Fast and Slim Lifted Markov Chains

Kyomin Jung Devavrat Shah Jinwoo Shin
Mathematics, MIT EECS, MIT Mathematics, MIT
kmjung@mit.edu devavrat@mit.edu jinwoos@mit.edu

Abstract

Metropolis-Hasting method allows for designing a reversible Markov chain P on a given graph G for a target
stationary distribution 7. Such a Markov chain may suffer from its slow mixing time due to reversibility. Diaconis,
Holmes and Neal (1997) for the ring-like chain P, and later Chen, Lovasz and Pak (2002) for an arbitrary chain P
provided an explicit construction of a non-reversible Markov chain via lifting P so that its mixing time is essentially
1/®(P), where®(P) is the conductance of P. Hence it leads to the reduction of the mixing time up to its square
root. However, the construction of Chen et. al. results in expansion of size of the underlying graph during lifting; it
affects the performance of algorithms (such as samplings or distributed linear dynamics) based on Markov chains.
Therefore, motivated to reduce the size of the lifted chain, we provide a new lifting for an arbitrary chain based on
expander graphs, which results in reduction of size up to 2(n) (n is the number of states of P) with essentially the
same mixing time.

The lifting, though allows for reduction in the mixing time, cannot be reduced beyond 1/®(P), given a starting
Markov chain P. Therefore, if P is ill-designed to begin with, 1/®(P) can be large. To overcome this limitation,
we introduce a new notion of lifting, which we call pseudo-lifting. For an arbitrary chain P and a diameter D of its
underlying graph, we provide a simple pseudo-lifting with mixing time O(D) and size O(nD) - this is the fastest
possible mixing time for any Markov chain up to constant for any given underlying graph. Next, we provide a
hierarchical pseudo-lifting which allows for optimizing the size of the lifted chain using geometry of its underlying
graph. We exhibit the strength of this construction for graphs with constant doubling dimension p to design a fast

mixing pseudo-lifted Markov chain with size O (Dnl_ﬂi}rl> , which might be much larger without its geometry.



I. INTRODUCTION

Markov chain (or a random walk) is one of the fundamental tools to design algorithms for network problems
such as sampling and distributed averaging. Sampling with a given distribution on nodes is used for counting,
optimization, approximation etc. Distributed averaging is computing the average of some initial values given at the
nodes only by communicating between neighbors. It is closely related to the distributed linear estimation ([15], [4],
[16]), the distributed spectral decomposition ([10]) or the distributed load balancing ([11]). In these algorithms, the
basic idea is exchanging information based on the Markov chain defined on the network (graph). In both sampling
and distributed averaging, the mixing time of the Markov chain (time to approach stationarity from a worst initial
state) is crucial for their running time, hence finding the fastest mixing Markov chain for a given network is a
major issue in these problems.

Markov chain is classified into two types: reversible(symmetric) and non-reversible(non-symmetric). In 2004,
Boyd, Diaconis and Xiao [3] showed that the fastest reversible one for a given graph can be found using the
Semi-definite Program, and in 2006 they provided a distributed procedure to find it. But, there is no known method
for finding fast non-reversible Markov chains, and the following question arises naturally: how much can we reduce
the mixing time by considering non-reversible Markov chains?
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Fig. 1. A non-reversible random walk on the ring-like graph of 2n nodes.

Consider a non-reversible Markov chain in Figure I. It mixes in O(nlogn) time, but any reversible Markov chain
defined on this graph mixes in Q(n?) time. Note that this graph has a similar structure to the n-ring graph (i.e. the
graph obtained by merging (+,4) and (—, ¢) forms the ring graph), in which any reversible Markov chain also mixes
in Q(n2) time [14]. Diaconis, Holmes and Neal [6] first observed this example, i.e. certain reversible chains have
closely-related non-reversible Markov chains (called lifted chains) that mix substantially faster. Lifting a Markov
chain involves possibly splitting each state into multiple ones and assigning a transition probability between new
states so that the projection of the new Markov chain (via mapping new states onto their original copies) results
in the original Markov chain (see Section II-C for the formal definition of lifting). Therefore, the underlying graph
(or the stationary distribution) of the original chain is a projected image of the underlying graph (or the stationary
distribution) of the lifted one. In a subsequent work, Chen, Lovasz and Pak [5] provided an explicit construction
to lift a general Markov chain with almost optimal speed up in the mixing time.

