

(np

2

)− 5
24
(log(2np))

1
β . (58)
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Lemma statements. We define a function Ψ̃m,n,p : Z+ → R+ as

Ψ̃m,n,p (x) = exp
(

− n

16

)

+ exp
(

−m

16

)

+ exp
(

−mnp

3

)

+ n exp

(

− n
1
2

)

+ n exp

(

− 1

3
√
2
n

3
4

)

+
128

mnp

+ exp

(

−σ4(log x)
4
β

(4γ)
4
β

log2(4mnp) + log(4mnp)

)

+ exp

(

− (log x)
2
β

256(4γ)
2
β

[

c∆A
√
n+ 2L

√
2m
]2

+
1

2

(

logmnp+ log log(4mnp)
)

+ log
16σ

c∆A + 2L
√
2

)

. (59)

In the following lemma, we will let Ψ̃m,n,p (|Bi|) denote the remainder term which does not depend

on the error level t. For completeness, we note that the remainder term is the sum of upper bounds in

Eq. (92) - (98), which vanishes as mp, np→∞. Recall that C4 =
BKmax(D2−D1)

π(4γ)
1
β

, where B ≥ 1.

Lemma 25 For any i ∈ [m], and for any t ≥ T
(i)
0 ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− F (i)(z)

∣
∣
∣ > t

)

≤ |Bi|
1
6 exp

(

− |Bi|5/12

8C2
4 (log |Bi|)

2
β

(t− t
(i)
0 )2

)

+ Ψ̃m,n,p (|Bi|) .

We state a useful consequence of the above result with conditioning events Erow,(i), E
′
row,(i).

Note that Ψ̃m,n,p

(np
2

)
sets an upper bound on Ψ̃m,n,p (|Bi|) under Erow,(i) ∩E′

row,(i).

Corollary 26 For any i ∈ [m], and any t ≥ T ∗
0 ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ > t

∣
∣
∣
∣
∣
Erow,(i), E

′
row,(i)

)

≤ (2np)
1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

(t− t∗0)
2

)

+ Ψ̃m,n,p

(np

2

)

.

E.3. Proof of Theorem 3

In this section, we complete the proof of Theorem 3. The proof follows similar structure as that of

Theorem 2. First, we establish tail bound on |Ã(i, j)−A(i, j)| and then integrate it to obtain bound

on Mean-Squared-Error (MSE). The main difference is that we use Lemma 25 (Corollary 26) in

place of Lemma 21 due to the lack of knowledge on noise distribution φN (t).

E.3.1. TAIL BOUND ON |Â(i, j) −A(i, j)|
For given choice of parameters t > 0 and L,Q∗,m, n, p and T ∗

0 as defined before , we define

conditions in the same manner as in Eq. (60) (we newly define E3 instead of E2 there):

E1 =
{

t ≤ 8LQ∗
(mp

2

)}

and E3 =
{

t ≤ 2LT ∗
0

}

. (60)
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Theorem 27 For each (i, j) ∈ [m]× [n], for any t ≥ 0,

P

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ I {E1}+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

I {Ec
1}

+ I {E3}+ (2np)
1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

(t− t∗0)
2

)

I {Ec
3}

+ exp

(

− nt2

8L2

)

+ exp
(

−mp

8

)

+ 2exp
(

−np

8

)

+ Ψ̃m,n,p

(np

2

)

,

where t∗0, T
∗
0 and Ψ̃m,n,p

(np
2

)
are as defined previously.

Note that the term in the last line, which are independent of t, decays to 0 at an exponential rate

as mp, np→∞.

Proof The proof follows the same logic as in the proof of Theorem 23, while we use the upper

bound from Corollary 26 in lieu of Corollary 22. Let θ∗ ≡ F (i)
(

Â(i, j)
)

= F (i)
(
ĝ(i)

(
q̂marg(j)

))
.

Since F̂ (i) is continuous,
∣
∣θ∗ − q̂marg(j)

∣
∣ ≤

∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞

. By the same line of argument as in the

proof of Theorem 23, since Â(i, j) = ĝ(i)
(
q̂marg(j)

)
= g

(

θ
(i)
row, θ∗

)

, and g is (l, L)-biLipschitz,

∣
∣
∣Â(u, i) −A(i, j)

∣
∣
∣ =

∣
∣
∣g
(

θ(i)row, θ
(j)
col

)

− g
(

θ(i)row, θ
∗
)∣
∣
∣ ≤ L

∣
∣
∣θ

(j)
col − θ∗

∣
∣
∣

≤ L
(∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ +
∣
∣
∣q̂marg(j)− θ∗

∣
∣
∣

)

≤ L
(∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ +
∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞

)

.

If

∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ ≤ t

2L ,

∥
∥
∥F̂ (i) − F (i)

∥
∥
∥
∞
≤ t

2L then

∣
∣
∣Â(u, i) −A(i, j)

∣
∣
∣ ≤ t. We can achieve

the following upper bound by applying the union bound on the contraposition. We let E(i) :=
Erow,(i) ∩ E′

row,(i) in this proof. Then it follows that

P

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ >

t

2L

)

+ P

(

sup
z∈R

∣
∣
∣F̂ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

)

≤ P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ >

t

2L

)

+ P

(

sup
z∈R

∣
∣
∣F̂ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

∣
∣
∣
∣
E(i)

)

+ P

(

Ec
(i)

)

.
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Because we have a trivial upper bound 1 on probability, it follows from Lemma 20 that

P

(∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ >

t

2L

)

≤ I

{

t ≤ 8LQ∗
(mp

2

)}

+ I

{

t ≥ 8LQ∗
(mp

2

)}

×
[

exp

(

− nt2

8L2

)

+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

+ exp
(

−mp

8

)
]

.

In a similar manner, we have

P

(

sup
z∈R

∣
∣
∣F̂ (i)(z)− F (i)(z)

∣
∣
∣ >

t

2L

∣
∣
∣
∣
E(i)

)

≤ I {t ≤ 2LT ∗
0 }

+ I {t ≥ 2LT ∗
0 } (2np)

1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

(t− t∗0)
2

)

+ I {t ≥ 2LT ∗
0 } Ψ̃m,n,p

(np

2

)

.

Note that t ≥ 2LT ∗
0 implies that t

2L ≥ t∗0.

We used an upper bound on P

(

Ec
(i)

)

obtained from the binomial Chernoff bound:

P

(

Ec
(i)

)

= P

(

|Bi| <
np

2
or |Bi| > 2np

)

≤ P

(

|Bi| <
np

2

)

+ P (|Bi| > 2np)

≤ exp
(

−np

8

)

+ exp
(

−np

3

)

≤ 2 exp
(

−np

8

)

.

Substituting these three upper bounds back to Eq. (44), we can conclude that

P

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > t

)

≤ I

{

t ≤ 8LQ∗
(mp

2

)}

+ I {t ≤ 2LT ∗
0 }

+ exp

(

−n( t
4L −Q∗ (mp

2

)
)

3

)

I

{

t ≥ 8LQ∗
(mp

2

)}

+ I {t ≥ 2LT ∗
0 } (2np)

1
6 exp

(

−π2 (4γ)
2
β
(np

2

)5/12

8K2
max(D2 −D1)2 (log(2np))

2
β

(t− t∗0)
2

)

+ exp

(

− nt2

8L2

)

+ exp
(

−mp

8

)

+ 2exp
(

−np

8

)

+ Ψ̃m,n,p

(np

2

)

.
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E.3.2. MEAN SQUARED ERROR

Let ϕ̂ denote the estimator which maps Z to Â. By the same line of arguments as in Eq. (28), the

mean squared error of estimator ϕ̂ is given as

MSE (ϕ̂) =

∫ ∞

0
2uP

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > u

)

du (61)

Also, from the model assumption and the construction of the estimators, the estimation error is

bounded above: ∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ ≤ D2 −D1,

Let D = D2 −D1 denote the upper bound. Note that D is a constant independent of m,n.

For brevity’s sake, we introduce some notations for abbreviation. We let

c3 ≡
(np

2

)5/12

8C2
4 (log(2np))

2
β

.

We define Ψ(m,n, p) to capture all constant terms in the probabilistic bound of Theorem 27.

That is to say,

Ψ(m,n, p) ≡ exp
(

−mp

8

)

+ 2exp
(

−np

8

)

+ Ψ̃m,n,p

(np

2

)

= exp
(

−mp

8

)

+ 2exp
(

−np

8

)

(62)

+ exp
(

− n

16

)

+ exp
(

−m

16

)

+ exp
(

−mnp

3

)

+ n exp

(

− n
1
2

)

+ n exp

(

− 1

3
√
2
n

3
4

)

+
128

mnp

+ exp

(

−σ4(log np
2 )

4
β

(4γ)
4
β

log2(4mnp) + log(4mnp)

)

+ exp

(

− (log np
2 )

2
β

256(4γ)
2
β

[

c∆A

√
n+ 2L

√
2m
]2

+
1

2

(

logmnp+ log log(4mnp)
)

+ log
16σ

c∆A + 2L
√
2

)

. (63)

Theorem 28 (The Full Version of Main theorem 3; MSE with unknown noise) The mean squared

error of the deconvolution kernel estimator ϕ̂ is bounded above as follows:

MSE (ϕ̂) ≤ 4L2T ∗
0
2 + 64L2Q∗

(mp

2

)2

+ 8LQ∗
(mp

2

)
√

3Lπ

n
+ 4L2(2np)

1
6

[
1

c3
+ t∗0

√
π

c3

]

+
8L2

n
+

288L2

n2
+D2Ψ(m,n, p).

The upper bound diminishes to 0 as mp, np→∞ at the rate of (log np)−
2
β .
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We remark that 4L2T ∗
0
2 is the asymptotically dominant term, which scales as O

(

(log np)
− 2

β

)

(see Eq. (56) for definition of T ∗
0 ). All the other terms decay at polynomial rate in the least.

For example, Q∗ (mp
2

)
= O

(
1√
mp

)

(see Eq. (41)). To see the polynomial convergence of

4L2(2np)
1
6

[
1
c3

+ t∗0
√

π
c3

]

, recall from Eqs. (54) and (56) that

t∗0 ≡ C3

(

log
(np

2

))−1/β
+

2Kmax(D2 −D1)

πh

(

sφ
(
2np

)
+ ρ
)

, where

sφ(2np) =
8σ(log(2np))

1
β

(4γ)
1
β

√

log(4mnp)

(mnp)
1
4

+
2(log(2np))

1
β

(4γ)
1
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]

.

We can see that
[

1
c3

+ t∗0
√

π
c3

]

= O
(

(np)−
5
24

)

because t∗0
√

π
c3

dominates asymptotically.

Proof [Proof of Theorem 28] In order to achieve an upper bound on the MSE for the kernel density

estimator with known noise, ϕ̂, we integrate the tail probability bound from Theorem 27.

First of all, we recall from Eqs. (29) and (30) that
∫ ∞

0
ue−au2

du =
1

2a
, and

∫ ∞

0
ue−audu =

1

a2
.

Also, we know that
∫ ∞

0
e−au2

du =
1

2

√
π

a
. (64)

Now, the mean squared error can be written in the following form:

MSE (ϕ̂) =

∫ D

0
2uP

(∣
∣
∣Â(i, j) −A(i, j)

∣
∣
∣ > u

)

du

≤
∫ D

0
2uΨ(m,n, p)du +

∫ 8LQ∗(mp
2 )

0
2udu+

∫ 2LT ∗
0

0
2udu

+

∫ D

0
2u exp

(

−nu2

8L2

)

du (65)

+

∫ D

8LQ∗(mp
2 )

2u exp

(

−n( u
4L −Q∗ (mp

2

)
)

3

)

du (66)

+

∫ D

2LT ∗
0

2u(2np)
1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

( u

2L
− t∗0

)2
)

du. (67)

We can reuse some calculations from the proof of Theorem 24. Note that the term in Eq. 65 is

the same with that in Eq. (46), and Eq. (66) is the same with Eq. (47). Therefore,

Eq.(65) ≤
∫ ∞

0
2u exp

(

−nu2

8L2

)

du =
8L2

n
,

Eq.(66) ≤ 288L2

n2
+ 8LQ∗

(mp

2

)
√

3Lπ

n
.
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It remains to compute an upper bound of the term Eq. (67).

Eq.(67) = 2(2np)
1
6

∫ D

2LT ∗
0

u exp

(

−c3
( u

2L
− t∗0

)2
)

du

= 2(2np)
1
6

∫ D
2L

−t∗0

T ∗
0 −t∗0

(2L)2(v + t∗0) exp
(
−c3v2

)
dv

≤ 8L2(2np)
1
6

[∫ ∞

0
v exp

(
−c3v2

)
dv + t∗0

∫ ∞

0
exp

(
−c3v2

)
dv

]

= 4L2(2np)
1
6

[
1

c3
+ t∗0

√
π

c3

]

.

The second line follows by substituting v = u
2L−t∗0 and the third line follows from that T ∗

0 −t∗0 ≥ 0.

Plugging these upper bounds back into Eqs. (46), (47) and (48) , we can obtain the following

upper bound

MSE (ϕ̂) ≤ D2Ψ(m,n, p) +
[

8LQ∗
(mp

2

)]2
+
[

2LT ∗
0

]2
+

8L2

n
+

288L2

n2

+ 8LQ∗
(mp

2

)
√

3Lπ

n
+ 4L2(2np)

1
6

[
1

c3
+ t∗0

√
π

c3

]

.

Rearranging the terms in the increasing order of convergence rates concludes the proof.

Appendix F. Proof of Lemma 15

Proof [Proof of Lemma 15] Recall from Eq. (21) that the quantile of j estimated from row i is a

function of |Bi| =
∑n

j′=1 M(i, j′) many independent random variables, H
(
Z(i, j) − Z(i, j′)

)
:

q̂i(j) =

∑n
j′=1 M(i, j′)H

(
Z(i, j) − Z(i, j′)

)

∑n
j′=1 M(i, j′)

.

Since H
(
Z(i, j1) − Z(i, j2)

)
takes value in {0, 12 , 1}, it satisfies the bounded difference condition.

To be more specific, let’s consider a perturbation on the column feature associated with one index.

For any j0 ∈ [n], if j0 ∈ Bi (i.e., if M(i, j0) = 1), then
∣
∣
∣ q̂i(j)|θ(j0)col =a

− q̂i(j)|θ(j0)col =b

∣
∣
∣ ≤ 1

|Bi|
,

for any value a, b ∈ [0, 1], while if j0 6∈ Bi (i.e., if M(i, j0) = 0), then obviously
∣
∣
∣ q̂i(j)|θ(j0)col =a

− q̂i(j)|θ(j0)col =b

∣
∣
∣ = 0.

Since E [q̂i(j)] = θ
(j)
col , we can achieve the following probabilistic tail bound by an application

of McDiarmid’s inequality

P

(∣
∣
∣q̂i(j) − θ

(j)
col

∣
∣
∣ ≥ t

)

≤ 2 exp
(
−2|Bi|t2

)
.
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Appendix G. Proof of Lemma 20

When there is nontrivial noise present, the indicator may not be reliable any more. Hence, we need

a way to control the effect of noise. We assume the additive noise is sub-Gaussian.

In addition to condition defined in (42), we will use the following notation.

Ecol,(j) ≡
{

|Bj| ≥ mp

2

}

. (68)

Proof [Proof of Lemma 20] Recall from section D.1 (see Eqs. (32) and (31)) that the quantile

estimator is defined as

q̂marg(j) =
1

n

n∑

j′=1

H
(
Zmarg(j) − Zmarg(j

′)
)
,

where

Zmarg(j) =

{∑m
i=1 M(i,j)Z(i,j)
∑m

i=1 M(i,j) , if Bj 6= ∅
1
2 , if Bj = ∅.

We also note that since the marginalization of the latent function gmarg(y) :=
∫ 1
0 g(x, y)dx is strictly

increasing and (l, L)-biLipschitz, hence, invertible. We let ζ(j) = g−1
marg

(
Zmarg(j)

)
for the purpose

of analysis. We also define an imaginary estimator

q̂∗(j) =
1

n

n∑

j′=1

H
(

θ
(j)
col − θ

(j′)
col

)

,

which will be used solely for analysis.

By triangle inequality, the error in quantile estimation is upper bounded as

∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ ≤

∣
∣
∣q̂marg(j) − q̂∗(j)

∣
∣
∣ +
∣
∣
∣q̂∗(j)− θ

(j)
col

∣
∣
∣ .

If both

∣
∣
∣q̂marg(j)− q̂∗(j)

∣
∣
∣ ≤ t1 and

∣
∣
∣q̂∗(j) − θ

(j)
col

∣
∣
∣ ≤ t2 are satisfied, then

∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ ≤ t1+t2.

