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Abstract—We consider a class of constrained queuing network
called switched networks, important sub-class of the stochastic
processing network (cf. Harrison (2000)), in which there are
constraints on which queues can be served simultaneously. Such
networks have served as effective models for understanding
various types of dynamic resource allocation problems arising
in communication networks like the Internet, computer archi-
tecture, manufacturing, etc. In such systems, a scheduling policy
is required to make resource allocation decisions in terms of
which queues to serve at each time subject to constraints.
The performance of the system is crucially determined by the
scheduling policy. The performance of such scheduling policies,
measured with respect to the following three metrics is of utmost
importance: (a) capacity, (b) induced queue-sizes or latency, and
(c) complexity of the implementation of the policy. Ideally, one is
interested in determining the trade-offs achievable between these
metrics characterized through the pareto performance boundary.
In this note, we shall summarize the state-of-art along with recent
progresses towards this somewhat ambitious program.

Index Terms—switched network, input-queued switch,
scheduling, maximum weight scheduling, fluid models, state
space collapse, heavy traffic, diffusion approximation

I. MODEL, A CLASS OF POLICIES

We consider a collection of N queues operating in discrete
time, indexed by τ ∈ {0, 1, . . . }: Qn(τ) be work in queue
n, 1 ≤ n ≤ N at time τ , Q(τ) = [Qn(τ)] be the vector
of queue-sizes and initially it is Q(0). Let An(τ) be the
total amount of work arriving to queue n and Bn(τ) be
the cumulative potential service provided to queue n, up to
time τ respectively, with A(0) = B(0) = 0 = [0]. We
consider single-hop network (for simplicity of exposition). Let
dA(τ) = A(τ + 1)−A(τ) and dB(τ) = B(τ + 1)−B(τ).
Then basic Lindley recursion is

Q(τ + 1) =
[
Q(τ)− dB(τ)

]+
+ dA(τ) (1)

where the [·]+ is taken componentwise. The fundamental
‘switched network’ constraint is that there is some finite set
S ⊂ RN+ such that

dB(τ) ∈ S for all τ . (2)

For simplicity, we shall consider S ⊂ {0, 1}N . We will refer
to π ∈ S as a schedule, and S as the set of allowed schedules.
The departure from queue n up to time τ is

Dn(τ) =

τ∑
s=0

dBn(τ)1{Qn(τ)>0}, (3)

where 1{x} = 1 if x = true and 0 otherwise.

A policy needs to choose schedule dB(τ) ∈ S in each
time slot. The specific class of policies of interest are the so
called maximum weight (MW) introduced (in basic version)
by Tassiulas and Ephremides [10]. In the basic version, the
schedule is chosen as follows (ties broken randomly or as per
a fixed rule):

dB(τ) ∈ argmax
π∈S

π ·Q(τ), (4)

where we use notation: u · v =
∑
n unvn for u,v ∈ RN .

More generally, given an increasing function f : R+ → R+

with f(0) = 0, f(x) → ∞ as x → ∞ , the MW-f policy
chooses schedule

dB(τ) ∈ argmax
π∈S

π ·f(Q(τ)). (5)

The specific class of policies of interest are those induced by
f(x) = xα for α ∈ (0, 1); we shall denote this policy as
MW-α policy. We shall assume the following.

Assumption 1.1: We assume that S ⊂ {0, 1}N is mono-
tone: if π ∈ S , then for any ρ ∈ {0, 1}N with ρn ∈ {0, πn},
ρ ∈ S.
To evaluate the performance of the system, we model the
uncertainty in the system (in form of arrivals) by means
of appropriate stochastic model. Specifically, we assume the
following.

Assumption 1.2: Let A(·) be a random process with sta-
tionary increments. Let there be λ ∈ RN+ so that for any
r ∈ Z+

P
(

sup
τ≤r

1

r

∣∣∣A(τ)− λτ
∣∣∣ ≥ εr) ≤ δr, (6)

where εr, δr go to 0 as r →∞.
The specific instances of A(·) that satisfy Assumption 1.2
and we shall consider are: (a) An(·) is Bernoulli process with
parameter λn ∈ [0, 1] independent across n; (b) An(·) is
Poisson process with parameter λn ∈ R+ independent across
n.

II. RESULTS

We describe the known results about interplay between
three performance metrics of scheduling policies: (a) capacity,
(b) average queue-size as well as exponential tail bounds
on queue-sizes, and (c) complexity of implementation of the
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A. Capacity.