The sampling algorithm can be implemented via lifting using memory: for simulating the lifted chain, the current
state stores what the sub-state is in the lifted chain. Therefore, it can sample much faster than algorithms using
the original Markov chain P. However, Chen et al. [5] proved the lifted chain cannot mixes faster than 1/®(P),
where ®(P) is the conductance of the original chain P. This motivates our first question:

Q1. Is it possible to overcome the limitation 1/®(P) of the running time of the sampling algorithm using
memory?

Also, the distributed averaging algorithm can be implemented via lifting. We consider the linear distributed
iterations [16] and the randomized gossip algorithm [4], in which using a faster mixing Markov chain leads to
a better running time. For a given Makkov chain P on the network, the linear distributed iterations updates the
current value x;(t) of node ¢ at time ¢ by >, Pjxz;(t — 1), which is the weighted average of the values of i’s
neighbors at time (£ — 1). A lifted Markov chain can be simulated in the linear distributed iterations by running
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COMPARISON OF OUR CONSTRUCTIONS WITH THAT OF CHEN ET. AL. [5]. V, E/, D, AND p REPRESENT THE VERTEX SET, THE EDGE SET,
THE DIAMETER, AND THE DOUBLING DIMENSION OF THE UNDERLYING GRAPH RESPECTIVELY. HERE D < C' & 1/®(P), AND ¢ IS THE
PARAMETER OF PSEUDO-LIFTING DEFINED IN SECTION IV.
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Barbell graph | Time | (nQ) (@) (n2 log n) 0] (n2 log? n) o) (%)
Size | ©(n?) Q(n") O (n"logn) O (n?)
TABLE 11

COMPARISON FOR SOME SPECIFIC GRAPHS. HERE *ORIGINAL’ MEANS THE UNIFORM REVERSIBLE RANDOM WALK ON THE GRAPH,
AND OTHER BOUNDS ARE ACHIEVED FROM LIFTINGS USING 'CLP’, ’LI1’,’L2’, AND ’L3’ RESPECTIVELY. A BARBELL GRAPH WITH 2n
NODES IS A GRAPH THAT HAS TWO K,, CONNECTED BY A SINGLE EDGE.

the multiple threads in each node. The total number of iterations is the mixing time 7" of the used Markov chain
P, hence it would decrease after lifting. On the other hand, since |F| exchanging happens per each iteration, the
total number of operations is 7" x | E/|, where E is the edge set of the underlying graph of P. Therefore, it may not
decrease because the size |F| may increase after lifting. In other words, the size |E| of the lifted chain is involved
in the cost of this algorithm. This motivates our second question:

Q2. Can we construct a lifted chain which mixes as fast as that of [5], but has smaller size?

Now, consider the randomized gossip algorithm, which is a distributed averaging algorithm on a given network
with a gossip constraint, i.e. means that no node communicates with more than one neighbor in every time slot.
Unlike the linear distributed iterations, the lifted chains cannot be used in [4] because it requires the reversible one
(Chen et al. [5] proved the fastest lifted chain should be non-reversible).

A. Our contributions

For the second question, we construct a lifted chain based on the expander graph, instead of the complete graph
in [5], to reduce the size of the lifting. In this paper, the size of the Markov chain P indicates the number of edges
in the underlying graph of P. In particular, our construction, which we call L/, lead to the reduction in the size
of the lifted chain up to ©(n) with respect to the construction in [5], where n is the number of states in P. Our
construction builds on the technique of [5], but the usage of the expander graph in place of the complete graph
requires new proof techniques for establishing the bound on the mixing time. First, we need to consider a different
flow problem, and the flow shortening technique in [12]. Second, we analyze the mixing time of the hybrid-type
random walk.