Therefore, for any t1, t2 > 0 and t = t1 + t2,

P

(∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ > t

)

(69)

≤ P

(∣
∣
∣q̂marg(j)− q̂∗(j)

∣
∣
∣ > t1

)

+ P

(∣
∣
∣q̂∗(j) − θ

(j)
col

∣
∣
∣ > t2

)

.

Note that q̂∗(j) exponentially concentrates to θ
(j)
col as n→∞ by McDiarmid’s inequality, for exam-

ple. Therefore, it suffices to find a probabilistic tail upper bound for
∣
∣q̂marg(j)− q̂∗(j)

∣
∣:

∣
∣q̂marg(j)− q̂∗(j)

∣
∣ =

∣
∣
∣
∣
∣
∣

1

n

n∑

j′=1

[

H
(
Zmarg(j) − Zmarg(j

′)
)
−H

(

θ
(j)
col − θ

(j′)
col

)]

∣
∣
∣
∣
∣
∣

≤ 1

n

n∑

j′=1

∣
∣
∣
∣
∣

[

H
(
Zmarg(j) − Zmarg(j

′)
)
−H

(

θ
(j)
col − θ

(j′)
col

)]
∣
∣
∣
∣
∣
.
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For j′ 6= j,

∣
∣
∣

[

H
(
Zmarg(j) − Zmarg(j

′)
)
−H

(

θ
(j)
col − θ

(j′)
col

)]∣
∣
∣ = 1 with probability pfail, and 0

otherwise (it is uniformly 0 for j′ = j). Now, if we can find an upper bound p∗fail ≥ pfail, then for

t > p∗fail,

P

( ∣
∣q̂marg(j)− q̂∗(j)

∣
∣ > t

)

≤ P

(

Y > nt
)

≤ exp

(

−n(t− p∗fail)
2

t+ p∗fail

)

,

where Y ∼ Binomial(n, p∗fail).
We define a monotone decreasing function Q∗ : Z+ → R+ as

Q∗(x) = 2
√
π

(

1√
C1x

+
1√
C2x

+
1

√

mpC1e−C1
+

1
√

mpC2e−C2

)

,

where C1 =
l2

2(Dmax−Dmin)2
and C2 =

l2

8σ2 are some model-dependent constants.

Claim 1. We show that pfail ≤ Q∗ (∣∣Bj
∣
∣
)
, i.e., pfail is bounded above by a function of the number

of revealed entries on column j, |Bj|.
The estimator q̂marg(j) exploits the pairwise ordering information of column pair (j, j′) by tak-

ing the sign of Zmarg(j)−Zmarg(j
′), which might be different from the true ordering sign

(

θ
(j)
col − θ

(j′)
col

)

due to the presence of noise. We analyze the probability of the order to be distrubed. Note that

sign
(

Zmarg(j)− Zmarg(j
′)
)

= sign
(

ζ(j) − ζ(j
′)
)

because gmarg is strictly monotone increasing.

Let Xj := ζ(j) − θ
(j)
col . Then since gmarg is (l, L)-biLipschitz, for any s > 0,

P (Xj ≥ s) ≤ P

(

Zmarg(j) − gmarg

(

θ
(j)
col

)

≥ ls
)

= P




1

|Bj|
∑

i′∈Bj

Z(i′, j) − gmarg

(

θ
(j)
col

)

≥ ls





≤ P




1

|Bj|
∑

i′∈Bj

A(i′, j) − gmarg

(

θ
(j)
col

)

≥ ls

2





+ P




1

|Bj|
∑

i′∈Bj

N(i′, j) ≥ ls

2





≤ exp

(

−
∣
∣Bj
∣
∣ l2s2

2(Dmax −Dmin)2

)

+ exp

(

−
∣
∣Bj
∣
∣ l2s2

8σ2

)

.

For the brevity, we will let C1 = l2

2(Dmax−Dmin)2
and C2 = l2

8σ2 throughout the rest of the proof.

Also, we can achieve the same upper bound for P (Xj ≤ −s). Since Xj −Xj′ =
(

ζ(j) − ζ(j
′)
)

−
(

θ
(j)
col − θ

(j′)
col

)

, the pairwise order is conserved unless







Xj −Xj′ < −
(

θ
(j)
col − θ

(j′)
col

)

, when θ
(j)
col − θ

(j′)
col ≥ 0,

Xj −Xj′ > θ
(j′)
col − θ

(j)
col , when θ

(j)
col − θ

(j′)
col < 0.
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Given θ
(j)
col , the probability of θ

(j′)
col be smaller than θ

(j)
col is equal to θ

(j)
col , i.e., P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

=

θ
(j)
col . Therefore, the probability of the problematic event can be partitioned as

P

(

sign
(

ζ(j) − ζ(j
′)
)

6= sign
(

θ
(j)
col − θ

(j′)
col

))

= P

(

Xj −Xj′ < −
(

θ
(j)
col − θ

(j′)
col

)∣
∣
∣ θ

(j)
col − θ

(j′)
col ≥ 0

)

P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

+ P

(

Xj −Xj′ > θ
(j′)
col − θ

(j)
col

∣
∣
∣ θ

(j)
col − θ

(j′)
col < 0

)

P

(

θ
(j)
col − θ

(j′)
col < 0

)

.

The first conditional probability can be upper bounded by

P

(

Xj −Xj′ < −
(

θ
(j)
col − θ

(j′)
col

)∣
∣
∣ θ

(j)
col − θ

(j′)
col ≥ 0

)

≤ P

(

Xj < −
θ
(j)
col − θ

(j′)
col

2

∣
∣
∣
∣
∣
θ
(j)
col − θ

(j′)
col ≥ 0

)

+ P

(

Xj′ >
θ
(j)
col − θ

(j′)
col

2

∣
∣
∣
∣
∣
θ
(j)
col − θ

(j′)
col ≥ 0

)

.

Meanwhile, if we define a new random variable T :=
θ
(j)
col−θ

(j′)
col

2 and let τ denote its realization,

we can see that fT (τ) =
2

θ
(j)
col

I

{

0 ≤ T ≤ θ
(j)
col
2

}

, conditioned on θ
(j)
col − θ

(j′)
col ≥ 0.

P

(

Xj < −τ
∣
∣
∣θ

(j)
col − θ

(j′)
col ≥ 0

)

=

m∑

k=0

P
(
|Bj| = k

)
P

(

Xj < −τ
∣
∣
∣θ

(j)
col − θ

(j′)
col ≥ 0, |Bj | = k

)

≤
m∑

k=0

(
m

k

)

pk(1− p)m−k
[

exp
(
−C1kτ

2
)
+ exp

(
−C2kτ

2
) ]

=
[

pe−C1τ2 + (1− p)
]m

+
[

pe−C2τ2 + (1− p)
]m

=



1−
mp
(

1− e−C1τ2
)

m





m

+



1−
mp
(

1− e−C2τ2
)

m





m

≤ exp

[

−mp
(

1− e−C1τ2
)]

+ exp

[

−mp
(

1− e−C2τ2
)]

.

As a result,

P

(

sign
(

ζ(j) − ζ(j
′)
)

6= sign
(

θ
(j)
col − θ

(j′)
col

)∣
∣
∣ |Bj| = k

)

= P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

(70)

× P

(

Xj −Xj′ < −
(

θ
(j)
col − θ

(j′)
col

)∣
∣
∣ θ

(j)
col − θ

(j′)
col ≥ 0, |Bj | = k

)

+ P

(

θ
(j)
col − θ

(j′)
col < 0

)

(71)

× P

(

Xj −Xj′ > θ
(j′)
col − θ

(j)
col

∣
∣
∣ θ

(j)
col − θ

(j′)
col < 0, |Bj | = k

)

.
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Note that Xj < −τ and Xj′ > τ implies Xj −Xj′ < −2τ for any τ ∈ R. Therefore, for any

τ ∈ R, it follows that P
(
Xj −Xj′ < −2τ

)
≤ P (Xj < −τ) + P

(
Xj′ > τ

)
. Now we will obtain

an upper bound on Eq. (70) by finding upper bounds on each terms and then taking the union bound.

Note that
dP

(

θ
(j)
col−θ

(j′)
col =2τ

∣

∣

∣

∣

θ
(j)
col−θ

(j′)
col ≥0

)

dτ = 2

θ
(j)
col

I
{
0 ≤ τ ≤ θ

(j)
col
2

}
and P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

= θ
(j)
col .

P

(

Xj < −
θ
(j)
col − θ

(j′)
col

2

∣
∣
∣
∣
∣
θ
(j)
col − θ

(j′)
col ≥ 0, |Bj | = k

)

P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

=

∫

τ
P

(

Xj < −τ
∣
∣
∣θ

(j)
col − θ

(j′)
col = 2τ, |Bj | = k

)

×

dP
(

θ
(j)
col − θ

(j′)
col = 2τ

∣
∣
∣θ

(j)
col − θ

(j′)
col ≥ 0

)

dτ
P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

dτ

= 2

∫ θ
(j)
col
2

0
P

(

Xj < −τ
∣
∣
∣θ

(j)
col − θ

(j′)
col = 2τ, |Bj | = k

)

dτ

≤ 2

∫ θ
(j)
col
2

0
exp

(
−C1kτ

2
)
+ exp

(
−C2kτ

2
)
dτ

≤ 2

∫ ∞

0
exp

(
−C1kτ

2
)
+ exp

(
−C2kτ

2
)
dτ

=
√
π

(
1√
C1k

+
1√
C2k

)

.
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Similarly, we can obtain an upper bound for Xj′ . Note that column j and j′ are independent

and that for c > 0, 1− e−cu2 ≥ ce−cu2, ∀u ∈ [0, 1].

P

(

Xj′ >
θ
(j)
col − θ

(j′)
col

2

∣
∣
∣
∣
∣
θ
(j)
col − θ

(j′)
col ≥ 0, |Bj | = k

)

P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

=

∫

τ
P

(

Xj′ > τ
∣
∣
∣θ

(j)
col − θ

(j′)
col = 2τ, |Bj | = k

)

×

dP
(

θ
(j)
col − θ

(j′)
col = 2τ

∣
∣
∣θ

(j)
col − θ

(j′)
col ≥ 0

)

dτ
P

(

θ
(j)
col − θ

(j′)
col ≥ 0

)

dτ

= 2

∫ θ
(j)
col
2

0
P

(

Xj′ > τ
∣
∣
∣θ

(j)
col − θ

(j′)
col = 2τ, |Bj | = k

)

dτ

= 2

∫ θ
(j)
col
2

0
P

(

Xj′ > τ
∣
∣
∣θ

(j)
col − θ

(j′)
col = 2τ

)

dτ

≤ 2

∫ θ
(j)
col
2

0
exp

[

−mp
(

1− e−C1τ2
)]

+ exp
[

−mp
(

1− e−C2τ2
)]

dτ

≤ 2

∫ θ
(j)
col
2

0
exp

(
−mpC1e

−C1τ2
)
+ exp

(
−mpC2e

−C2τ2
)
dτ

≤ 2

∫ ∞

0
exp

(
−mpC1e

−C1τ2
)
+ exp

(
−mpC2e−C2τ

2
)
dτ

=
√
π

(

1
√

mpC1e−C1
+

1
√

mpC2e−C2

)

.

We used the fact (see Eq. (64) that

∫ ∞

0
e−ax2

dx =
1

2

√
π

a
.

From these, we can conclude that

Eq.(70) ≤ √π
(

1√
C1k

+
1√
C2k

+
1

√

mpC1e−C1
+

1
√

mpC2e−C2

)

.

In the same vein, a similar upper bound can be derived for Eq. (71). It suffices to remark that

dP
(

θ
(j)
col − θ

(j′)
col = −2τ

∣
∣
∣θ

(j)
col − θ

(j′)
col < 0

)

dτ
=

2

1− θ
(j)
col

I

{

0 ≤ τ ≤ 1− θ
(j)
col

2

}

,

P

(

θ
(j)
col − θ

(j′)
col < 0

)

= 1− θ
(j)
col .

Then by the same logic,

Eq.(71) ≤ √π
(

1√
C1k

+
1√
C2k

+
1

√

mpC1e−C1
+

1
√

mpC2e−C2

)

.
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Consequently, we can conclude our claim 1:

q = P

(

sign
(

ζ(j) − ζ(j
′)
)

6= sign
(

θ
(j)
col − θ

(j′)
col

))

≤ 2
√
π

(

1
√

C1 |Bj|
+

1
√

C2 |Bj|
+

1
√

mpC1e−C1
+

1
√

mpC2e−C2

)

=: Q∗ (∣∣Bj
∣
∣
)
.

Claim 2. Next, we can observe that for t ≥ Q∗ (mp
2

)
,

P
(∣
∣q̂marg(j) − q̂∗(j)

∣
∣ > t

)
≤ exp

(

−n(t− p∗fail)

3

)∣
∣
∣
∣
p∗

fail
=Q∗(mp

2
)

+ exp
(

−mp

8

)

.

It follows from the usual union bound trick with conditioning event Ecol,(j) (see Eq. (68)) :

P
(∣
∣q̂marg(j)− q̂∗(j)

∣
∣ > t

)

≤ P (Y > nt)

= P
(
Y > nt

∣
∣Ecol,(j)

)
P
(
Ecol,(j)

)
+ P

(

Y > nt
∣
∣
∣Ec

col,(j)

)

P

(

Ec
col,(j)

)

≤ P
(
Y > nt

∣
∣Ecol,(j)

)
+ P

(

Ec
col,(j)

)

≤ exp

(

−n(t− p∗fail)
2

t+ p∗fail

)∣
∣
∣
∣
p∗

fail
=Q∗(mp

2
)

+ exp
(

−mp

8

)

.

We respectively used the fact that Q∗ is monotone decreasing and the Binomial Chernoff bound to

bound the terms.

For t ≥ 2p∗fail,
t−p∗

fail

t+p∗
fail
≥ 1

3 and hence,

P
(∣
∣q̂marg(j) − q̂∗(j)

∣
∣ > t

)
≤ exp

(

−n(t− p∗fail)

3

)∣
∣
∣
∣
p∗

fail
=Q∗(mp

2
)

+ exp
(

−mp

8

)

.

Combining the results in Claims 1 and 2 back to Eq. (69) with the choice of t1 = t2 = t
2 , we

have for any t ≥ 4Q∗(mp
2 ) = 8

√
π√

mp

(√
2+eC1/2√

C1
+

√
2+eC2/2√

C2

)

,

P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ > t

)

≤ P

(∣
∣
∣q̂marg(j)− q̂∗(j)

∣
∣
∣ >

t

2

)

+ P

(∣
∣
∣q̂∗(j) − θ

(j)
col

∣
∣
∣ >

t

2

)

≤ exp

(

−n( t2 − p∗fail)

3

)∣
∣
∣
∣
p∗

fail
=Q∗(mp

2
)

+ exp

(

−nt2

2

)

+ exp
(

−mp

8

)

.
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Appendix H. Proof of Lemma 21 and Auxiliary Lemmas

H.1. Lemmas to Control the Bias and Concentration of F̃ (i)

We show that the estimated CDF F̃ (i) is close to the true CDF F (i) by showing both the bias∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)(z)
∣
∣
∣ and the variance of F̃ (i)(z) are small. The following two lemmas assert

these claims, based on consistency results for deconvolution (see Appendix L for detail).

Lemma 29 (Bias is small) For every i ∈ [m], the expectation of the kernel smoothed ECDF F̃ (i)

defined as in Eq. (38) uniformly converges to the true CDF F (i), and the convergence rate is given

as (log |Bi|)1/β , i.e., there exists a constant C3 = C(l) > 0 such that

sup
z∈R

∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)(z)
∣
∣
∣ ≤ C3 (log |Bi|)−1/β , ∀i ∈ [m].

Here, β is the smoothness parameter of the supersmooth noise.

Proof [Proof of Lemma 29] The expectation in the lemma statement is taken with respect to the

randomness in data, i.e., realization of the samples which play the role of pivot points for kernel

density estimation. Hence,

∣
∣
∣
∣
E

[

F̃ (i)(z)
]

− F (i)(z)

∣
∣
∣
∣
=

∣
∣
∣
∣
E

[

F̃ (i)(z)− F (i)(z)
]
∣
∣
∣
∣

≤ E

[(

F̃ (i)(z)− F (i)(z)
)2
]1/2

, (72)

since E
[
X2
]
−E [X]2 ≥ 0. We will control the term in the right hand side of Eq. (72) by applying

Theorem 57. For that purpose, we need to ensure that our density f (i)(z) = d
dzF

(i)(z) is in Fan’s

class for some m,a, and B (see Eq. (104) for the definition of Fan’s class).