This is about how well the network resource is utilized by
the scheduling policy. While there are various ways to under-
stand this, we shall define the effective resource utilization by
studying the net departure rate. Specifically, define

dn = lim inf
τ

1

τ
Dn(τ). (7)

The net departure rate is d̄ =
∑
n dn. An algorithm is called

optimal in terms of capacity if for any given λ ∈ RN+ , the
induced net departure rate d̄ = d̄(λ) is maximal possible with
probability 1. In [9], the following is established (by means
of fluid model):

1. For any policy with probability 1, d̄(λ) ≤
(∑

n λn
)
−

q̄(λ) where q̄(λ) is the value of the following optimiza-
tion problem:

minimize
∑
n

rn over r ∈ RN+

subject to ζ · r ≥ ζ · λ− 1, ∀ ζ ∈ D, (8)

where D = {ζ ∈ RN+ : ζ · π ≤ 1 ∀ π ∈ S}.
2. The net departure rate induced by MW-α is, with proba-

bility 1, d̄α(λ) =
(∑

n λn
)
− q̄α(λ) where q̄α(λ) is the

value of the following optimization problem:

minimize
∑
n

r1+αn over r ∈ RN+

subject to ζ · r ≥ ζ · λ− 1, ∀ ζ ∈ D, (9)

where D = {ζ ∈ RN+ : ζ · π ≤ 1 ∀ π ∈ S}.
3. Therefore, for any λ ∈ RN+ ,

lim
α↓0

q̄α(λ) =
(∑

n

λn
)
− q̄(λ).

The above results implies that the MW-α policy is asymptot-
ically optimal in terms of maximizing the departure rate as
α→ 0+.

B. Queue-size on average.

Here interest is in understanding the behavior of average
queue-size induced by policy when the notion of stationary
distribution as well as average queue-size (with respect to
it) are well defined. To state results (in a clean form) about
average queue-sizes, we shall assume arrival process to be
independent Poisson. Given rate vector λ ∈ RN+ , define the
load ρ(λ) as

minimize
∑
π∈S

απover απ ≥ 0, ∀ π ∈ S

subject to λ ≤
∑
π

αππ. (10)

Clearly, Q(·) is a Markov chain under MW-α policy when
arrival process is Poisson. When ρ(λ) < 1 then it is positive
recurrent with well defined, unique stationary distribution and
ρ(λ) < 1 is necessary for this. For any MW-α policy with
α > 0, E[

∑
nQn] with respect to this stationary distribution

is well defined (see [6]). Using the Foster-Lyapunov moment
bound, it follows that for any system considered here, under

the MW-1 policy, the stationary average queue-size is bounded
above as

E
[∑

n

Qn

]
≤ C n2

1− ρ(λ)
, (11)

where C > 0 is a universal constant. In [8] the following S
dependent lower bound on the net average queue-size under
any policy is established:

minimize
∑
n

rn over r ∈ RN+

subject to ζ · r ≥ λ · ζ2

2(1− λ · ζ)
, ∀ ζ ∈ D, (12)

where D = {ζ ∈ RN+ : ζ · π ≤ 1 ∀ π ∈ S}.
The overall challenge is to identify χ1(S) that depends on

S so that under the best policy with well defined stationary
distribution for any ρ ∈ (0, 1),

sup
λ:ρ(λ)=ρ

E
[∑

n

Qn
]

= Θ
(χ1(S)

1− ρ

)
. (13)

Clearly, the above statement implicitly conjectures existences
of such χ1(S) that determines the optimal (up to universal
constants) dependence of average queue-size on scheduling
constraints S for any such system. The (11) and (12) pro-
vide upper and lower bound on such quantity. In [8] it is
shown that the χ1(S) (up to constants) is characterized by
the lower bound (12) for the (general enough) instance of
switched network model induced by wireless network model
(see Section II-D for description of this model) with regular
enough constraint graph structure describing S. Indeed, we
believe that bound of (12) is reasonably accurate.

C. Exponential tail probability.

Here interest is in understanding the further detailed behav-
ior of the stationary distribution of queue-size when it exists.
Specifically, we shall assume that arrival process is Bernoulli
with rate vector λ ∈ [0, 1]N so that ρ(λ) < 1. Again, in this
setup the Q(·) forms a Markov chain under MW-α policy
for any α > 0. It is positive recurrent with unique stationary
distribution as long as ρ(λ) < 1. In [6], it is shown that with
respect to this stationary distribution, under MW-α policy

lim sup
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≤ −(1− ρ(λ))N−

2+α
1+α .

(14)

Further, for any policy it can be shown that for each ρ ∈ (0, 1)
there exists λ such that ρ(λ) = ρ and

lim inf
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≥ −(1− ρ)N

α
1+α . (15)

Similar to the average queue-size, the overall challenge is
to identify χ2(S, α) that depends on S (and α > 0) so that
under the best policy with well defined stationary distribution
for any ρ ∈ (0, 1),

sup
λ:ρ(λ)=ρ

lim inf
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≥ −C1(1− ρ)χ2(S, α)

sup
λ:ρ(λ)=ρ

lim sup
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≤ −C2(1− ρ)χ2(S, α),

(16)



where 0 < C1 ≤ C2 are some universal constants. Clearly,
the above statement implicitly conjectures existences of such
χ2(S, α) that determines the optimal (up to universal con-
stants) dependence of exponential tail bound of 1+α norm of
queue-sizes with respect to the stationary distribution. Indeed,
the (14) and (15) provide upper and lower bound on such
quantity.

D. Complexity.

The summary of results thus far suggest that the MW-
α class of policies are reasonably good: MW-0+ policy is
(near) optimal in terms of capacity, it has good scaling in
terms of average queue-size and very good behavior in terms
of exponential tail probability. And most importantly, it is a
myopic policy, i.e. it uses only current network state (queue-
sizes) to make the scheduling decision. Therefore, it is only
natural to wonder: do we have a reasonable answer for
the problem of designing scheduling policies for switched
networks?