For the first question, we introduce the relaxed notion of lifting, which we call pseudo-lifting. We relaxed some
properties of the original lifting, but it still preserves the topological properties as well as allows for the exact
simulation of the original stationary distribution (see Section IV for the formal definition of pseudo-lifting). For an
arbitrary Markov chain P, we obtain its pseudo-lifted chain which mixes in O(D) time and has size O(Dn+ |E|),
where D is the diameter of the underlying graph of P. (Somewhat surprisingly, the mixing time depends only on
D, not entire information of P, hence this gives the rapidly mixing Markov chain even when P has a large 1/®(P)
value.) As you see in the discussion of the Barbell graph in Section IV-B, for any P defined on a given graph, D



can be much smaller than 1/®(P) that is the limitation of the mixing time of the original lifted chain. Furthermore,
the size guarantee O(Dn + |E|) is even smaller than the size of L/. We will denote this construction as L2.

Finally, we provide a hierarchical pseudo-lifting construction, which we will denote as L3. It allows for optimizing
the size of the pseudo-lifted chain by considering the trade-off with the mixing time. Specifically, we apply this
construction for a class of Markov chains with geometry: its underlying graphs has a constant doubling dimension
p. We show that a two-level hierarchical pseudo-lifted chain mixes in O(D) time and has size O(Dnl_ﬁ): it
achieves the reduction up to @(nﬁ) factor compared to L2.

We summarize the performance of our various constructions L/, L2 and L3 as discussed above in Tables I and
II. We do head-to-head comparisons with the construction of Chen et al. (denoted by CLP). Key features of L3
are: the order optimality of the mixing time as well as the small size of the lifted chain — specifically in the case
of a Markov chain with geometry such as a random walk on the k-grid graph.

B. Organization

In Section II, the preliminaries and notations are summarized. In Section III, we show how to build LI, the
fast mixing lifted chain with a smaller size than that of CLP. LI has the mixing time O (C'log1/my) and size
O(C|E|), while those of CLP are ©(C) and (C|V|?) respectively. In Section IV, we define new concept of
lifting, ¢ pseudo-lifting, and describe its construction L2. We prove that L2 has the mixing time O(De~!) and size
O(|E|+ D|V|). In Section V, we use the geometry of graph and obtain the better ¢ pseudo-lifting construction L3

in terms of the size of the lifted chain. L3 has the mixing time O(De~!) and size O (D]V\1_$>.

II. NOTATIONS AND PRELIMINARIES
A. Mixing Times of Markov Chains

Consider a finite irreducible ergodic Markov chain, with the underlying graph G = (V, E), the transition matrix
P, the stationary distribution 7. We may use V(&) to represent vertices of V' of G. P is graph comformant, that
is, P;; > 0 only if (i,7) € E. The ergodic flow matrix @ = [Q;;], where Q;; = m; ;. It satisfies: >, - Qi; = 1,
> Qij = >, Qji and Y. Q;; = m;. Furthermore, every non-negative matrix () with these properties defines a
Markov chain with the stationary distribution 7. The reverse chain P* of P is defined as: P;; = m;Pj;i/m; for all
(i,7) € E. We call P reversible if P = P*. We will use definitions my = min; ; and 7,4, = max; ;.

Let P!(x,-) denote the distribution of Markov chain after ¢ steps starting from = € V. For the Markov chain of
our interest, P!(z,-) goes to  as t — oo. The notion of Mixing time is the measure of rate of convergence to 7.
There are various (mostly equivalent) definitions of Mixing time that are considered in literature based on different
measures of distance in distribution, stopping time, etc. First, we present the definition based on the total variation

distance and the x?2-distance.
Definition 1: Given £ > 0, let 7(¢) and 72(¢) represent e-Mixing time of the Markov chain with respect to the
total variation distance and the y2-distance respectively. Then, they are