Note that F (i) is the inverse function of a slice of the latent function with a fixed row feature,

g
x=θ

(i)
row

, in our model. We assume it admits a probability density f (i). It is easy to see that 1
L ≤

f (i)(z) ≤ 1
l for all z ∈ supp f (i) (and f (i)(z) = 0 outside the support) because the inverse of F (i)

is assumed (l, L) bi-Lipschitz in our model. This f (i) belongs to Fan’s class

Cm,α,B =
{

f(x) :
∣
∣
∣f (m)(x)− f (m) (x+ δ)

∣
∣
∣ ≤ Bδα

}

,

with the choice of m = 0, α = 0, and B = 1
l .

Therefore, for all i ∈ [m], the density corresponding to F (i) belongs to a Fan’s class, i.e.,

f (i) ∈ C0,0, 1
l
. As a result, we can apply Theorem 57 on Eq. (72) to conclude that for any i ∈ [m],

sup
z∈R

∣
∣
∣
∣
E

[

F̃ (i)(z)
]

− F (i)(z)

∣
∣
∣
∣
≤ sup

z∈R
E

[(

F̃ (i)(z) − F (i)(z)
)2
]1/2

≤ sup
f∈C

0,0, 1
l

sup
z∈R

E

[(

F̃|Bi|(z)− F (z)
)2
]1/2

= O
(

(log |Bi|)−1/β
)

.
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F̃|Bi| denotes an estimate of F with |Bi| number of samples. Moreover, the constant C3 hidden in

the big O notation is dependent on the class C0,0, 1
l
, hence, only on the model parameter l, because

Fan’s original result holds uniformly over the whole class C0,0, 1
l
.

Lemma 30 (Variance is small) For each i ∈ [m], the kernel smoothed ECDF F̃ (i) defined as in

Eq. (38) concentrates to its expectation, i.e.,

P

( ∣
∣
∣F̃ (i)(z) − E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t

)

≤ 2 exp

(

− |Bi|1/2

2C2
4 (log |Bi|)

2
β

t2

)

.

Recall we defined the constant C4 =
BKmax(D2−D1)

π(4γ)
1
β

where β, γ > 0 are smoothness parameters

for the noise, and Kmax = maxt∈[−1,1] |φK(t)|.
Proof [Proof of Lemma 30] Recall that the kernel smoothed ECDF F̃ (i) evaluated at z is a function

of |Bi| independent random variables {Z(i, j)}j∈Bi , i.e., when z is fixed, F̃ (i)(z) : R|Bi| → R such

that

F̃ (i)(z)
[
Z(i, j1), . . . , Z(i, j|Bi|)

]
=

∫ z∧D2

D1

1

h |Bi|
∑

j∈Bi

L

(
w − Z(i, j)

h

)

dw,

where L(z) = 1
2π

∫
e−itz φK(t)

φN( t
h)

dt and h is the bandwidth parameter for kernel K .

We will first show that F̃ (i)(z) satisfies the bounded difference condition (see Eq. (102)).

Let ζn = (ζ1, . . . , ζn) and ζnj = (ζ1, . . . , ζ
′
j , . . . , ζn) be two n-tuples of real numbers, which

differ only at the j-th position. Then

F̃ (i)(z)[ζn]− F̃ (i)(z)[ζnj ] (73)

=
1

hn

∫ z∧D2

D1

L

(
w − ζj

h

)

− L

(
w − ζ ′j

h

)

dw

=
1

hn

∫ z∧D2

D1

1

2π

∫ (

e−it
w−ζj

h − e−it
w−ζ′j

h

)
φK(t)

φN

(
t
h

)dtdw

≤ 1

2πhn

∫ z∧D2

D1

∫
∣
∣
∣
∣
∣
e−it

w−ζj
h − e−it

w−ζ′j
h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

φK(t)

φN

(
t
h

)

∣
∣
∣
∣
∣
dtdw. (74)

Because e−itz is on the unit circle in the complex plane for any real numbers t and z, we have

∣
∣
∣
∣
e−it

w−ζj
h − e−it

w−ζ′j
h

∣
∣
∣
∣
≤
∣
∣
∣
∣
e−it

w−ζj
h

∣
∣
∣
∣
+

∣
∣
∣
∣
e−it

w−ζ′j
h

∣
∣
∣
∣
= 2.

Since φK is assumed to have compact support (see Appendix L.2) within [−1, 1], and a Fourier

transform of L1 function is uniformly continuous, there exists Kmax = maxt∈[−1,1] |φK(t)| < ∞
such that |φK(t)| ≤ Kmax,∀t. From the supersmoothness assumption on the noise (Eq. (5)), we

have
∣
∣φN

(
t
h

)∣
∣ ≥ B−1 exp

(

−γ
∣
∣ t
h

∣
∣β
)

.

57



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

We choose the bandwidth parameter h = (4γ)
1
β (log n)

− 1
β following Fan (Theorems 56, 57).

Plugging these expresions into Eq. (74) leads to

Eq.(74) ≤ (log n)
1
β

2π (4γ)
1
β n

∫ z∧D2

D1

∫ 1

−1
2BKmax exp

(
1

4
|t|β log n

)

dtdw

≤ BKmax (log n)
1
β

π (4γ)
1
β n

∫ z∧D2

D1

(1− (−1)) max
t∈[−1,1]

exp

(
1

4
|t|β log n

)

dw

=
BKmax (log n)

1
β

π (4γ)
1
β n

((z ∧D2)−D1) 2n
1
4

≤ 2BKmax(D2 −D1) (log n)
1
β

π (4γ)
1
β n

3
4

=
2C4 (log n)

1
β

n
3
4

, for any z ∈ [D1,D2].

Applying McDiarmid’s inequality (Lemma 55), we can conclude that,

P

(∣
∣
∣F̃ (i)(z)[ζn]− EζnF̃

(i)(z)[ζn]
∣
∣
∣ ≥ t

)

≤ 2 exp

(

−n1/2

2C2
4 (log n)

2
β

t2

)

.

This argument holds for every i ∈ [m], with replacing generic variable n with corresponding |Bi|.

Lemma 31 (Variance is uniformly small) For each i ∈ [m], the kernel smoothed ECDF F̃ (i)

defined as in Eq. (38) uniformly concentrates to its expectation, i.e., for any nonnegative integer N

and for any t ≥ ∆(i)(D2−D1)
N (we define ∆(i) := BKmax

π(4γ)
1
β
|Bi|

1
4 (log |Bi|)

1
β ),

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t

)

≤ 2N exp




− |Bi|1/2

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N

)2


 ,

where β, γ > 0 are smoothness parameters for the noise, and Kmax = maxt∈[−1,1] |φK(t)|.

Proof [Proof of Lemma 31] First, we discretize the interval interval [D1,D2] by constructing a

finite ε-net. For any N ≥ 1, define the set

TN :=

{

Dmin +
2k − 1

2N
(D2 −D1) , ∀k ∈ [N ]

}

.

Then for any N > 0, TN ⊂ [D1,D2] and it forms a
(D2−D1)

2N -net with |TN | = N , i.e., for any

z ∈ [D1,D2], there exists k ∈ [N ] such that
∣
∣z − 2k−1

2N (D2 −D1)
∣
∣ ≤ (D2−D1)

2N .
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We can observe that
∥
∥
∥f̃ (i)

∥
∥
∥
∞

=

∥
∥
∥
∥

1

h |Bi|
∑

j∈Bi

L

(
z − Z(i, j)

h

)∥
∥
∥
∥
∞

≤ 1

h
‖L‖∞

=
1

2πh

∥
∥
∥
∥
∥

∫ ∞

−∞
e−itz φK(t)

φN

(
t
h

)dt

∥
∥
∥
∥
∥
∞

≤ 1

2πh

∫ ∞

−∞

∣
∣
∣
∣
∣
e−itz φK(t)

φN

(
t
h

)

∣
∣
∣
∣
∣
dt

≤ 1

2πh

∫ 1

−1

Kmax

B−1 exp
(

−γ
∣
∣ t
h

∣
∣β
)dt

≤ BKmax (log |Bi|)
1
β

2π (4γ)
1
β

∫ 1

−1
exp

(
1

4
|t|β log |Bi|

)

dt

≤ BKmax (log |Bi|)
1
β

2π (4γ)
1
β

∫ 1

−1
|Bi|

1
4 dt

=
BKmax

π (4γ)
1
β

|Bi|
1
4 (log |Bi|)

1
β .

Let ∆(i) denote the upper bound in the last line. Since this upper bound is universal for all realization

of samples,

∥
∥
∥E

[

f̃ (i)
]∥
∥
∥
∞
≤ ∆(i), too. Then

∥
∥
∥f̃ (i) − E

[

f̃ (i)
]∥
∥
∥
∞
≤ 2∆(i) and it follows from the

definition of F̃ (i) (see Eq. (38)) that

sup
z∈[D1,D2]

∣
∣
∣
∣
F̃ (i)(z)− E

[

F̃ (i)(z)
]
∣
∣
∣
∣
≤ sup

z∈TN

∣
∣
∣
∣
F̃ (i)(z) − E

[

F̃ (i)(z)
]
∣
∣
∣
∣
+

∆(i) (D2 −D1)

N
.

Therefore, if

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≤ ε for all z ∈ Tn, the supremum over the whole domain

is bounded above up to an additional term, that is to say, supz∈[D1,D2]

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≤

ε+ ∆(i)(D2−D1)
N . An application of the union bound on the contraposition of the previous statement

yields

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t

)

≤ P

(

sup
z∈TN

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t− ∆(i) (D2 −D1)

N

)

≤
∑

z∈TN
P

(
∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t− ∆(i) (D2 −D1)

N

)

≤ 2N exp




− |Bi|1/2

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N

)2


 .
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H.2. Proof of Lemma 21

Proof [Proof of Lemma 21] By Lemma 29, we have a universal upper bound: for any i ∈ [m],

supz∈R

∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)(z)
∣
∣
∣ = O

(

(log |Bi|)−1/β
)

. Actually this bound is uniform over all

possible realizations of θ
(i)
row ∈ [0, 1]. Therefore, we can explicitly introduce a constant C3 = C(l),

which does not depend on i ∈ [m], to write

sup
i

sup
z∈R

∣
∣
∣
∣
E

[

F̃ (i)(z)
]

− F (i)(z)

∣
∣
∣
∣
≤ C3 (log |Bi|)−1/β . (75)

The concentration rate obtained in Lemma 31 is stronger than (log |Bi|)1/β as long as N is a subex-

ponential function of |Bi|:

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≥ t

)

≤ 2N exp




− |Bi|1/2

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N

)2


 ,

Therefore, it is the bias which dominates the discrepancy between the kernel smoothed ECDF F̃ (i)

and the true CDF F (i) = g−1

x=θ
(i)
row

.

Now we will combine these two inequality by applying the union bound. For any δ1, δ2 > 0,

suppose that both

∣
∣
∣F (i)(z) − E

[

F̃ (i)(z)
]∣
∣
∣ ≤ δ1 and

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ ≤ δ2 are satisfied.

Then

∣
∣
∣F̃ (i)(z)− F (i)

∣
∣
∣ ≤ δ1 + δ2 follows by triangle inequality. We can obtain the desired con-

centration inequality by applying the union bound on the contraposition of this statement with the

particular choice of δ1 = C3 (log |Bi|)−1/β
and δ2 = t− δ1. To be more specific, for any nonnega-

tive integer N and for any t > ∆(i)(D2−D1)
N + C3 (log |Bi|)−1/β (where C3 is the constant as in Eq.

(75)),

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)

∣
∣
∣ > t

)

≤ P

(

sup
z∈[D1,D2]

∣
∣
∣F (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ > C3 (log |Bi|)−1/β

)

+ P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− E

[

F̃ (i)(z)
]∣
∣
∣ > t− C3 (log |Bi|)−1/β

)

≤ 2N exp




− |Bi|1/2

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N
− C3 (log |Bi|)−1/β

)2


 .

Finally, letting N = |Bi|
1
4 (log |Bi|)

2
β leads to

∆(i)(D2−D1)
N = C4 (log |Bi|)−

1
β .

Proof [Proof of Corollary 22] Conditioned on event Erow,(i), it holds for all i ∈ [m] that |Bi| ≥ np
2 .

Similarly, |Bi| ≤ 2np for all i ∈ [m], when conditioned on event E′
row,(i). Therefore, for any
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i ∈ [m],

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)

∣
∣
∣ > t

∣
∣
∣Erow,(i), E

′
row,(i)

)

≤ cn,p exp

(

−
(np

2

)1/2

2C2
4 (log (2np))

2
β

(

t−C
(

log
np

2

)−1/β
)2
)

.

where cn,p = 2(2np)
1
4 (log (2np))

2
β .

Appendix I. Proof of Lemma 25 and Auxiliary Lemmas

The purpose of this section is to prove Lemma 25, which provides a probabilistic uniform bound on

the CDF estimate F̂ (i). We will prove the desired result by showing (1) F̂ (i) concentrates around its

expectation; (2) the expectation of F̂ (i) is close to that of F̃ (i) under a high-probability conditioning

event; and (3) the expectation of F̃ (i) is uniformly close to the true CDF as shown in Lemma 29.

Claim (1) is proved in section I.5 by essentially the same argument as the known noise case (see

Lemma 31) and (3) is already shown. It is the proof of claim (2), for which most of this section is

spared.

Throughout the first three subsections (I.1, I.2, I.3) we show that the size of the set for noise

density estimation, Ti, is neither too big nor too small. With aid of auxiliary lemmas, we show the

estimated characteristic function of the noise is sufficiently accurate so that the modified kernel esti-

mator is sufficiently precise. The summarized result can be bound in section I.4, which characterizes

the bias between F̃ (i) and F̂ (i).

In section I.6, we introduce appropriate conditioning events which are used to prove claim (2),

all of which are high probability events according to the lemmas proved. In the end, Lemma 25 is

proved by applying union bound.

I.1. The size of the base set Ti for noise density estimation

We defined the set Ti to estimate the distribution of additive noise by emulating the setup of repeated

measurements. In this section, we present two lemmas: Lemma 33 shows there are a plenty of

triples in Ti enabling the estimation; on the other hand, Lemma 34 claims that there are not too

many triples in T ⊃ Ti. the discrepancy between the presented procedure with formula in Eq. (??)

and the original estimation procedure with repeated measurements is small with high probability.

Lemma 32 The sets J and I defined in Algorithm 2 are sufficiently large with high probability.

Specifically,

P

(

|J | ≤ n
[
1− exp

(
−mp

8

)]

2

)

≤ exp

(

− n
[
1− exp

(
−mp

8

)]

8

)

,

P

(

|I| ≤
m
[

1− exp
(

− |J |p
8

)]

2

)

≤ exp

(

−
m
[

1− exp
(

− |J |p
8

)]

8

)

.
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Proof Recall the construction procedure of the set T (see Algorithm 2). The number of column

indices in J is given as the sum of indicator variables

|J | :=
∑

j∈[n]
I

{∣
∣Bj
∣
∣ ≥ mp

2

}

. (76)

Note that |Bj| = ∑

i∈[m]M(i, j) is distributed as Binomial(m, p). It follows from the binomial

Chernoff bound that

P

(∣
∣Bj
∣
∣ ≥ mp

2

)

≥ 1− exp
(

−mp

8

)

.

Therefore, n indicator variables in Eq. (76) are independent Bernoulli variables, each of which takes

value 1 with probability greater than 1− exp
(
−mp

8

)
.

Therefore, |J | ∼ Binomial(n, p2) with p2 ≥ 1− exp
(
−mp

8

)
. It follows that

P

(

|J | ≤ n
[
1− exp

(
−mp

8

)]

2

)

≤ P

(

|J | ≤ np2
2

)

≤ exp
(

−np2
8

)

≤ exp

(

−n
[
1− exp

(
−mp

8

)]

8

)

.

In the same vein, the number of column indices in I is given as the sum of indicator variables

|I| :=
∑

i∈[m]

I

{

|Bi ∩ J | ≥ |J |p
2

}

.

Now |Bi ∩ J | = ∑

j∈J M(i, j) is distributed as Binomial(m, p′) with p′ ≥ p, because p′ =
P (M(i, j) = 1 |j ∈ J ) ≥ P (M(i, j) = 1) = p. These m indicator variables are independent

Bernoulli variables, each of which takes value 1 with probability greater than

P

(

|Bi ∩ J | ≥ |J |p
2

)

≥ 1− exp

(

−|J |p
8

)

.

Therefore, |I| ∼ Binomial(m, p3) with p3 ≥ 1− exp
(

− |J |p
8

)

. It follows that

P

(

|I| ≤
m
[

1− exp
(

− |J |p
8

)]

2

)

≤ P

(

|I| ≤ mp3
2

)

≤ exp
(

−mp3
8

)

≤ exp

(

−
m
[

1− exp
(

− |J |p
8

)]

8

)

.
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Lemma 33 For any i ∈ [m],

|Ti| ≥
(
m
[

1− exp
(

− |J |p
8

)]

2
− 1

)⌈ |J |p
2 − 1− ⌊

√
|J |p
2 ⌋

2

⌉

,

with probability at least 1− exp

(

−
m
[

1−exp
(

− |J|p
8

)]

8

)

.