To answer this question, it is important to understand the
context where such policies will be used. Specifically, in the
application domain like communication networks, the imple-
mentation of policies is highly constrained: (i) it should be
very simple in terms of computation and data structure require-
ment so that it can operate at very high aggregate bandwidth
(say making decision once every few nano seconds !) with
existing limitations on the memory bandwidth with limited
hardware requirement at low power; (ii) it should be preferably
iterative and distributed so as to allow for architectures that
are scalable. Such stringent constraints immediately lead to
the following questions: is it possible to implement the MW
policy with above requirements for arbitrary scheduling set S
? if not, how does the performance suffer from implementation
limitation ?

Before we start answering these questions rigorously, it is
important to lay down constraints explicitly. The main problem
is that the precise constraints are problem dependent and the
above stated constraints, while provide flavor of the problem,
do not define them explicitly. For that reason, collectively
over the past decade or so, researchers have focused on few
concrete applications where the constraints are quite clear.
One such important problem has been the design of medium
access in wireless networks. Formally, there are N wireless
transmitters or nodes or queues, denoted by V = {1, . . . , N}.
Let E ⊂ V × V represent the scheduling or transmission
constraints: if (i, j) ∈ E then no two nodes/queues can
transmit/be served simultaneously. Thus, the space of all
possible schedules is

S = {x ∈ {0, 1}N : xi + xj ≤ 1 ∀ (i, j) ∈ E}.

The implementation of any policy for making transmission
decision is highly constrained: (C1) each node must make
decision (using few, preferably constant number of computa-
tions) to transmit or not in each time slot on its own based on
local observations/historical information possibly summarized
through limited data structure; (C2) nodes have (so called
delayed carrier sense) information about transmission of other
nodes in prior time slots (and hence if they transmitted, they
know whether their transmissions were successful or not).

Indeed, the popular implemented protocols that go by the
names Aloha, Random Backoff, etc. satisfy C1 and C2.

Now in this setup, the maximum weight policy requires
solving the so called maximum weight independent set prob-
lem in graph G (with weights dependent on queue-size). In
general, this is hard problem and hence it is not clear if one
can implement the maximum weight policy as is with stringent
constraints like C1 and C2. This led to a long line of research
finally resulting in its resolution very recently by Shah and
Shin [3], [4] and Jiang and Walrand [2], [1]: they provide
implementation so that the resulting policy keeps network
Markov process positive recurrent as long as the system is
underloaded (i.e. ρ(λ) < 1). However, the performance of
such implementation in terms of queue-size scaling is not
clear.

As mentioned above, the MW-1 policy for example, induced
average queue-size with respect to stationary distribution that
scales as O(N2/(1 − ρ(λ)) when ρ(λ) < 1. And the best
bound one can obtain on average queue-size under the above
mentioned implementations are scaling super polynomially in
N , at the best.

In summary, MW is capacity achieving, provides small
(polynomially scaling in N ) average queue-size but may
not yield to implementation that has (time-)computational
complexity scaling polynomial in N (C1, C2 is too much
to ask for !). The implementations of [3], [4], [2], [1] have
polynomial complexity (actually, they satisfy C1, C2), is
capacity achieving (positive recurrence when ρ(λ) < 1) but
may not yield small (polynomially scaling in N ) average
queue-sizes. This leads to the following fundamental question:
is it possible to have an implementation that is (i) capacity
achieving, (ii) has small (polynomial in N ) queue-sizes, and
(iii) has polynomial in N computational complexity?.

Recently, Shah, Tse and Tsitsiklis [5] established that the
answer to this question is NO for arbitrary G (assuming the
standard computational hypothesis). The precise statement of
the result, details as well as extensions can be found in [5].

III. CONCLUSION

In conclusion, we would like to take note of the key
results and open problems surveyed here. Specifically, we
surveyed performance of scheduling policies for switched
networks in the context of three metrics: capacity, queue-
size and complexity. The MW-α policy as α ↓ 0 achieves
the maximal capacity, defined in terms of the effective net
departure rate for any switched network. This is a strong
evidence of the qualitative conjecture about goodness of MW-
0+ policy in the MW class of algorithms originally introduced
by Shah and Wischik [7]. The MW family of policies induce
stationary average queue-sizes when system is underloaded:
they are reasonably good and close to fundamental, policy
independent, lower bounds on them; similar qualitative result
holds for the exponential tail probability. Though MW policies
are mypoic and have very good performance in terms of
capacity and queue-size, in general their implementation can
require solving computationally hard problems. Indeed, for
general switched network, it is not possible to have any policy
that is computationally simple and has good performance in
terms of queue-size in complexity.



The questions of determining exact scaling of average
queue-size (i.e. χ1(S) and exponential tail probability (i.e.
χ2(S)) remain important quest going forward – resolution
of these will definitely advance the frontiers of methods for
large complex queuing networks. And the grand challenge
is to develop framework to understand the pareto boundary
reflecting interplay between these three performance metrics.
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