T(e) = min{t 1V € Q,%Z |P!(z,y) — m(y)| < E} ,

yeQ

73(¢) = min {t veeq, [ @ (P(2,y) — 7(y))? < 5} .
yeQ

However, in this paper, we primarily consider the definition of Mixing time from the stopping rule. A stopping
rule I is a stopping time based on the random walk of the Markov chain: at any time, it decides wether to stop or
not, depending on the walk seen so far and possibly additional coin flips. Suppose, the starting node w" is drawn
from distribution o. The distribution of the stopping node w' is denoted by o' = 7 and call T as stopping rule from
o to 7. Let H(o, 7) be the infimum of mean length over all such stopping rules from o to 7. This is well-defined
as there exists the following stopping rule from o to 7: select © with probability T; and walk until getting to i. We
will denote by H(i,7), the average number of steps taken to reach j starting from ¢ under the random walk of
Markov chain. Similarly, the access time H(m, S) is the expected number of steps before the set S is reached with
starting distribution 7. Now, we present the definition of the (stopping rule based) Mixing time H.



Definition 2: 'H = max, H(o, ).
Therefore, to bound H, we need to design a stopping rule whose distribution of stopping nodes is . Sometimes,
due to the difficulty for design such an exact stopping rule, we use the following strategy for bounding the mixing
time H.

Step 1. For a positive constant € and any starting distribution o, we design a stopping rule whose stopping
distribution ~y is e-far from 7 (i.e. v > (1 — &)m). This gives the upper bound for H (o, 7).
Step 2. We bound H by H(o,~) using the following fact known as fill-up Lemma in [1]:

<
7—(_1_ He,

where H, = max, min,>1_q)r H(o, 7).

B. Additional Techniques to bound Mixing Times

Various techniques have been developed over past three decades or so to estimate Mixing time of a given Markov
chain. We review some of the key techniques that will be relevant for this paper.
Conductance. The conductance of a Markov chain with ergodic flow matrix @ is defined by

&= min QEV\S)
scv w(S)m(V\S)
where Q(A,B) =) ;¢ 4 jep Qij- The Mixing time H and conductance ® are related as follows:
1 1 1
—<H<LO|(|=log— ).
g =T <<1>2 o8 7r0>
Eigenvalue. If P is reversible, one can view P as a self-adjoint operator on a suitable inner product space and this

permits us to use the well-understood spectral theory of self-adjoint operators. It is well-known that P has n = |V/|
real eigenvalues 1 = Ao > A\ > Ay > --- > \,,_1 > —1. The e-mixing time 7»(¢) is related as

() < 1 1 1
To(e —log
2(€) = evmo |’
where Ap = 1 —max{|A1|,|A\n—1|}. The Ap is also called the spectral gap. When, P is non-reversible we consider
PP*. It is easy to see that the Markov chain with PP* as transition matrix is reversible. Let App- be the spectral
gap of this reversible Markov chain. Then, the mixing time of original Markov chain (with transition matrix P) is
bounded above as:
(e) < 2 | 1
To(e ) .
A Py = V0

C. Lifting and Flows

The following definition of lifting implies that it is possible to simulate the original distribution 7 using the lifted
Markov chain. The key property to note is that lifting preserves the original topological properties of the graph.

Definition 3 (Lifting): Consider a Markov chain with transition matrix P and stationary distribution 7 defined on
graph G = (V, E). A Markov chain with transition matrix P, stationary distribution 7 on graph G= (V E) is called
lifting of P if there exists a many-to-one function f : V — V such that the following holds: (a) for any u,v e v,
(@) € E only if (£(a), (7)) € E: (b) for any u,v € V, m(u) = 7(f (), and Q(u,v) = Q(f (), /1 (v).
Here Q and @ are ergodic flow matrices for P and P respectively.