Proof Recall the construction procedure of the set T and Ti (see Algorithm 2).

Given i′ ∈ I , we let σi′ : Bi′ ∩ J → [|Bi′ ∩ J |] denote a map which maps the column index

in Bi′ ∩ J ⊆ [n] to integers 1, 2, . . . , |Bi′ ∩ J | such that σ(j1) < σ(j2) implies that q̂marg (j1) ≤
q̂marg (j2). Note that σi′ is a bijection and is invertible where its inverse σ−1

i′ : [|Bi′∩J |]→ Bi′∩J ⊆
[n].

First of all, we show that there cannot exist more than
⌊√

|Bi′ ∩ J |
⌋

k’s (where k ∈ [|Bi′ ∩ J | − 1])

such that ∣
∣
∣q̂marg

(
σ−1
i′ (k + 1)

)
− q̂marg

(
σ−1
i′ (k)

)
∣
∣
∣ >

1
√

|Bi′ ∩ J |
. (77)

Let [a, b) denote the half-open interval, that is to say, [a, b) := {x ∈ R : a ≤ x < b}. If k1 6= k2,

[

q̂marg

(
σ−1
i′ (k1)

)
, q̂marg

(
σ−1
i′ (k1 + 1)

) )

∩
[

q̂marg

(
σ−1
i′ (k2)

)
, q̂marg

(
σ−1
i′ (k2 + 1)

) )

= ∅,

and hence,

µ
([

q̂marg

(
σ−1
i′ (k1)

)
, q̂marg

(
σ−1
i′ (k1 + 1)

) )

∪
[

q̂marg

(
σ−1
i′ (k2)

)
, q̂marg

(
σ−1
i′ (k2 + 1)

) ))

= µ
([

q̂marg

(
σ−1
i′ (k1)

)
, q̂marg

(
σ−1
i′ (k1 + 1)

) ))

+ µ
([

q̂marg

(
σ−1
i′ (k2)

)
, q̂marg

(
σ−1
i′ (k2 + 1)

) ))

,

where µ is the Lebesgue measure for R, and µ ([a, b)) = (b− a)I {b ≥ a}. Let Si′ denote the set of

k’s in [|Bi′ ∩ J | − 1], which satisfies Eq. (77).

Let’s Assume that |Si′ | ≥
⌊√

|Bi′ ∩ J |
⌋

+ 1. Since q̂marg

(
σ−1
i′ (k)

)
∈ [0, 1],∀k ∈

[
|Bi′ ∩ J |

]
,

1 = µ ([0, 1)) ≥ µ




⋃

k∈|Bi′ |−1

[

q̂marg

(
σ−1
i′ (k)

)
, q̂marg

(
σ−1
i′ (k + 1)

) )





≥ µ




⋃

k∈Si′

[

q̂marg

(
σ−1
i′ (k)

)
, q̂marg

(
σ−1
i′ (k + 1)

) )





=
∑

k∈Si′

(

q̂marg

(
σ−1
i′ (k + 1)

)
− q̂marg

(
σ−1
i′ (k)

) )

≥
(⌊√

|Bi′ ∩ J |
⌋

+ 1
)
(

1
√

|Bi′ ∩ J |

)

> 1,
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which is a contradiction. Therefore, it is proved that |Si′ | ≤
⌊√

|Bi′ ∩ J |
⌋

. For those k ∈
[|Bi′ ∩ J | − 1] \ Si′ , we have

q̂marg

(
σ−1
i′ (k + 1)

)
− q̂marg

(
σ−1
i′ (k)

)
≤ 1
√

|Bi′ ∩ J |
.

In case both k, k + 1 ∈ [|Bi′ ∩ J | − 1] \ Si′ , either
(

i′, σ−1
i′ (k), σ−1

i′ (k + 1)
)

∈ T or
(

i′, σ−1
i′ (k +

1), σ−1
i′ (k + 2)

)

∈ T , but not both. However, no more than half of k ∈
[
|Bi′ ∩ J | − 1

]
\ Si′ is ex-

cluded and there exist at least
⌈ |Bi′∩J |−1−

⌊√
|Bi′∩J |

⌋

2

⌉

number of k’s such that
(
i′, σ−1

i′ (k), σ−1
i′ (k + 1)

)
∈

T .

From Lemma 32, we know that |I| >
m
[

1−exp
(

− |J|p
8

)]

2 with high probability (i might be

also in I). We also know from the argument above that for each i′ ∈ I , there exist at least
⌈ |Bi′∩J |−1−

⌊√
|Bi′∩J |

⌋

2

⌉

≥
⌈ |J|p

2
−1−⌊

√

|J|p
2

⌋
2

⌉

number of k’s such that
(
i′, σ−1

i′ (k), σ−1
i′ (k + 1)

)
∈

T . All in all, we can conclude that

|Ti| ≥
(
m
[

1− exp
(

− |J |p
8

)]

2
− 1

)⌈ |J |p
2 − 1− ⌊

√
|J |p
2 ⌋

2

⌉

,

with probability at least 1− exp

(

−
m
[

1−exp
(

− |J|p
8

)]

8

)

.

We have shown that Ti is sufficiently large with high probability. On the other hand, we can

also show that T is not too large compared to the total number of observed entries in the matrix

(= mnp) with high probability.

Lemma 34 The set T is not too large with high probability. Specifically,

P (|T | > mnp) ≤ exp
(

−mnp

3

)

.

Proof It is clear from the description of algorithm (see Algorithm 2) that for each (i, j), there

can exist at most one element (i′, j1, j2) ∈ T such that either (i, j) = (i′, j1) or (i, j) = (i′, j2).
Moreover, if there exists (i′, j1, j2) satisfying either of those two conditions, M(i, j) = 1. As

a result, |T | ≤ 1
2

∑

i,j M(i, j), which is the sum of mn independent and identically distributed

Bernoulli random variable with probability p. Applying the binomial Chernoff bound yields

P (|T | > mnp) ≤ P




∑

i,j

M(i, j) > 2mnp



 ≤ exp
(

−mnp

3

)

.
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I.2. Useful properties for noise density estimation

The set T is carefully constructed for estimating the noise distribution. To analyze the quality of

estimated characteristic function of the noise, we introduce the following notations:

‖∆A‖∞,(i) = max
(i′,j1,j2)∈Ti

∣
∣A(i, j1)−A(i, j2)

∣
∣, and (78)

‖∆N‖∞,(i) = max
(i′,j1,j2)∈Ti

∣
∣N(i, j1)−N(i, j2)

∣
∣. (79)

The following two lemmas show that these two quantities are not too large with high probability. In

particular, Lemma 35 shows that ‖∆A‖∞,(i) is vanishingly small as m,n → ∞, while Lemma 36

shows that ‖∆N‖∞,(i) scales only logarithmically with respect to m,n and p.

Lemma 35 For t > L
√

2
|J |p + 4LQ∗ (mp

2

)
,

P
(
‖∆A‖∞,(i) > t

)
≤
∣
∣J
∣
∣ exp



− n

8L2

(

t− L

√

2

|J | p

)2




+
∣
∣J
∣
∣ exp

(

− n

12L

(

t− L

√

2

|J | p − 4LQ∗
(mp

2

)
))

.

Proof From the Lipschitz assumption on the latent function, we have

∣
∣A(i′, j1)−A(i′, j2)

∣
∣ ≤ L

∣
∣
∣θ

(j1)
col − θ

(j2)
col

∣
∣
∣ .

It suffices to find an upper bound on

∣
∣
∣θ

(j1)
col − θ

(j2)
col

∣
∣
∣ to control ‖∆A‖∞,(i). However, this is a latent

quantity, which is not observable from data. Instead, we take a detour using triangle inequality:

∣
∣
∣θ

(j1)
col − θ

(j2)
col

∣
∣
∣ ≤

∣
∣
∣θ

(j1)
col − q̂marg(j1)

∣
∣
∣+
∣
∣
∣q̂marg(j1)− q̂marg(j2)

∣
∣
∣+
∣
∣
∣q̂marg(j2)− θ

(j2)
col

∣
∣
∣ .

We will show

∣
∣
∣q̂marg(j1)−q̂marg(j2)

∣
∣
∣ is small for all (i′, j1, j2) ∈ T by careful construction of T , and

∣
∣
∣θ

(j)
col − q̂marg(j)

∣
∣
∣ is small for all j ∈ J due to the concentration of quantile estimates (see Lemma

20).

First of all, note that |Bi ∩ J | ≥ |J |p
2 for any i ∈ I by construction of T . Therefore, for any

(i′, j1, j2) ∈ T ,

q̂marg (j1)− q̂marg (j2) ≤
1

√

|Bi ∩ J |
≤
√

2

|J | p.

In other words,

P




⋃

(i′,j1,j2)∈Ti

{
∣
∣
∣q̂marg (j1)− q̂marg (j2)

∣
∣
∣ >

√

2

|J | p

}

 = 0.
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Next, recall that we defined function Q∗ : R+ → R+ as (see Eq. (41))

Q∗ (x) = 2
√
π

(

1√
C1x

+
1√
C2x

+
1

√

mpC1e−C1
+

1
√

mpC2e−C2

)

,

where C1 = l2

2(Dmax−Dmin)2
and C2 = l2

8σ2 are model dependent constants. Note that the set J is

defined as J =
{
j ∈ [n] : |Bj| ≥ mp

2

}
(see Algorithm 2 in section E.1). By Lemma 20, for any

t ≥ 4Q∗(mp
2 ) = Θ

(
1√
mp

)

,

P

(∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ > t

∣
∣
∣
∣
j ∈ J

)

≤ exp

(

−nt2

2

)

+ exp

(

−n( t2 −Q∗ (mp
2

)
)

3

)

.

It is worthwhile to remark that exp
(
−mp

8

)
term is removed from the original statement of Lemma

20. That term was originally coming from P

(

Ec
col,(j)

)

(see the Claim 2 in the proof of the lemma),

however, that term disappears once j ∈ J . By applying the union bound, it follows that

P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ > t, ∀j ∈ J

)

≤
∑

j∈J
P

(∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ > t

∣
∣
∣
∣
j ∈ J

)

≤
∣
∣J
∣
∣

[

exp

(

−nt2

2

)

+ exp

(

−n( t2 −Q∗ (mp
2

)
)

3

)]

.

From the argument above, if

∣
∣
∣q̂marg(j) − θ

(j)
col

∣
∣
∣ ≤ t1 for all j ∈ J and

∣
∣
∣q̂marg (j1)− q̂marg (j2)

∣
∣
∣ ≤

t2 for all triple (i′, j1, j2) ∈ T , then
∣
∣A(i′, j1) − A(i′, j2)

∣
∣ ≤ L(2t1 + t2) for all (i′, j1, j2) ∈ T .

Consequently, for t > L
√

2
|J |p + 4LQ∗ (mp

2

)
,

P
(
‖∆A‖∞,(i) > t

)
= P

(

max
(i′,j1,j2)∈Ti

∣
∣A(i′, j1)−A(i′, j2)

∣
∣ > t

)

≤ P




⋃

(i′,j1,j2)∈Ti

{∣
∣
∣θ

(j1)
col − θ

(j2)
col

∣
∣
∣ >

t

L

}




≤ P




⋃

(i′,j1,j2)∈Ti

{
∣
∣
∣q̂marg (j1)− q̂marg (j2)

∣
∣
∣ >

√

2

|J | p

}



+ P

(
∣
∣
∣q̂marg(j)− θ

(j)
col

∣
∣
∣ >

1

2

[

t

L
−
√

2

|J | p

]

, ∀j ∈ J

)

≤
∣
∣J
∣
∣ exp



− n

8L2

(

t− L

√

2

|J | p

)2




+
∣
∣J
∣
∣ exp

(

− n

12L

(

t− L

√

2

|J | p − 4LQ∗
(mp

2

)
))

.
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Lemma 36 ‖∆N‖∞,(i) does not exceed 4σ
√

log 4|T | with high probability. Specifically,

P

(

‖∆N‖∞,(i) > 4σ
√

log 4|T |
)

≤ 1

4|T | .

Combined with Lemmas 33 and 34, this lemma asserts that ‖∆N‖∞,(i) < 4σ
√
log 4mnp with high

probability, i.e. 1−O
(

1
mnp

)

.

Proof For any t > 0, if
∣
∣N(i′, j1)

∣
∣,
∣
∣N(i′, j2)

∣
∣ ≤ t

2 for all (i′, j1, j2) ∈ T , then ‖∆N‖∞,(i) ≤ t.
Considering its contrapositive,

P
(
‖∆N‖∞,(i) > t

)
≤ P

(

∃(i′, j1, j2) ∈ T :
∣
∣N(i′, j1)

∣
∣ ≥ t

2
or
∣
∣N(i′, j2)

∣
∣ ≥ t

2

)

≤
∑

(i′,j1,j2)∈T

[

P

(
∣
∣N(i′, j1)

∣
∣ ≥ t

2

)

+ P

(
∣
∣N(i′, j2)

∣
∣ ≥ t

2

)]

≤ 2
∣
∣T
∣
∣P

(
∣
∣N(i, j)

∣
∣ ≥ t

2

)

≤ 4
∣
∣T
∣
∣ exp

(

− t2

8σ2

)

.

The last line follows from the sub-Gaussian assumption on the noise and the Chernoff bound.

With the choice of t = 4σ
√

log 4|T |,

P

(

‖∆N‖∞,(i) > 4σ
√

log 4|T |
)

≤ 4
∣
∣T
∣
∣ exp (−2 log 4|T |) = 1

4|T | .

I.3. Uniform convergence of φ̂(t) to φ(t): step 2-1 in section E.1

Recall that the estimator F̂ of interest differs from F̃ already analyzed only in one sense; L̂ is defined

with estimated characteristic function of the noise φ̂N,i with ridge parameter to avoid division-by-

zero (see Eqs. (51), (52)), while L is defined with true noise characteristic function φN .

f̂ (i)(z) =
1

h|Bi|
∑

j∈Bi

L̂

(
z − Z(i, j)

h

)

, where L̂(z) =
1

2π

∫

e−itz φK(t)

φ̂N,i

(
t
h

)
+ ρ

dt.

The goal of this section is to show for any i ∈ [m], φ̂N,i ≈ φN , thereby having f̂ ≈ f̃ , which will

be shown in the next section.

Recall that the noise density is estimated from the base set Ti as per described in Algorithm 2

and that the estimated characteristic function is defined as follows (see Eq. (49)):

φ̂N,i(t) =

∣
∣
∣
∣
∣
∣

1

|Ti|
∑

(i,j1,j2))∈Ti

cos
[
t (Z(i, j1)− Z(i, j2))

]

∣
∣
∣
∣
∣
∣

1/2

.
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For analytical purpose, we define an imaginary estimator of the characteristic function of noise as

φ̂∗
N,i(t) =

∣
∣
∣
∣
∣
∣

1

|Ti|
∑

(i,j1,j2))∈Ti

cos
[
t (N(i, j1)−N(i, j2))

]

∣
∣
∣
∣
∣
∣

1/2

. (80)

We label the argument inside the absolute value bracket as follows so that φ̂∗
N,i(t) =

∣
∣Φ̂∗

N,i(t)
∣
∣
1
2 :

Φ̂∗
N,i(t) =

1

|Ti|
∑

(i,j1,j2))∈Ti

cos
[
t (N(i, j1)−N(i, j2))

]
. (81)

Lemma 37 For any i ∈ [m], φ̂∗
N,i is close to φN with high probability. Specifically, for any t ∈ R

and for any s > 0,

P

(∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ > s

)

≤ P

(∣
∣Φ̂∗

N,i(t)− φN (t)2
∣
∣ > s2

)

≤ 2 exp

(

−
∣
∣Ti
∣
∣s4

2

)

.

Proof By the assumption of supersmooth noise (see Eq. (5)), φN (t) ≥ B−1 exp
(
−γ|t|β

)
> 0 for

all t ∈ R. Also, by definition of the estimator (see Eq. (80)), φ̂∗
N,i(t) ≥ 0 for all t ∈ R. Since

|a− b| ≤ |a+ b| for a, b ≥ 0, we have for any t ∈ R,

∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ ≤

(∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣
∣
∣φ̂∗

N,i(t) + φN (t)
∣
∣

) 1
2

=
∣
∣φ̂∗

N,i(t)
2 − φN (t)2

∣
∣
1
2

≤
∣
∣Φ̂∗

N,i(t)− φN (t)2
∣
∣
1
2 .

The last inequality follows from

∣
∣
∣

∣
∣Φ̂∗

N,i(t)
∣
∣− φN (t)2

∣
∣
∣ ≤

∣
∣
∣Φ̂∗

N,i(t)− φN (t)2
∣
∣
∣, because φN (t) > 0.