In [5], authors use a multi-commodity flow to construct a specific lifting of a given Markov chain P to speed up
its mixing time. Specifically, they consider a multi-commodity flow problem on GG with the capacity constraint on
edge (u,v) € E given by Q.. A flow from a source s to a destination ¢, denoted by f, is defined as a non-negative

function on edges of GG so that
> FGE) =Y fid)
J J



for every node ¢ # s,t. The value of the flow is defined by
val(f) =Y f(sg) = D f(s) = D £(t) = Y f(t3)
J J J J
, and the cost of flow f*! is defined as
cost(f) = > [f(if).
(i.j)eE
A multi-commodity flow is a collection f = (f*!) of flows, where each f*' is a flow from s to t. Define the
congestion of a multi-commodity flow f as
Zs,t fSt(Z])
max ———.
(i.j)€E Qij
Consider the following optimization problem, essentially trying to minimize the congestion and the cost simulta-
neously under the condition for the amount of flows:

minimize K
subject to wval(f') = mem;, Vs, t,

> F65) < KQij V(ij) € E,

s,t

Zcost(f”) < K, Zcost(f“) < Kmy, Vs, t.
t s

Let C' be the optimal solution of the above problem. It is easy to see that C' > 1/®. Further, if P is reversible,
then result of Leighton and Rao [13] on the approximate multi-commodity implies that

1 1

Let the optimal multi-commodity flow of the above problem be F}, and we can think of F} as a weighted collection
of directed paths. In [5], authors modified Fj, and got a new multi-commodity flow F5 that has the same amount
of s — ¢ flows as Fi, while its congestion and path length are at most 12C. They used F; to construct a lifting P
with mixing time H such that

H < 144C.

Also, they showed that the mixing time of any lifting Pis greater than C'/2, hence their lifted Markov chain has
almost optimal speed up within a constant factor.

To obtain a lifting with very small size, we will to study the existence of the specific k-commodity flow with
short path lengths. For this, we will use a balanced multi-commodity flow, which is a multi-commodity flow with
the following condition for the amount of flows:

val(f*) = g(s,1),¥s,1,

and g(s,t) satisfies the balanced condition:
Zg(s,t) < T, Zg(s,t) <, Vs,t.
t s

Therefore, F} and F5 are also balanced multi-commodity flows with g(s,t) = msm. Given a multi-commodity flow
f,let C(f) be its congestion and D(f) be the length of the longest flow-path. Then, the flow number T is defined
follows:

T'= min (max {C(f), D(f)})

where the minimum is taken over all balanced multi-commodity flows with g(s,t) = msm;. Hence, as stated earlier,
T < 12C (from F3). The following claim appears in [12]:
Claim 1: (Claim 2.2 in [12]) For any g(s,t) satisfying the balanced condition, there exists a balanced multi-



commodity flow f with g(s,t) such that max{C(f), D(f)} < 2T.

D. Expanders

The expander graphs are sparse graphs which have high connectivity properties, quantified using the edge
expansion h(G) as defined as

10(5)]

Caglsiss S|
where 0(9) is the set of edges with exactly one endpoint in S. For constants d and ¢, a family G = {G1,Go,...}
of d-regular graphs is called a (d,c)-expander family if h(G) > ¢ for every G € G. There are many explicit
constructions of a (d, c)-expander family available in recent times. We will use a (d, ¢)-expander graph G¥* =
(V,EF*) (i.e. VF* = V), and a transition matrix PF® defined on this graph. For a given 7, we can define a
reversible PF* so that its stationary distribution is 7 as follows,

pre _ ) d if (i,j)eEEx‘
Y I

Uy

In the case of T4, = O(m), it is easy to check that ®(PE*) = O(h(G)) = Q(1), where ®(PET) is the
conductance of PE®, Hence, Apr. = Q(1), and the random walk defined by P¥* mixes fast. In Section III, we
will consider only such .

E. Doubling Dimension Metric

The notion of doubling dimension metric space (or graphs) was introduced in [2], [8], [7]. Specifically, consider
a metric space M = (X, d), where X is the set of point endowed with a metric d. Given = € X, define a ball of
radius 7 € Ry around z as B(z,r) = {y € X : d(x,y) < r}. Define

p(z,r) =inf{K e N: 3 y,...,yx € X,B(z,r) C UL, B(y;,7/2)}.