From the symmetry of the noise distribution and the independence between N(i, j1) and N(i, j2)
for (i, j1, j2) ∈ Ti,

E
[
cos
[
t (N(i, j1)−N(i, j2))

]

= E

[
1

2
exp

(
t (N(i, j1)−N(i, j2))

)
+

1

2
exp

(
− t (N(i, j1)−N(i, j2))

)
]

=
1

2
E
[
tN(i, j1)

]
E
[
− tN(i, j2)

]
+ E

[
− tN(i, j1)

]
E
[
tN(i, j2)

]

= φN (t)2.

Therefore, E
[

Φ̂∗
N,i(t)

]

= φN (t)2 for all t ∈ R.

Since

∣
∣
∣ cos

[
t (N(i, j1)−N(i, j2))

∣
∣
∣ ≤ 1, we can apply Hoeffding’s inequality to achieve

P

(∣
∣Φ̂∗

N,i(t)− φN (t)2
∣
∣ > s

)

≤ 2 exp

(

−
∣
∣Ti
∣
∣s2

2

)

, for all t ∈ R.
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All in all, for any t ∈ R and for any s > 0,

P

(∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ > s

)

≤ P

(∣
∣φ̂∗

N,i(t)
2 − φN (t)2

∣
∣ > s2

)

≤ P

(∣
∣Φ̂∗

N,i(t)− φN (t)2
∣
∣ > s2

)

≤ 2 exp

(

−
∣
∣Ti
∣
∣s4

2

)

.

Lemma 38 For any i ∈ [m], φ̂∗
N,i is uniformly close to φN with high probability. Specifically, for

any Λ > 0, any N ∈ N and any s >
∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥

1
2

∞
,

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ > s

)

≤ 2N exp

(

−
∣
∣Ti
∣
∣

2

(

s2 −
∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

)2
)

, (82)

where

∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

= Λ
N

[

|Λ|‖∆N‖2∞,(i) + 2σB
]

.

Proof

First, we discretize the interval interval [−Λ,Λ] by constructing a finite ε-net. For any N ≥ 1,

define the set

TN :=

{
(2k − 1−N)Λ

2N
, ∀k ∈ [N ]

}

.

Then for any N > 0, TN ⊂ [−Λ,Λ] and it forms a Λ
N -net with |TN | = N , i.e., for any z with

|z| ≤ Λ, there exists z′ ∈ TN such that |z − z′| ≤ Λ
N .

Next, we consider the maximum rate of change of the function Φ̂∗
N,i(t) − φ2

N (t) to determine

the resolution of the net. For brevity, we let ∆N ≡ N(i, j1)−N(i, j2). We can observe that

∣
∣
∣
∣
∣

d

dt
Φ̂∗
N,i(t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

|Ti|
∑

(i,j1,j2))∈Ti

d

dt
cos
[
t (N(i, j1)−N(i, j2))

]

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

−1
|Ti|

∑

(i,j1,j2))∈Ti

sin
[
t (N(i, j1)−N(i, j2))

]
(N(i, j1)−N(i, j2))

∣
∣
∣
∣
∣

≤ max
(i,j1,j2))∈Ti

∣
∣
∣t
∣
∣
∣

∣
∣
∣N(i, j1)−N(i, j2)

∣
∣
∣

2

= |t|‖∆N‖2∞,(i).

69



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

and
∣
∣
∣
∣
∣

d

dt
φ2
N (t)

∣
∣
∣
∣
∣
= 2

∣
∣
∣
∣
∣
φN (t)

d

dt
φN (t)

∣
∣
∣
∣
∣

≤ 2
∣
∣φN (t)

∣
∣

∣
∣
∣
∣
∣

d

dt

∫ ∞

−∞
eitxdFN (x)

∣
∣
∣
∣
∣

≤ 2
∣
∣φN (t)

∣
∣

∣
∣
∣
∣
∣

∫ ∞

−∞
ixeitxdFN (x)

∣
∣
∣
∣
∣

≤ 2
∣
∣φN (t)

∣
∣

∫ ∞

−∞

∣
∣x
∣
∣dFN (x)

≤ 2σB exp
(

−γ|t|β
)

.

The last line follows from the sub-Gaussian noise assumption:

∫ ∞

−∞

∣
∣x
∣
∣dFN (x) = E

[∣
∣N
∣
∣
]
≤ E

[
N2
] 1
2 ≤ σ.

Therefore,

sup
t∈[−Λ,Λ]

∣
∣
∣
∣
∣

d

dt

(

Φ̂∗
N,i(t)− φ2

N (t)
)
∣
∣
∣
∣
∣
≤ sup

t∈[−Λ,Λ]

∣
∣
∣
∣
∣

d

dt
Φ̂∗
N,i(t)

∣
∣
∣
∣
∣
+ sup

t∈[−Λ,Λ]

∣
∣
∣
∣
∣

d

dt
φ2
N (t)

∣
∣
∣
∣
∣

≤ |Λ|‖∆N‖2∞,(i) + 2σB.

Then it follows from the continuity of Φ̂∗
N,i(t)− φ2

N (t) that

sup
t∈[−Λ,Λ]

∣
∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣
∣ ≤ sup

t∈TN

∣
∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣
∣+

Λ

N

[

|Λ|‖∆N‖2∞,(i) + 2σB
]

.

We let

∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

denote the upper bound on the error term, i.e.,

∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

:=
Λ

N

[

|Λ|‖∆N‖2∞,(i) + 2σB
]

.

Therefore, if

∣
∣
∣Φ̂∗

N,i(t) − φ2
N (t)

∣
∣
∣ ≤ s for all t ∈ TN , the supremum over the entire domain

[−Λ,Λ] is bounded above up to an additional term as supz∈[−Λ,Λ]

∣
∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣
∣ ≤ s+∆

(i)
∗

Λ
N .
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An application of the union bound on the contraposition of the previous statement yields

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ > s

)

≤ P

(

sup
t∈[−Λ,Λ]

∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣ > s2

)

≤ P

(

sup
t∈TN

∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣ > s2 −

∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

)

≤
∑

t∈TN
P

(∣
∣Φ̂∗

N,i(t)− φ2
N (t)

∣
∣ > s2 −

∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

)

≤ 2
∑

t∈TN
exp

(

−
∣
∣Ti
∣
∣

2

(

s2 −
∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

)2
)

≤ 2N exp

(

−
∣
∣Ti
∣
∣

2

(

s2 −
∥
∥
∥∆

∗(i)
N,Λ

∥
∥
∥
∞

)2
)

.

As in Eq. (81), we let

Φ̂N,i(t) =
1

|Ti|
∑

(i,j1,j2))∈Ti

cos
[
t (Z(i, j1)− Z(i, j2))

]
, (83)

so that φ̂N,i(t) =
∣
∣Φ̂N,i(t)

∣
∣
1
2 .

Lemma 39 For any i ∈ [m], φ̂N,i is close to φ̂∗
N,i with high probability. Specifically, for any t ∈ R

and for any s > |t|√
2
‖∆A‖∞,(i),

P

(∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣ > s

)

≤ P

(∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2

)

≤ 2 exp



− |Ti|
2t2‖∆A‖2∞,(i)

(

s2 −
t2‖∆A‖2∞,(i)

2

)2


 .

Proof We know that φ̂N,i(t), φ̂
∗
N,i(t) ≥ 0 for all t ∈ R (see Eqs. (49), (80)). By the same argument

as in the proof of Lemma 37, for any t ∈ R,

∣
∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣
∣ ≤

(∣
∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣
∣

∣
∣
∣φ̂N,i(t) + φ̂∗

N,i(t)
∣
∣
∣

) 1
2

=
∣
∣
∣φ̂N,i(t)

2 − φ̂∗
N,i(t)

2
∣
∣
∣

1
2
.

Note that for any a, b ∈ R,
∣
∣|a| − |b|

∣
∣ ≤

∣
∣a− b

∣
∣.

∣
∣
∣φ̂N,i(t)

2 − φ̂∗
N,i(t)

2
∣
∣
∣ =

∣
∣
∣

∣
∣Φ̂N,i(t)

∣
∣−
∣
∣Φ̂∗

N,i(t)
∣
∣

∣
∣
∣ ≤

∣
∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣
∣.

71



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

By the model assumption, Z(i, j) = A(i, j) + N(i, j). Changing the perspective, we now

consider Z(i, j1) − Z(i, j2) as a perturbed instance of the noise N(i, j1) − N(i, j2) by the signal

difference A(i, j1)−A(i, j2), which is assumed to be small for (i, j1, j2) ∈ Ti.
For brevity, we let ∆N ≡ N(i, j1)−N(i, j2), ∆A ≡ A(i, j1)−A(i, j2) and ∆Z ≡ Z(i, j1)−

Z(i, j2). Since it is known that cos a− cos b = −2 sin a+b
2 sin a−b

2 ,

∣
∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1

|Ti|
∑

(i,j1,j2))∈Ti

{

cos
[
t∆Z

]
− cos

[
t∆N

]}

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−2
|Ti|

∑

(i,j1,j2))∈Ti

sin

(

t∆N +
t∆A

2

)

sin

(
t∆A

2

)
∣
∣
∣
∣
∣
∣

.

We will find an upper bound on this last term by showing that it sharply concentrates to its expecta-

tion, which is small.

Note that the distribution of ∆N is governed by the randomness in
{
N(i′, j1), N(i′, j2)

}

(i′,j1,j2)∈Ti
and that of ∆A is by

{
θ
(i′)
row, θ

(j1)
col , θ

(j2)
col

}

(i′,j1,j2)∈Ti . Conditioned on
{
θ
(i′)
row, θ

(j1)
col , θ

(j2)
col

}

(i′,j1,j2)∈Ti ,

the summands, sin
(
t∆N + t∆A

2

)
× sin

(
t∆A
2

)
, are independent from each other so that we can

apply the Hoeffding’s inequality.

Let ∆Φ̂N,i(t) ≡ Φ̂N,i(t) − Φ̂∗
N,i(t) and note that

∣
∣ sinx

∣
∣ ≤

∣
∣x
∣
∣ for x ∈ R. Then for any t ∈ R

and any s > 0,

P

(∣
∣∆Φ̂N,i(t)− E

[

∆Φ̂N,i(t)
] ∣
∣ > s

)

≤ 2 exp

(

− 2
( |Ti|s

2

)2

∑

(i,j1,j2)∈Ti
(
t∆A

)2

)

≤ 2 exp

(

− |Ti|s2

2max(i,j1,j2)∈Ti
(
t∆A

)2

)

= 2exp

(

− |Ti|s2
2t2‖∆A‖2∞,(i)

)

. (84)

Now we consider the expectation E

[

∆Φ̂N,i(t)
]

, where the expectation is with respect to the

first source of randomness,
{
N(i′, j1), N(i′, j2)

}

(i′,j1,j2)∈Ti . From the symmetry in the noise dis-

tribution,

E
[
∆Φ̂N,i(t)

]
= E




−2
|Ti|

∑

(i,j1,j2))∈Ti

sin

(

t∆N +
t∆A

2

)

sin

(

t
∆A

2

)




= E




−1
|Ti|

∑

(i,j1,j2))∈Ti

[

sin

(

t∆N +
t∆A

2

)

+ sin

(

−t∆N +
t∆A

2

)]

sin

(

t
∆A

2

)




= E




−2
|Ti|

∑

(i,j1,j2))∈Ti

cos
(
t∆N

)
sin2

(
t∆A

2

)


 .
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We used the fact that sin(a + b) + sin(a − b) = 2 sin a+b
2 cos a−b

2 . Since

∣
∣
∣ cos

(
t∆N

)
∣
∣
∣ ≤ 1 and

∣
∣
∣ sin

(
t∆A
2

)
∣
∣
∣ ≤

∣
∣
∣
t∆A
2

∣
∣
∣,

∣
∣
∣E
[
∆Φ̂N,i(t)

]
∣
∣
∣ ≤ 2

|Ti|
∑

(i,j1,j2))∈Ti

∣
∣
∣
∣

t∆A

2

∣
∣
∣
∣

2

≤ max
(i,j1,j2))∈Ti

(
t∆A

)2

2
=

t2

2
‖∆A‖2∞,(i). (85)

Combining the upper bound on

∣
∣
∣E
[
∆Φ̂N,i(t)

]
∣
∣
∣ in Eq. (85) together with the concentration

inequality Eq. (84) yields the following result: for any t ∈ R and any s > t2

2 ‖∆A‖2∞,(i),

P

(∣
∣∆Φ̂N,i(t)

∣
∣ > s

)

≤ 2 exp



− |Ti|
2t2‖∆A‖2∞,(i)

(

s−
t2‖∆A‖2∞,(i)

2

)2


 .

All in all, for any t ∈ R and for any s > t√
2
‖∆A‖∞,(i),

P

(∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣ > s

)

≤ P

(∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2

)

≤ 2 exp



− |Ti|
2t2‖∆A‖2∞,(i)

(

s2 −
t2‖∆A‖2∞,(i)

2

)2


 .

We can refine the result obtained so far to get a uniform upper bound with the ε-net argument.

Recall that

∣
∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣
∣ ≤

∣
∣
∣φ̂N,i(t)

2 − φ̂∗
N,i(t)

2
∣
∣
∣

1
2 ≤

∣
∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣
∣

1
2
.

It suffices to find a uniform upper bound on

∣
∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣
∣.

Lemma 40 (Uniform convergence of the noise estimate) For any i ∈ [m], φ̂N,i is uniformly

close to φ̂∗
N,i with high probability. Specifically, for any Λ > 0, any N ∈ N and s >

∥
∥
∥∆

(i)
N,Λ

∥
∥
∥

1
2

∞
,

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣ > s

)

≤ P

(

sup
t∈[−Λ,Λ]

∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2

)

≤ 2N exp

(

− |Ti|
2Λ2‖∆A‖2∞,(i)

(

s2 −
∥
∥
∥∆

(i)
N,Λ

∥
∥
∥
∞

)2
)

,

where

∥
∥
∥∆

(i)
N,Λ

∥
∥
∥
∞

=
Λ2‖∆A‖∞,(i)

2N

[

(N + 2)‖∆A‖∞,(i) + 4‖∆N‖∞,(i)

]

.

We note that, as we refine the net by letting N → ∞,

∥
∥
∥∆

(i)
N

∥
∥
∥
∞
→ Λ2‖∆A‖2

∞,(i)

2 , which sets the

fundamental lower bound on supt∈[−Λ,Λ]

∣
∣φ̂N,i(t)−φ̂∗

N,i(t)
∣
∣. That is to say,

∥
∥φ̂N,i(t)−φ̂∗

N,i(t)
∥
∥
∞ ≈
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Λ‖∆A‖∞,(i). Indeed, such is a limit on the deconvolution obtained due to the inherent noise repre-

sented by term ‖∆A‖∞,(i) and some such limit is naturally expected.

Proof [Proof of Lemma 40] First, we discretize the interval interval [−Λ,Λ] by constructing a finite

ε-net. For any N ≥ 1, define the set

TN :=

{
(2k − 1−N)Λ

2N
, ∀k ∈ [N ]

}

.

Then for any N > 0, TN ⊂ [−Λ,Λ] and it forms a Λ
N -net with |TN | = N , i.e., for any z with

|z| ≤ Λ, there exists z′ ∈ TN such that |z − z′| ≤ Λ
N .