Then, the p(M) = sup,cx ,er, (¥, 7) is called the doubling constant of M and log, p(M) is called the doubling
dimension of M. Doubling dimension of a graph G = (V| F) is defined with respect to metric induced on V' by
the shortest path metric.

III. EFFICIENT LIFTING USING EXPANDERS: CONSTRUCTION OF L/

In what follows, we will consider only lazy P such that P > I/2. We can assume this without loss of generality
for the purpose of mixing time because if P is not such then we can modify it as (I + P)/2; the mixing time of
(I + P)/2 is within constant factor of the mixing time of P. Next, we present our construction.

A. Construction

We use the multi-commodity flow based construction which was introduced in [5]. They essentially use a multi-
commodity flow between source-destination pairs for all s,¢ € V. Instead, we will use a balanced multi-commodity
flow between source-destination pairs that are obtained from an expander. Thus, the essential change in our
construction is the use of an expander in place of a complete graph used in [5]. A caricature of this lifting is
explained in Figure 2. However, this change makes analysis of mixing time lot more challenging and requires us
to use different analysis technique. Further, we use arguments based on the classical linear programming to derive
the bound on the size of lifting.

To this end, we consider the following multi-commodity flow: let G¥* = (V, EF®) be an expander with a
transition matrix P®* and a stationary distribution 7 as required — this is feasible since we have assume 7,4 =
O(mo). We note that this assumption is used only for existence of expander. Consider a multi-commodity flow
f = (F*")(sepe- so that
(a) val(f*) = msPL* = QE® for all (s,t) € EF?;

(b) >, f(ij) < KQjj for all (i, j) € E;

Lemma 2: There is a feasible multi-commodity flow F3 in the above flow problem with congestion(/) and

path-length at most C' = 24C.
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Fig. 2. A caricature of lifting using expander. Let line graph G be a line graph with 4 nodes. We wish to use an expander GF* with 4
nodes, shown on the top-right side of the figure. G is lifted by adding paths that correspond to edges of expander. For example, an edge
(2,4) of expander is added as path (2,3’,4). We also draw the lifting in [5] which uses the complete graph.

This Lemma is derived directly from Claim 1, because the flow number is less than 12C' and this flow is a balanced
multi-commodity flow. Now, we can think of F3 as a weighted collection of directed paths {(P,,w;) : 1 <r < N},
where the total weight of paths from node s to t is ms P%*, where (s,t) € EF®, Let £, be the length of path P,.
From Lemma 2, we have the following:

dowr=1 <G (1)
.
Z Wy = Ty, Z wy =m;, fori eV )
r:P,. starts at 4 r:P, ends at i
> w, <CQy, for (i,]) € E. 3)

r:(4,)€E(P;)

Using such a collection of weighted paths, we construct the desired lifting next. As Figure 2, we construct the
lifted graph G= (17, E) from G by adding a directed path P! of length ¢, connecting i to j if P, goes from i to
Jj. Subsequently, ¢, — 1 new nodes are added to the original graph. The ergodic flow on an edge (7, j) of the lifted
chain is defined by

Qij — Xrijenp,) wr/2C if (i,5) € E(G)

ij =
It is easy to check it defines a Markov chain on G, and a natural way of mapping the paths P, onto the paths P,
collapses the random walk on G onto the random walk on G. The stationary distribution of the lifted chain is

- _ Jw2C if i € V(P',)\V(G)
L T — Zr:’Pr thru ¢ wT/Qa if 4 € V(G)

Thus, the above stated construction is a valid lifting of given Markov chain P defined on G.