Next, we consider the maximum rate of change of the function ∆Φ̂N (t) ≡ Φ̂N,i(t) − Φ̂∗
N,i(t)

to determine the resolution of the net. We can observe that

d

dt
∆Φ̂N (t) =

d

dt
Φ̂N,i(t)− Φ̂∗

N,i(t)

=
d

dt




−2
|Ti|

∑

(i,j1,j2))∈Ti

sin

(

t

(

∆N +
∆A

2

))

sin

(
t∆A

2

)




=
−2
|Ti|

∑

(i,j1,j2))∈Ti

[(

∆N +
∆A

2

)

cos

(

t

(

∆N +
∆A

2

))

sin

(
t∆A

2

)

+
∆A

2
sin

(

t

(

∆N +
∆A

2

))

cos

(
t∆A

2

)]

,

and hence,

sup
t∈[−Λ,Λ]

∣
∣
∣
∣

d

dt
∆Φ̂N (t)

∣
∣
∣
∣

≤ sup
t∈[−Λ,Λ]

2

|Ti|
∑

(i,j1,j2))∈Ti

∣
∣
∣
∣
∣

(

∆N +
∆A

2

)

cos

(

t

(

∆N +
∆A

2

))

sin

(
t∆A

2

)

+
∆A

2
sin

(

t

(

∆N +
∆A

2

))

cos

(
t∆A

2

)
∣
∣
∣
∣
∣

≤ sup
t∈[−Λ,Λ]

2 max
(i,j1,j2))∈Ti

[∣
∣
∣
∣
∆N +

∆A

2

∣
∣
∣
∣

∣
∣
∣
∣
cos

(

t

(

∆N +
∆A

2

)) ∣
∣
∣
∣

∣
∣
∣
∣
sin

(
t∆A

2

) ∣
∣
∣
∣

+

∣
∣
∣
∣

∆A

2

∣
∣
∣
∣

∣
∣
∣
∣
sin

(

t

(

∆N +
∆A

2

)) ∣
∣
∣
∣

∣
∣
∣
∣
cos

(
t∆A

2

) ∣
∣
∣
∣

]

≤ sup
t∈[−Λ,Λ]

2 max
(i,j1,j2))∈Ti

∣
∣
∣
∣
∆N +

∆A

2

∣
∣
∣
∣

∣
∣
∣
∣

t∆A

2

∣
∣
∣
∣
+

∣
∣
∣
∣

∆A

2

∣
∣
∣
∣

∣
∣
∣
∣
t

(

∆N +
∆A

2

)∣
∣
∣
∣

≤ sup
t∈[−Λ,Λ]

∣
∣t
∣
∣

(

2‖∆N‖∞,(i) + ‖∆A‖∞,(i)

)

‖∆A‖∞,(i)

≤
∣
∣Λ
∣
∣

(

2‖∆N‖∞,(i) + ‖∆A‖∞,(i)

)

‖∆A‖∞,(i).
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Let ∆(i) =
∣
∣Λ
∣
∣

(

2‖∆N‖∞,(i) + ‖∆A‖∞,(i)

)

‖∆A‖∞,(i), the upper bound in the last line. Then

it follows from the continuity of ∆Φ̂N(t) that

sup
t∈[−Λ,Λ]

∣
∣
∣∆Φ̂N (t)

∣
∣
∣ ≤ sup

t∈TN

∣
∣
∣∆Φ̂N(t)

∣
∣
∣+∆(i) Λ

N
.

Therefore, if

∣
∣
∣∆Φ̂N (t)

∣
∣
∣ ≤ s for all t ∈ TN , the supremum over the entire domain [−Λ,Λ] is

bounded above up to an additional term as supz∈[−Λ,Λ]

∣
∣
∣∆Φ̂N (t)

∣
∣
∣ ≤ s+∆(i) Λ

N . An application of

the union bound on the contraposition of the previous statement yields

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣ > s

)

≤ P

(

sup
t∈[−Λ,Λ]

∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2

)

≤ P

(

sup
t∈TN

∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2 −∆(i) Λ

N

)

≤
∑

t∈TN
P

(
∣
∣Φ̂N,i(t)− Φ̂∗

N,i(t)
∣
∣ > s2 −∆(i) Λ

N

)

≤ 2
∑

t∈TN
exp



− |Ti|
2t2‖∆A‖2∞,(i)

(

s2 −∆(i) Λ

N
−

t2‖∆A‖2∞,(i)

2

)2




≤ 2N exp



− |Ti|
2Λ2‖∆A‖2∞,(i)

(

s2 −∆(i) Λ

N
−

Λ2‖∆A‖2∞,(i)

2

)2


 .

We can simplify the last line by defining

∥
∥
∥∆

(i)
N,Λ

∥
∥
∥
∞

= ∆(i) Λ

N
+

Λ2‖∆A‖2∞,(i)

2
=

Λ2‖∆A‖∞,(i)

2N

[

(N + 2)‖∆A‖∞,(i) + 4‖∆N‖∞,(i)

]

,

because ∆(i) =
∣
∣Λ
∣
∣

(

2‖∆N‖∞,(i) + ‖∆A‖∞,(i)

)

‖∆A‖∞,(i).

Lemma 41 For any i ∈ [m], φ̂N,i is uniformly close to φN with high probability. Specifically, for

any Λ > 0, any N1, N2 ∈ N and for any s1 >
∥
∥
∥∆

∗(i)
N1,Λ

∥
∥
∥

1
2

∞
and s2 >

∥
∥
∥∆

(i)
N2,Λ

∥
∥
∥

1
2

∞
,

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φN (t)

∣
∣ > s1 + s2

)

≤ 2N1 exp

(

−
∣
∣Ti
∣
∣

2

(

s21 −
∥
∥
∥∆

∗(i)
N1,Λ

∥
∥
∥
∞

)2
)

+ 2N2 exp

(

− |Ti|
2Λ2‖∆A‖2∞,(i)

(

s22 −
∥
∥
∥∆

(i)
N2,Λ

∥
∥
∥
∞

)2
)

,

75



MONOTONE MATRIX ESTIMATION VIA ROBUST DECONVOLUTION

where

∥
∥
∥∆

∗(i)
N1,Λ

∥
∥
∥
∞

=
Λ

N1

[

|Λ|‖∆N‖2∞,(i) + 2σB
]

and

∥
∥
∥∆

(i)
N2,Λ

∥
∥
∥
∞

=
Λ2‖∆A‖∞,(i)

2N2

[

(N2 + 2)‖∆A‖∞,(i) + 4‖∆N‖∞,(i)

]

.

Proof If supt∈[−Λ,Λ]

∣
∣φ̂∗

N,i(t) − φN (t)
∣
∣ ≤ s1 and supt∈[−Λ,Λ]

∣
∣φ̂N,i(t) − φ̂∗

N,i(t)
∣
∣ ≤ s2, then

supt∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φN (t)

∣
∣ ≤ s1 + s2 by triangle inequality. Therefore,

P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φN (t)

∣
∣ > s1 + s2

)

≤ P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂∗

N,i(t)− φN (t)
∣
∣ > s1

)

+ P

(

sup
t∈[−Λ,Λ]

∣
∣φ̂N,i(t)− φ̂∗

N,i(t)
∣
∣ > s2

)

.

Applying Lemma 38 and 40 concludes the proof.

I.4. Bias from F̃ to F̂

We show that the CDF estimated by the modified kernel estimator is uniformly close to that esti-

mated by the traditional kernel estimator. For simplicity of the lemma statement, we introduce a

conditioning event indexed by i ∈ [m] as

Eφ,i ≡
{

sup
t∈[− 1

h
, 1
h
]

∣
∣φ̂N,i(t)− φN (t)

∣
∣ ≤ sφ

}

.

We will show this event is a high probability event later in appendix I.6.

Lemma 42 (Bias is small) The expectation of F̂ is close to the expectation of F̃ . Specifically, for

any i ∈ [m], conditioned on the event Eφ,i,

sup
z∈R

∣
∣
∣E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]∣
∣
∣ ≤ 2Kmax(D2 −D1)

πh

(

max
t∈[− 1

h
, 1
h
]

∣
∣
∣φN (t)− φ̂N,i (t)

∣
∣
∣+ ρ

)

.

Recall that the kernel bandwidth parameter h = (4γ)
1
β (log |Bi|)−

1
β .

Proof [Proof of Lemma 42] We want to show that

sup
z∈[D1,D2]

∣
∣
∣E

[

F̂ (i)(z)− F̃ (i)(z)
] ∣
∣
∣

is small. Here, expectation is taken with respect to data generation process, which can subdivided to

the generation of {Z(i, j)}j∈Bi and {N(i′, j1)−N(i′, j2)}(i′,j1,j2)∈Ti , which are independent from

each other (see the construction of the set Ti).
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E

[

F̂ (i)(z) − F̃ (i)(z)
]

= E

[∫ z∧D2

D1

f̂ (i)(w) − f̃ (i)(w)dw

]

= E





∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

L̂

(
w − Z(i, j)

h

)

− L

(
w − Z(i, j)

h

)

dw





= E





∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw−Z(i,j)

h

[

φK(t)

φ̂N,i(
t
h) + ρ

− φK(t)

φN ( t
h)

]

dt dw





= E





∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw−Z(i,j)

h φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

] dt dw



 . (86)

Noting that the support of φK is contained in [−1, 1] and that the integrand is a bounded con-

tinuous function, we exchange the order of integrals.

Eq.(86) =

∫ z∧D2

D1

E




1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−it

w−Z(i,j)
h φK(t)

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

] dt



 dw

=

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π
E





∫ ∞

−∞
e−it

w−Z(i,j)
h φK(t)

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

] dt



 dw

=

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
E



e−it
w−Z(i,j)

h φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

]



 dt dw

=

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw

h E

[

ei
t
h
Z(i,j)

]

φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

] dt dw.

(87)

Recall that φ̂N,i estimates φN using data other than those from the i-th row, and hence, Z(i, j)

is independent of φ̂N,i. E
[
ei

t
h
Z(i,j)

]
is the moment generating function of Z(i, j) evaluated at t

h .

Since Z = A +N is the independent sum of A ∼ F (i) and N , the moment generating function of

Z is equal to the product of those, i.e.,

E

[

ei
t
h
Z(i,j)

]

= φZ(i,j)

(
t

h

)

= φF (i)

(
t

h

)

φN

(
t

h

)

.
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Therefore,

Eq.(87)

=

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw

h φX(i)

( t

h

)

φN

( t

h

)

φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φN ( t
h)
[

φ̂N,i(
t
h) + ρ

] dt dw

=

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw

h φX(i)

( t

h

)

φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

dt dw

In short,

∣
∣
∣
∣
sup
z∈R

E

[

F̂ (i)(z)− F̃ (i)(z)
]
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

sup
z∈R

∫ z∧D2

D1

1

h|Bi|
∑

j∈Bi

1

2π

∫ ∞

−∞
e−itw

h φX(i)

( t

h

)

φK(t)
φN ( th)−

[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

dt dw

∣
∣
∣
∣
∣
∣

≤ D2 −D1

2πh

∫ ∞

−∞

∣
∣
∣
∣
∣
∣

φX(i)

( t

h

)

φK(t)
φN ( t

h)−
[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

∣
∣
∣
∣
∣
∣

dt

≤ D2 −D1

2πh

∫ ∞

−∞

∣
∣
∣
∣
φX(i)

( t

h

)
∣
∣
∣
∣

∣
∣
∣
∣
φK(t)

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

∣
∣
∣
∣
∣
∣

dt

≤ D2 −D1

2πh

∫ 1

−1
Kmax

∣
∣
∣
∣
∣
∣

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

∣
∣
∣
∣
∣
∣

dt (88)

≤ Kmax(D2 −D1)

πh
max

t∈[−1,1]

∣
∣
∣
∣
∣
∣

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

∣
∣
∣
∣
∣
∣

. (89)

Eq. (88) follows from our assumption that the support of φK is contained within [−1, 1] and that

there exists Kmax = maxt∈[−1,1] |φK(t)| <∞.

To further simplify the upper bound in Eq. (89), we remark that

φN ( t
h)−

[

φ̂N,i(
t
h) + ρ

]

φ̂N,i(
t
h) + ρ

=
φN ( t

h)− φ̂N,i(
t
h)− ρ

φN ( t
h)−

[

φN ( t
h)− φ̂N,i(

t
h)− ρ

] .

From the supersmooth assumption on the noise, for any t ∈ [−1, 1],

φN

(
t

h

)

≥ 1

B
exp

(

−γ
∣
∣
∣
∣

t

h

∣
∣
∣
∣

β
)

=
1

B
exp

(

−1

4
tβ log |Bi|

)

=
1

B
|Bi|−

1
4
tβ ≥ 1

B
|Bi|−

1
4 . (90)
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The kernel bandwidth parameter is chosen as h = (4γ)
1
β (log |Bi|)−

1
β .

The ridge parameter ρ = |Bi|−
7
24 and

∣
∣
∣φN ( t

h)− φ̂N ( t
h)
∣
∣
∣ is sufficiently small when conditioned

on Eφ,i (see Appendix I.6 for the definition of the event Eφ,i). Since

∣
∣
∣

δ
1−δ

∣
∣
∣ ≤ 2 |δ| given that

|δ| ≤ 1
2 ,

max
t∈[−1,1]

∣
∣
∣
∣
∣

φN ( t
h)− φ̂N,i(

t
h)− ρ

φ̂N,i(
t
h) + ρ

∣
∣
∣
∣
∣
≤ 2 max

t∈[−1,1]

∣
∣
∣
∣
φN

(
t

h

)

− φ̂N,i

(
t

h

)

− ρ

∣
∣
∣
∣

≤ 2 max
t∈[−1,1]

∣
∣
∣
∣
φN

(
t

h

)

− φ̂N,i

(
t

h

)∣
∣
∣
∣
+ 2ρ

= 2 max
t∈[− 1

h
, 1
h
]

∣
∣
∣φN (t)− φ̂N,i (t)

∣
∣
∣+ 2ρ

Plugging in this expression to Eq. (89) concludes the proof.

I.5. Concentration of F̂

Lemma 43 For each i ∈ [m], the kernel smoothed ECDF F̂ (i) defined as in Eq. (50) uniformly

concentrates to its expectation, i.e., ∀z ∈ [D1,D2],

P

(∣
∣
∣F̂ (i)(z) − E

[

F̂ (i)(z)
]∣
∣
∣ > t

)

≤ 2 exp

(

−|Bi|5/12

2C2
4 (log |Bi|)

2
β

t2

)

.

Proof [Proof of Lemma 43] Recall that the kernel smoothed ECDF F̂ (i) evaluated at z is a function

of ni independent random variables {Z(i, j)}j∈Bi , i.e., when z is fixed, F̂ (i)(z) : R|Bi| → R such

that

F̂ (i)(z) [Z(i, j1), . . . , Z(i, jni)] =

∫ z∧D2

D1

1

hni

∑

j∈Bi

L̂

(
w − Z(i, j)

h

)

dw,

where L̂(z) = 1
2π

∫
e−itz φK(t)

φ̂N( t
h)+ρ

dt. We can show that F̂ (i)(z) considered as a function of mea-

surements {Z(i, j1), . . . , Z(i, jni)} satisfies the bounded difference condition (see Eq. (102)) as in

the proof of Lemma 30.

We take a similar approach as in the proof of Lemma 30. Let ζn = (ζ1, . . . , ζn) and ζnj =
(ζ1, . . . , ζ

′
j , . . . , ζn) be two n-tuples of real numbers, which differ only at the j-th position. Then

F̂ (i)(z)[ζn]− F̂ (i)(z)[ζnj ]

=
1

hn

∫ z∧D2

D1

L̂

(
w − ζj

h

)

− L̂

(
w − ζ ′j

h

)

dw

=
1

hn

∫ z∧D2

D1

1

2π

∫ (

e−it
w−ζj

h − e−it
w−ζ′j

h

)
φK(t)

φ̂N

(
t
h

)
+ ρ

dtdw

≤ 1

2πhn

∫ z∧D2

D1

∫ ∣
∣
∣
∣
e−it

w−ζj
h − e−it

w−ζ′j
h

∣
∣
∣
∣

∣
∣
∣
∣
∣

φK(t)

φ̂N

(
t
h

)
+ ρ

∣
∣
∣
∣
∣
dtdw. (91)
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Because e−itz is on the unit circle in the complex plane for any real numbers t and z, we have

∣
∣
∣
∣
e−it

w−ζj
h − e−it

w−ζ′j
h

∣
∣
∣
∣
≤
∣
∣
∣
∣
e−it

w−ζj
h

∣
∣
∣
∣
+

∣
∣
∣
∣
e−it

w−ζ′j
h

∣
∣
∣
∣
= 2.

Since φK is assumed to have compact support (see Appendix L.2) within [−1, 1], and a Fourier

transform of L1 function is uniformly continuous, there exists Kmax = maxt∈[−1,1] |φK(t)| < ∞
such that |φK(t)| ≤ Kmax,∀t. From the algorithm description in Section E.1, ρ = n−7/24 (here,

n = |Bi| is the generic variable which stands for the number of samples in a row). By definition,

φ̂N

(
t
h

)
≥ 0, ∀t, and hence, φ̂N

(
t
h

)
+ ρ ≥ ρ, ∀t.

We choose the bandwidth parameter h = (4γ)
1
β (log n)

− 1
β following Fan (Theorems 56, 57).

Plugging these expresions into Eq. (91) leads to

Eq.(91) ≤ (log n)
1
β

2π (4γ)
1
β n

∫ z∧D2

D1

∫ 1

−1
2Kmaxn

7/24dtdw

≤ Kmax (log n)
1
β

π (4γ)
1
β n17/24

∫ z∧D2

D1

(1− (−1)) dw

≤ 2Kmax (D2 −D1) (log n)
1
β

π (4γ)
1
β n17/24

≤ 2C4 (log n)
1
β

n17/24
, for any z ∈ [D1,D2] .

The last line follows from the definition of C4 and the fact that B ≥ 1 in our model.

Applying McDiarmid’s inequality (Lemma 55), we can conclude that for any z ∈ [D1,D2],

P

(∣
∣
∣F̂ (i)(z)[ζn]− EζnF̂

(i)(z)[ζn]
∣
∣
∣ ≥ t

)

≤ 2 exp

(

−n5/12

2C2
4 (log n)

2
β

t2

)

.

This argument holds for every i ∈ [m], with replacing generic variable n with corresponding |Bi|.

Lemma 44 (Variance is uniformly small) For each i ∈ [m], the kernel smoothed ECDF F̂ (i)

defined as in Eq. (50) uniformly concentrates to its expectation, i.e., for any nonnegative integer N

and for any t ≥ ∆(i)(D2−D1)
N (we define ∆(i) := Kmax

π(4γ)
1
β
|Bi|

7
24 (log |Bi|)

1
β ),

P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≥ t

)

≤ 2N exp




− |Bi|5/12

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N

)2


 ,

where β, γ > 0 are smoothness parameters for the noise, and Kmax = maxt∈[−1,1] |φK(t)|.
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Proof [Proof of Lemma 44] First, we discretize the interval interval [D1,D2] by constructing a

finite ε-net. For any N ≥ 1, define the set

TN :=

{

Dmin +
2k − 1

2N
(D2 −D1) , ∀k ∈ [N ]

}

.

Then for any N > 0, TN ⊂ [D1,D2] and it forms a
(D2−D1)

2N -net with |TN | = N , i.e., for any

z ∈ [D1,D2], there exists k ∈ [N ] such that
∣
∣z − 2k−1

2N (D2 −D1)
∣
∣ ≤ (D2−D1)

2N .

We can observe that

∥
∥
∥f̂ (i)

∥
∥
∥
∞

=

∥
∥
∥
∥

1

h |Bi|
∑

j∈Bi

L̂

(
z − Z(i, j)

h

)∥
∥
∥
∥
∞

≤ 1

h

∥
∥
∥L̂
∥
∥
∥
∞

=
1

2πh

∥
∥
∥
∥
∥

∫ ∞

−∞
e−itz φK(t)

φ̂N,i

(
t
h

)
+ ρ

dt

∥
∥
∥
∥
∥
∞

≤ 1

2πh

∫ ∞

−∞

∣
∣
∣
∣
∣
e−itz φK(t)

φ̂N,i

(
t
h

)
+ ρ

∣
∣
∣
∣
∣
dt

≤ 1

2πh

∫ ∞

−∞

∣
∣
∣
∣
e−itz φK(t)

ρ

∣
∣
∣
∣
dt

≤ 1

2πh

∫ 1

−1
Kmax |Bi|

7
24 dt

≤ (log |Bi|)
1
β

2π (4γ)
1
β

∫ 1

−1
Kmax |Bi|

7
24 dt ∵ h = (4γ)

1
β (log |Bi|)−

1
β

≤ Kmax

π (4γ)
1
β

|Bi|
7
24 (log |Bi|)

1
β .

Let ∆(i) denote the upper bound in the last line. Since this upper bound is universal for all realization

of samples,

∥
∥
∥E

[

f̂ (i)
]∥
∥
∥
∞
≤ ∆(i), too. Then

∥
∥
∥f̂ (i) − E

[

f̂ (i)
]∥
∥
∥
∞
≤ 2∆(i) and it follows from the

definition of F̂ (i) (see Eq. (50)) that

sup
z∈[D1,D2]

∣
∣
∣
∣
F̂ (i)(z)− E

[

F̂ (i)(z)
]
∣
∣
∣
∣
≤ sup

z∈TN

∣
∣
∣
∣
F̂ (i)(z) − E

[

F̂ (i)(z)
]
∣
∣
∣
∣
+

∆(i) (D2 −D1)

N
.

Therefore, if

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≤ ε for all z ∈ Tn, the supremum over the whole domain is

bounded above up to an additional term as

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≤ ε+

∆(i) (D2 −D1)

N
.
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An application of the union bound on the contraposition of the previous statement yields

P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≥ t

)

≤ P

(

sup
z∈TN

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≥ t− ∆(i) (D2 −D1)

N

)

≤
∑

z∈TN
P

(
∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≥ t− ∆(i) (D2 −D1)

N

)

≤ 2N exp




− |Bi|5/12

2C2
4 (log |Bi|)

2
β

(

t− ∆(i) (D2 −D1)

N

)2


 .

I.6. Conditioning Events

For analysis, we define some conditioning events.

EJ ≡
{

|J | ≥ 1

4
n

}

,

ETi ≡
{

|Ti| ≥
1

512
mnp

}

,

ET ≡
{

|T | ≤ mnp

}

,

E∆A ≡
{
∣
∣A(i, j1)−A(i, j2)

∣
∣ ≤ c∆A√

mp
+

2L
√
2√

np
(1 + 4

√
np), ∀(i, j1, j2) ∈ T

}

,

E∆N ≡
{
∣
∣N(i, j1)−N(i, j2)

∣
∣ ≤ 4σ

√

log(4mnp), ∀(i, j1, j2) ∈ T
}

,

Eφ,i ≡
{

sup
t∈[− 1

h
, 1
h
]

∣
∣φ̂N,i(t)− φN (t)

∣
∣ ≤ sφ

}

.

Here, c∆A = 8
√
π
(√

eC1+
√
2√

C1
+

√
eC2+

√
2√

C2

)

and sφ = s1 + s2 where s1 = 8σ(log |Bi|)
1
β

(4γ)
1
β

√
log(4mnp)

(mnp)
1
4

and s2 =
2(log |Bi|)

1
β

(4γ)
1
β

[
c∆A√
mp + 2L

√
2√

np (1 + 4
√
np)
]

.

We analyze probabilities of these conditioning events, which will be used in the proof of Lemma

25 in the next section. We may assume m,n ≫ 1 so that mp ≥ 8 ln 2 and np ≥ 48 > 32 ln 2.

These assumptions are arbitrary and can be removed; the only purpose of these assumptions are to

simplify the following probabilistic bounds.
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1. EJ : P (Ec
J) is small. Since mp ≥ 8 ln 2, exp

(
−mp

8

)
≤ 1

2 . By Lemma 32,

P (Ec
J) ≤ P

(

|J | ≤ n
[
1− exp

(
−mp

8

)]

2

)

≤ exp

(

− n
[
1− exp

(
−mp

8

)]

8

)

≤ exp

(

− n

16

)

. (92)

2. ETi : P
(
Ec

Ti
∣
∣EJ

)
is small. Conditioned on EJ , |J | ≥ 1

4n and |J |p ≥ np
4 . Therefore,

m
[

1− exp
(

− |J |p
8

)]

2
− 1 ≥ m

4
− 1 ≥ m

8
, and

⌈ |J |p
2 − 1− ⌊

√
|J |p
2 ⌋

2

⌉

≥
⌈ np

8 − 1− ⌊
√

np
8 ⌋

2

⌉

≥ 1

4

(np

8
− 1
)

≥ np

64
.

For any i ∈ [m] Lemma 33 asserts that

P
(
Ec

Ti
∣
∣EJ

)
≤ P



|Ti| <
(
m
[

1− exp
(

− |J |p
8

)]

2
− 1

)⌈ |J |p
2 − 1− ⌊

√
|J |p
2 ⌋

2

⌉∣
∣
∣
∣
∣
EJ





≤ exp

(

−
m
[

1− exp
(

− |J |p
8

)]

8

)∣
∣
∣
∣
∣
|J |≥ 1

4
n

≤ exp

(

− m

16

)

. (93)

3. ET : P (Ec
T ) is small. Lemma 34 ensure that

P (Ec
T ) ≤ exp

(

−mnp

3

)

. (94)

4. E∆A: P (Ec
∆A|EJ ) is small. Conditioned on EJ , |J | ≥ n

4 . Hence,

L

√

2

|J | p + 4LQ∗
(mp

2

)

≤ 2L
√
2√

np
+ 8L

√
π





√
2

C1mp
+

√
2

C2mp
+

√

eC1

C1mp
+

√

eC2

C2mp





=
2L
√
2√

np
+

c∆A√
mp

.
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Then c∆A√
mp + 2L

√
2√

np (1 + 4
√
np) −

[

L
√

2
|J |p + 4LQ∗ (mp

2

)]

≥ 2L
√
2

4
√
np . Note that Q∗ (mp

2

)
> 0 and

hence, by Lemma 35,

P (Ec
∆A|EJ) ≤ n exp



− n

8L2

(

2L
√
2

4
√
np

)2


+ n exp

(

− n

12L

(

2L
√
2

4
√
np

))

≤ n exp

(

− n
1
2

)

+ n exp

(

− 1

3
√
2
n

3
4

)

. (95)

We used the fact J ⊂ [n] implies |J | ≤ n and |J | ≥ n
4 when conditioned on EJ and that p ≤ 1.

5. E∆N : P

(

Ec
φ,i

∣
∣ETi , E∆A, E∆N

)

is small. Conditioned on ETi , |T | ≥ |Ti| ≥ mnp
512 , while ET

ensures |T | ≤ mnp. Recall that Lemma 36 ascertains ‖∆N‖∞,(i) does not exceed 4σ
√

log 4|T |
with high probability as

P

(

‖∆N‖∞,(i) > 4σ
√

log 4|T |
)

≤ 1

4|T | .

If we combine this probabilistic bound with the conditioning events, then the following upper bound

can be achieved:

P (Ec
∆N |ETi , ET ) ≤ P

(

‖∆N‖∞,(i) > 4σ
√

log 4|T ||ETi , ET
)

≤ 1

4|T |

∣
∣
∣
∣
∣
ETi

,ET

≤ 128

mnp
. (96)

6. Eφ,i: P
(

Ec
φ,i

∣
∣ETi , E∆A, E∆N

)

is small. Conditioned on ETi , E∆A, E∆N ,

|Ti| ≥
mnp

512

‖∆A‖∞,(i) ≤
c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

‖∆N‖∞,(i) ≤ 4σ
√

log(4mnp).

Now the length of our interval Λ = 1
h = ( log |Bi|

4γ )
1
β .

If mnp≫ 1 so that log(4mnp)(log |Bi|)
1
β ≥ B(4γ)

1
β

4σ , then

∥
∥
∥
∥
∆

∗(i)
N1,

1
h

∥
∥
∥
∥
∞

=
1

N1

[
1

h2
‖∆N‖2∞,(i) +

2

h
σB

]

≤ 32σ2(log |Bi|)
2
β

N1(4γ)
2
β

log(4mnp).
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Let N1 =
√
mnp, and s1 =

8σ(log |Bi|)
1
β

(4γ)
1
β

√
log(4mnp)

(mnp)
1
4

.

2N1 exp

(

−
∣
∣Ti
∣
∣

2

(

s21 −
∥
∥
∥∆

∗(i)
N1,Λ

∥
∥
∥
∞

)2
)

≤ 2
√
mnp exp



−mnp

1024

(

32σ2(log |Bi|)
2
β

(4γ)
2
β

log(4mnp)√
mnp

)2




= exp

(

−σ4(log |Bi|)
4
β

(4γ)
4
β

log2(4mnp) + log(4mnp)

)

.

Similarly, (assume N2 ≥ 2)

∥
∥
∥
∥
∆

(i)

N2,
1
h

∥
∥
∥
∥
∞

=
N2 + 2

2N2h2
‖∆A‖2∞,(i) +

2

N2h2
‖∆A‖∞,(i)‖∆N‖∞,(i)

≤ (log |Bi|)
2
β

(4γ)
2
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]2

+
8σ

N2

(log |Bi|)
2
β

(4γ)
2
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]
√

log(4mnp).

Let

N2 = 8σ
√

log(4mnp)

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]−1

≤ 8σ

c∆A + 2L
√
2

√
mnp

√

log(4mnp),

and

s2 =
2(log |Bi|)

1
β

(4γ)
1
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]

.
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Then,

2N2 exp

(

− |Ti|
2Λ2‖∆A‖2∞,(i)

(

s22 −
∥
∥
∥∆

(i)
N2,Λ

∥
∥
∥
∞

)2
)

≤ 2N2 exp



− |Ti|
2Λ2‖∆A‖2∞,(i)

4(log |Bi|)
4
β

(4γ)
4
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]4




≤ 2N2 exp



−2|Ti|
(log |Bi|)

2
β

(4γ)
2
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]2




≤ 2N2 exp



−mnp

256

(log |Bi|)
2
β

(4γ)
2
β

[

c∆A√
mp

+
2L
√
2√

np
(1 + 4

√
np)

]2




≤ exp

(

− (log |Bi|)
2
β

256(4γ)
2
β

[

c∆A

√
n+ 2L

√
2m
]2

+
1

2

(

logmnp+ log log(4mnp)
)

+ log
16σ

c∆A + 2L
√
2

)

.

All in all,

P
(
Ec

φ,i

∣
∣ETi , E∆A, E∆N

)
(97)

≤ exp

(

−σ4(log |Bi|)
4
β

(4γ)
4
β

log2(4mnp) + log(4mnp)

)

+ exp

(

− (log |Bi|)
2
β

256(4γ)
2
β

[

c∆A

√
n+ 2L

√
2m
]2

(98)

+
1

2

(

logmnp+ log log(4mnp)
)

+ log
16σ

c∆A + 2L
√
2

)

.

I.7. Proof of Lemma 25

Proof [Proof of Lemma 25] By the usual trick of applying triangle inequality, we have

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− F (i)

∣
∣
∣

= sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]

+ E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]

+ E

[

F̃ (i)(z)
]

− F (i)
∣
∣
∣

≤ sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣+ sup

z∈[D1,D2]

∣
∣
∣E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]∣
∣
∣

+ sup
z∈[D1,D2]

∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)
∣
∣
∣ .
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If supz∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≤ t1, supz∈[D1,D2]

∣
∣
∣E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]∣
∣
∣ ≤ t2, and

supz∈[D1,D2]

∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)
∣
∣
∣ ≤ t3, then supz∈[D1,D2]

∣
∣
∣F̂ (i)(z)− F (i)

∣
∣
∣ ≤ t1 + t2 + t3. Apply-

ing union bound on the contrapositive yields

P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− F (i)

∣
∣
∣ > t1 + t2 + t3

)

≤ P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ > t1

)

(99)

+ P

(

sup
z∈[D1,D2]

∣
∣
∣E

[

F̃ (i)(z)
]

− F (i)(z)
∣
∣
∣ > t2

)

(100)

+ P

(

sup
z∈[D1,D2]

∣
∣
∣E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]∣
∣
∣ > t3

)

. (101)

1. Eq. (99): Eq. (99) is bounded by Lemma 44. We take integer N = 1
2 |Bi|

1
6 . Then for any

t1 ≥ 2∆(i)(D2−D1)
N = 4Kmax(D2−D1)

π(4γ)
1
β

|Bi|−
5
24 (log |Bi|)

1
β ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̂ (i)(z)− E

[

F̂ (i)(z)
]∣
∣
∣ ≥ t1

)

≤ 2N exp




− |Bi|5/12

2C2
4 (log |Bi|)

2
β

(

t1 −
∆(i) (D2 −D1)

N

)2




≤ |Bi|
1
6 exp

(

− |Bi|5/12

8C2
4 (log |Bi|)

2
β

t21

)

,

where β, γ > 0 are smoothness parameters for the noise, and Kmax = maxt∈[−1,1] |φK(t)|.
2. Eq. (100): If we take t2 = C3 (log |Bi|)−1/β , the probability in Eq. (100) becomes 0 by Lemma

29.

3. Eq. (101): We further partition the probability in Eq. (101) by conditioning events defined in

Section I.6.

Eq.(101) ≤ P

(

sup
z∈[D1,D2]

∣
∣
∣E

[

F̂ (i)(z)
]

− E

[

F̃ (i)(z)
]∣
∣
∣ > t3

∣
∣
∣
∣
∣
Eφ,i

)

+ P
(
Ec

φ,i

)
.

The first term is bounded by Lemma 42: the conditional probability becomes 0 if we choose t3 =
2Kmax(D2−D1)

πh (sφ + ρ).

It remains to analyze P

(

Ec
φ,i

)

.

P
(
Ec

φ,i

)
≤ P

(

Ec
φ,i

∣
∣
∣ETi ∩ E∆A ∩ E∆N

)

+ P
(
Ec

Ti ∪ Ec
∆A ∪ Ec

∆N

)

= P

(

Ec
φ,i

∣
∣
∣ETi ∩ E∆A ∩ E∆N

)

+ P
(
Ec

Ti ∪ Ec
∆A

)
+ P (Ec

∆N ∩ ETi) .
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The first term is small (see Eq. (98)).

The second term:

P
(
Ec

Ti ∪ Ec
∆A

)
≤ P (Ec

J) + P

(

Ec
Ti ∪ Ec

∆A

∣
∣
∣EJ

)

≤ P (Ec
J) + P

(

Ec
Ti

∣
∣
∣EJ

)

+ P

(

Ec
∆A

∣
∣
∣EJ

)

.