B. Mixing Time of the Lifted Chain

First, we state two useful Lemmas.
Lemma 3: Let Py, P> be reversible Markov chains with their stationary distributions 71, mo respectively. Suppose
there exist positive constants «, 3, ¢, d such that P > aP,, Py > 31, and cmy < w1 < dms. Then,

d2)\P2’2ﬂ)

Proof: From the min-max characterization of the spectral gap (see, e.g., page 176 in [9]) for the reversible
Markov chain, it follows that

Ap, > min (
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The smallest eigenvalue of P; is greater than 23 — 1 because P; > (1. So, the distance between the smallest
eigenvalue and -1 is greater than 23. This completes the proof of Lemma 3. [ ]

Lemma 4: Let Py, P, be Markov chains with their stationary distributions 7y, 7o respectively. Now, suppose P»
is reversible as well. (P; is not necessarily reversible.) If there exist positive constants «, (3, ¢, d such that P; > aPs,
P, > BI and cmy < w1 < dmy. Then,

/\P1P1* > min < dg )‘P272ﬁ2>
Proof: PPy is a reversible Markov chain which has 7; as its stationary distribution. Because P > 31,
PPl > aPPf > affP,. Also, PP} > (3%1. Now, the proof of Lemma 4 follows from Lemma 3. [ |

Now, we state the main result stating the bound on mixing time of the lifted Markov chain.
Theorem 5: The mixing time, H of the lifted Markov chain represented by Q defined on G is bounded above
as H = O(Clog(1/m)).
Proof: By property of expander, we have A\ps. = §)(1). Therefore, to prove Theorem 3, it is sufficient to show

that

H=0 ( ¢ log(l/wo)> .

Apee

First, note that for any node ¢ € V' (i.e. original node ¢ in graph &),
1 ~
o™i S S m 4
Now, under the lifted Markov chain the probability of getting on any directed path P, starting at i is
py= Qo W
T 2CT;
Hence the probability of getting on any directed path starting at ¢ is
1 .
Yo T ow-
207’[’1' QCTFZ'T,P, QCﬂ'Z

7P/ starts at ¢ '’ starts at ¢

1

From (4), this is bounded between Yok and L

c
To study the H, we will focus on the induced random walk (or Markov chain) on original nodes V' C 1% by the

lifted Markov chain P. Let PV be the transition matrix of this induced random walk. Then,

w.
PY =P+ > 6’%
1

r:P/. goes from ¢ to j




Now, PV > P > 1/4, because ﬁ” = @“/ﬁl > Qii/27; = Pym;/2m; > P;;/2 > I/4. Here we have assumed that
P > I/2 as discussed earlier. Now,

- 1 m; PE® 1
Fyz—— Y w=_zl> P
207‘1’1’ PP 207‘(’1' 2C

goes from ¢ to j

And, its stationary distribution 7V’ is : %ZV = ﬁ?{/). Therefore, by (4) we have %m < %ZV < 27;. Now, we can apply
Lemma 4 to obtain the following:
A Q < ! A > (5)
DV (PVI« — <APEx | .
PY(PY) O

Now, we are ready to design a stopping rule I, that will imply that the desired bound on H as claimed in Theorem
5. Now, the stopping rule:
(i) Walk until visiting old nodes of V' C V for ¢ times, where ¢ = {2 log(Q/%(‘)/)//\]gv(lgv)*w . Let this ¢-th old
node be denoted by X.
(ii) Stop at X with probability 1/2.
(iii) Otherwise, continue walking until getting onto any directed path P.; choose an interior node Y of P, uniformly
at random and stop at Y.

Given (5) and results stated in Section II-B on relation between mixing time and Ap, (PV)> it follows that after
time ¢ as defined above the Markov chain, restricted to old nodes V, has distribution close to 7#". Therefore,

|IPr(X =w) -7 | <70/2, YweV.