See Eqs. (92), (93), (95).

The third term:

P (Ec
∆N ∩ ETi) ≤ P (Ec

∆N ∩ ETi ∩ET ) + P (Ec
T )

= P
(
Ec

∆N

∣
∣ETi ∩ ET

)
P (ETi ∩ ET ) + P (Ec

T )

≤ P
(
Ec

∆N

∣
∣ETi ∩ ET

)
+ P (Ec

T ) .

See Eqs. (96) and (94).

To sum up, let t0 = C3 (log |Bi|)−1/β + 2Kmax(D2−D1)
πh (sφ + ρ). Then we can conclude that

for any i ∈ [m], and for any t ≥ t0 +
4Kmax(D2−D1)

π(4γ)
1
β

|Bi|−
5
24 (log |Bi|)

1
β ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z) − F (i)(z)

∣
∣
∣ > t+ t0

)

≤ |Bi|
1
6 exp

(

− |Bi|5/12

8C2
4 (log |Bi|)

2
β

(t− t0)
2

)

+ Ψ̃m,n,p (|Bi|) .

For completeness, we note that the Remainder term, Ψ̃m,n,p (|Bi|) (see Eq. (63)), is the sum of

upper bounds in Eq. (92) - (98), which vanishes as m,n→∞.

Proof [Proof of Corollary 26] Conditioned on event Erow,(i), it holds for all i ∈ [m] that |Bi| ≥ np
2 .

Similarly, |Bi| ≤ 2np for all i ∈ [m], when conditioned on event E′
row,(i). Therefore, for any

i ∈ [m], and any t ≥ T ∗
0 ,

P

(

sup
z∈[D1,D2]

∣
∣
∣F̃ (i)(z)− F (i)(z)

∣
∣
∣ > t

∣
∣
∣
∣
∣
Erow,(i), E

′
row,(i)

)

≤ (2np)
1
6 exp

(

−
(np

2

)5/12

8C2
4 (log(2np))

2
β

(t− t∗0)
2

)

+ Ψ̃m,n,p

(np

2

)

.

Appendix J. Known Facts about Distribution

J.1. Basic Definitions

In this section, we briefly restate some basic facts and functions related to a random variable. We

let (Ω,F , P ) denote our probability space.
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Definition 45 (Random variable) A random variable X : Ω → E is a measurable function from

a set of possible outcomes Ω to a measurable space E. When E = R, we call X a real-valued

random variable.

For a real-valued random variable X, we can define its distribution function, whose evaluation

at x is the probability that X will take a value less than or equal to x.

Definition 46 (Cumulative distribution function (CDF)) The cumulative distribution function of

a real-valued random variable X is defined as a function FX : R→ [0, 1] such that

FX(x) = P (X ≤ x) .

Every cumulative distribution function F is non-decreasing, right-continuous, limx→−∞ F (x) =
0, and limx→∞ F (x) = 1. Conversely, every function with these four properties is a CDF, i.e., a

random variable can be defined so that the function is the CDF of that random variable.

We can define a pseudo-inverse of the distribution function, which returns a threshold value x
below which random draws from the given CDF would fall with given input probability p.

Definition 47 (Quantile function) Given a distribution function F : R → [0, 1], the associated

quantile function Q : (0, 1)→ R is defined as

Q(p) = inf {x ∈ R : p ≤ F (x)} .

If the function F is continuous and strictly monotone increasing, then the infimum can be replaced

by the minimum and Q = F−1.

When F is absolutely continuous, then there exists a Lebesgue-integrable function f(x) such

that

F (b)− F (a) = P (a < X ≤ b) =

∫ b

a
f(x)dx,

for all real numbers a and b. The function f is the (Radon-Nikodym) derivative of F , and it is called

the probability density function of distribution of X.

Note that the CDF can be expressed as the expectation of an indicator function, FX(x) =
E [I {X ≤ x}]. There is an alternative way to describe a random variable.

Definition 48 (Characteristic function) The characteristic function φX : R → C for a real-

valued random variable is defined as the expected value of eitX , where i is the imaginary unit, and

t ∈ R is the argument of the characteristic function:

φX(t) = E
[
eitX

]

=

∫

R

eitxdFX(x)

=

∫

R

eitxfX(x)dx

=

∫ 1

0
eitQX(p)dp.

If random variable X has a probability density function fX , then the characteristic function is

the Fourier transform with sign reversal in the complex exponential (note that the constant differs

from the usual convention for the Fourier transform).
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J.2. Empirical CDF and Empirical Characteristic Function

Given X1, . . . ,Xn (n is a natural number) be real-valued independent and identically distributed

random variables with common cumulative distribution function F . We let Fn denote the empirical

distribution function associated with {X1, . . . ,Xn}, which is defined as

Fn(x) =
1

n

n∑

i=1

I {Xi ≤ x} , ,∀x ∈ R.

Fn(x) is the average number of random variables among {X1, . . . ,Xn} which take value smaller

than x.

It is knwon that the empirical distribution function converges to the distribution function from

which the samples are drawn. The following concentration results known as the Dvoretzky-Kiefer-

Wolfowitz (DKW) inequality quantifies the rate of convergence of Fn to F with respect to the

uniform norm as n tends to infinity. It is named after Aryeh Dvoretzky, Jack Kiefer, and Jacob

Wolfowitz, who proved the inequality in 1956 with an unspecified multiplicative constant C . Later

in 1990, Pascal Massart proved the inequality with the sharp constant C = 2. This result strengthens

the Glivenko-Cantelli theorem.

Lemma 49 (Dvoretzky-Kiefer-Wolfowitz) Given a natural number n, let X1, . . . ,Xn be real-

valued independent and identically distributed random variables with common cumulative distribu-

tion function F . Then for every ε > 0,

P

(

sup
x∈R
|Fn(x)− F (x)| > ε

)

≤ 2e−2nε2 .

Appendix K. Sub-Gaussian Random Variable and the Chernoff Bound

First of all, we recall the Markov’s inequality.

Theorem 50 (Markov’s inequality) Given a nonnegative random variable X, for all t > 0,

P (X ≥ t)
≤ E [X]

t
.

Proof For all t > 0, tI {X ≥ t} ≤ XI {X ≥ t} ≤ X. Taking expectation, tP (X ≥ t) ≤ E [X],

and hence, P (X ≥ t) ≤E[X]
t .

Now let X be a real-valued random variable. Applying Markov’s inequality with an exponential

function, it follows that for λ ≥ 0,

P (X ≥ t) = P

(

eλX ≥ eλt
)

≤ E
[
eλX

]

eλt
.

Since this inequality holds for all values of λ ≥ 0, one may optimize λ to obtain the tightest tail

bound.

Next, we define a class of random variables, whose tail behavior is easy to control.
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Definition 51 (Sub-Gaussian random variable) A random variable X with mean µ = E [X] is

called sub-Gaussian if there is a positive constant σ such that

E

[

eλ(X−µ)
]

≤ e
λ2σ2

2 , ∀λ ∈ R.

We will call σ the sub-Gaussian parameter of X.

An application of the Chernoff bound leads to

P (X − µ ≥ t) ≤ inf
λ

E
[
eλ(X−µ)

]

eλt
,

where λ is optimized over the interval [0, λ∗] in which the moment generating function of X exists.

It is possible to achieve the same upper bound for P (X − µ ≤ −t) = P (−(X − µ) ≥ t). We can

conclude that a sub-Gaussian random variable satisfies that for all t ∈ R,

P (|X − µ| ≥ t) ≤ 2e−
t2

2σ2 .

The class of sub-Gaussian random variables subsumes Gaussian random variable and any bounded

random variables.

Hoeffding-type Inequalities Now, we present several forms of concentration inequalities for the

sum of independent random variables. Essentially they are all Chernoff bounds, tailored to specific

random variable assumptions. We present three lemmas in the increasing order of generality, starting

from the bound for a sum of independent Bernoulli trials.

Lemma 52 (Binomial Chernoff bound) Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi,
and Xi = 0 with probability 1− pi, and Xi’s are independent. Let µ = E [X] =

∑n
i=1 pi. Then

1. Upper tail: P (X ≥ (1 + δ)µ) ≤ exp
(

− δ2

2+δµ
)

for all δ > 0.

2. Lower tail: P (X ≤ (1− δ)µ) ≤ exp
(

− δ2

2 µ
)

for all 0 < δ < 1.

Hoeffding derived a more general result for bounded random variables, which is known as

(Azuma-) Hoeffding’s inequality.

Lemma 53 (Hoeffding’s inequality for bounded ranom variables) Let X1, . . . ,Xn be n inde-

pendent random variables such that almost surely Xi ∈ [ai, bi],∀i. Let X =
∑n

i=1 Xi, then for any

t > 0,

P (X − E [X] ≥ t) ≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

,

and

P (X − E [X] ≤ −t) ≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

.

Although Hoeffding’s inequality is often presented only for the special case of bounded random

variables, the same idea applies to sub-Gaussian random variables.
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Lemma 54 (Hoeffding’s inequality for sub-Gaussian ranom variables) LetX1, . . . ,Xn be n in-

dependent random variables such that Xi has mean µi and sub-Gaussian parameter σi. Let

X =
∑n

i=1Xi, then for any t > 0,

P (X − E [X] ≥ t) ≤ exp

(

− t2

2
∑n

i=1 σ
2
i

)

,

and

P (X − E [X] ≤ −t) ≤ exp

(

− t2

2
∑n

i=1 σ
2
i

)

.

Bounded Difference Condition While the previous inequalities showed concentration for the

sum of independent random variables whose tail probability behavior is well-controlled, McDi-

armid’s inequality provides concentration results for general class of functions which depend on

independent random variables, but in a limited way, satisfying the so-called “bounded difference”

condition.

Lemma 55 (McDiarmid’s inequality) Let X1, . . . ,Xn be independent random variables such

that for each i ∈ [n], Xi ∈ X. Let ξ :
∏n

i=1Xi → R be a function of (X1, . . . ,Xn) that sat-

isfies ∀i,∀x1, . . . , xn,∀x′i ∈ Xi,

∣
∣ξ (x1, . . . , xi, . . . , xn)− ξ

(
x1, . . . , x

′
i, . . . , xn

)∣
∣ ≤ ci. (102)

Then for all t > 0,

P (ξ − E [ξ] ≥ t) ≤ exp

( −2t2
∑n

i=1 c
2
i

)

.

By considering the negation of the function −ξ in lieu of ξ, one can obtain the same tail bound for

the opposite direction.

Appendix L. Some Known Results from Deconvolution Literature

In this section, we introduce some known results for estimating the unknown density fX of random

variable X by deconvolution techniques. Suppose that Z = X + N is a measurement of X with

additive noise N and we have n i.i.d. observations Z1, . . . , Zn. Fan (1991) reported that we can

achieve an asymptotically consistent density estimate when the noise density is known and fX sat-

isfies certain smoothness conditions. Later, Delaigle et al. (2008) showed that consistent estimation

is possible even when the noise distribution is unknown, with aid of repeated measurements.

Their estimators and proof techniques rely on the kernel smoothing method. Here we only

present the abbreviated version of the concepts, the estimator, and the results to the minimum

amount we need. We would refer interested readers to relevant references for more detail; for

example, Carroll and Hall (1988); Fan (1991); Delaigle et al. (2008).

L.1. Deconvolution Kernel Density Estimator

We provide a summary for deconvolution kernel density estimator, which we already discussed in

detail to provide intuition for our algorithm in Appendix D.1. For more detailed explanations to see

how and why it works, please see that discussion.
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Our goal is to recover distribution of random variable X, but we observe samples of Z = X+N
instead of X. We assume we know the distribution of N . Due to independence, we know that

φZ(t) = φX(t)φN (t) for all t ∈ R, where φZ , φX , φN denote the characteristic function of random

variable Z,X and N respectively.

Let F denote Fourier transformation operator and F−1 denote the inverse Fourier transforma-

tion operator. By applying these operators, we obtain

f̂X(x) = F−1

{

F{f̂Z(x)}(t)
φN (t)

}

=
1

hn

n∑

i=1

L
(x− Zi

h

)

, (103)

where

L ≡ F−1

{
φK( · )

φN ( ·h−1)

}

, i.e., L(z) =
1

2π

∫

exp(−i tz) φK(t)

φN

(
t
h

)dt, z ∈ R.

A more detailed description of the derivation can be found in Appendix D.1.

Indeed, this is known as deconvolution kernel density estimator in literature. We shall adopt

prior results of Fan (1991) on its consistency to establish our results. We refer interested readers to

Wand and Jones (1994) for more details and properties of kernel density estimation.

L.2. Consistency Results for Deconvolution

L.2.1. ASSUMPTIONS

Assumptions on the signal density For constants m,B ≥ 0, and α ∈ [0, 1), Fan defined a class

of densities as

Cm,α,B = {fX(x) :
∣
∣
∣f

(m)
X (x)− f

(m)
X (x+ δ)

∣
∣
∣ ≤ Bδα}. (104)

Intuitively, that implies that fX is slowly varying, i.e., the density is sufficiently “smooth’ so that

there is a hope to reconstruct it from a finite number of samples by interpolating the empirical

density.

Assumptions on the noise Fan (1991) showed that the difficulty of deconvolution depends on

the smoothness of the noise distribution and that of the density to be estimated. Here, the term

‘smoothness’ means the order of the characteristic function as t → ∞. In short, the deconvolution

becomes more difficult as it is corrupted by smoother additive noise. Following Fan (1991), we call

the distribution of a random variable N smooth of order β if its characteristic function φN satisfies

B−1 (1 + |t|)−β ≤ |φN (t)| ≤ B (1 + |t|)−β , (105)

for some positive constants β > 0 and B > 0, and for all real t. This class of densities with

polynomially decaying tails in the Fourier domain is called ordinary-smooth. Some examples of

this ordinary-smooth error distributions include symmetric Gamma and double exponential distri-

butions.

There is another interesting class of error distributions, whose tails decay much faster in the

Fourier domain. We will call the distribution of a random variable N super-smooth of order β if its

characteristic function φN satisfies

B−1 exp
(

−γ|t|β
)

≤ |φN (t)| ≤ B exp
(

−γ|t|β
)

, (106)

for some positive constants β, γ > 0 and B > 1, and for all real t. Normal, mixture normal, Cauchy

distributions belong to the super-smooth class.
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Assumptions on the Kernel We summarize some required properties of kernel used in the density

estimator and the smoothness of noise before stating the results of Fan (1991).

(K1) φK(t) is a symmetric function, which has bounded integrable derivatives up to order m + 2
on R;

(K2) φK(t) = 1 +O (|t|m) as t→ 0;

(K3) φK(t) = 0, for |t| ≥ 1.

(N1) φN (t) is supersmooth of order β; see Eq. (106)

Note that φN (t) 6= 0,∀t is subsumed in (N1).

L.2.2. SOME DECONVOLUTION RESULTS

The following theorem provides the consistency and the convergence rate of the kernel density

estimator with known noise density (Eq. (103)) when the error distribution is supersmooth. We use

subscript n in f̂n to emphasize that f̂X is an estimator for fX based on n samples.

Theorem 56 (Fan (1991), Theorem 1) Let the kernel satisfies (K1), (K2), (K3), and the distribu-

tion of error satisfies (N1). With the choice of kernel bandwidth parameter hn = (4γ)
1
β (log n)

− 1
β ,

we have

sup
f∈Cm,α,B

sup
x∈R

E

[(

f̂n(x)− f(x)
)2
]

= O
(

(log n)−2(m+α)/β
)

.

There is another result (which is actually a corollary of the above theorem) in the same paper,

which serves better for our purpose. With f̂n, it is possible to define an estimator of the CDF, F , of

the random variable X by integration:

F̂n(x) =

∫ x

−Mn

f̂n(z)dz. (107)

Mn is a sequence of constants, which tends to −∞ as n → ∞. The following theorem provides a

convergence rate, which is better than naı̈vely integrating that bound from Theorem 56.

Theorem 57 (Fan (1991), Theorem 3) Let the same assumptions with Theorem 56 except for that

m is replaced with m + 1 in (K1) and (K2). Then by choosing the same bandwidth parameter

hn = (4γ)
1
β (log n)−

1
β and Mn = n

1
6 , we have

sup
f∈C′

m,α,B

sup
x∈R

E

[(

F̃n(x)− F (x)
)2
]

= O
(

(log n)−2(m+α+1)/β
)

.

where C′m,α,B =
{

f ∈ Cm,α,B : F (−n) ≤ D (log n)−(m+2)/β
}

.

In the original paper, Mn = n
1
3 is used. However, the theorem still remains valid with the modifi-

catio to Mn = n
1
6 (see Fan (1991), the proof of Theorem 3).
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