According to the above stopping rule, we stop at an old node w with probability 1/2. Therefore, for any w € V,
we have that the stopping time I stops at w with probability at least 7y, /4 > m,,/8 > 7,,/8. With probability 1/2,

the rule does not stop at the node X. Let w* be the k' point in the walk starting from X. Because at any old

node ¢, the probability of getting on any directed path is between % and %, a coupling argument shows that for

any old node 1,

k
1 1.
Pr(w® = i|uw?, -, w” are old nodes) > (1 - @) —z7
If w is a new point on the directed path P’,. which connects the old node i to j. Then,

1
Pr(T stop at w) > 3 ZProb(wk = i|w®, -, w" are old points) x Prob(at i, get on the path P’,.) x

1 1\*1 1
22<1_A> ey 1
C 2CT; C

B
b

Y

v

= 77Tw

The average length of this stopping rule is O(t + C). By (5),

+6> _0< g 1og(1/770)).
Apre

Thus, we have established that the stopping rule I' has average length O(C'log1/m) and the distribution of
the stopping nodes is (7). Therefore, using the fill-up lemma stated in the Section II-A, it follows that H =
O(Clog1/m). [ |

ot+C)=0 (’7>\A(2A) log(2/m)




C. Size of the Lifted Chain

Here, we establish the bound on the size of lifted cllain as described above. We want to estabgsh that the size
of the lifted chain in terms of number of edges, i.e. |E| = O(C|E|). Note that, the lifted graph G is obtained by
adding the paths that appeared in the solution of the multi-commodity flow problem. Therefore, to establish the
desired bound we need to establish bound on the number of distinct paths as well as their lengths.

To this end, let re-formulate the multi-commodity flow based on expander G* as follows. For each (s,t) € EF?,
we add a flow between s and ¢. Let this flow be routed along possibly multiple paths. Let Py;; denote the 4 path
from s to ¢, it’s length /; is at most C as per discussion in Lemma 2 and z; be the amount of flow sent along
this path. Let the overall solution, denoted by {(P,,w,)} gives a feasible solution in the following polytope with
Tstj as its variables:

> @y =7 PE, V(s,t) € BEF
J

Z Z Tstj < @Qe, Vee E

steEET jie€Pyy;
Tstj >0 Vs, t, 7.

Clearly, any feasible solution in this polytope, say {(P,,w,)}, will work for our lifting construction. Now, the size
of its support set is [{(P,, w,)}|. If we consider the extreme point of this polytope, the size of its support set is at
most |EF?| 4+ |E| = O(|E|) because the extreme point is an unique solution of sub-collection of linear constraints
in this polytope. Hence, if we choose such an extreme point {(P,,w,)} for our lifting, the size of our lifted chain
|E| is at most O(C|E|) since each path is of length O(C). Thus, we have established that the size of the lifted
Markov chain is at most O(C|E]).

IV. THE PSEUDO-LIFTING: CONSTRUCTION OF L2

We will use the following notion of pseudo-lifting to design fast mixing Markov chains while maintaining the
small size of the lifted chain.

Definition 4 (Pseudo-Lifting): Consider a Markov chain with transition matrix P and stationary distribution 7
defined on graph G = (V, E). Given ¢ € (0,1/2), a Markov chain with transition matrix P, stationary distribution
7 on graph G = (V, E) is called a pseudo-lifting of P with parameter ¢ (or an ¢ pseudo-lifting of P) if there exists
a many-to-one function f : V =V, T CV with IT| = |V| such that the following holds: (a) for any @, € V,
(W, v) € E only if (f(u), f(¥)) € E, and (b) for any u € V, (1 —&)m(u) = 7(f~*(u) N T).

The above definition suggests that (by concentrating on set T), it is possible to simulate the stationary distribution
7 exactly (irrespective of €) using the pseudo-lifting. Here, we present a basic construction. The primary reason to
present it is to develop an intuition for more complicated hierarchical construction in Section V.

A. Construction

Let D be the diameter of G. First, select an arbitrary node v. Now, for each w € V/, there exist paths P, and
Puyw, from w — v and v — w respectively. We will assume that all the paths are of length D: this can be achieved
by repeating same nodes. Now, we construct a pseudo-lifted graph G starting from G.

First, create a new node v’ which is a copy of the chosen vertex v. Then, add directed paths P,,,, a copy of Py
from w — v'; add P}, (copy of P,,) from v’ to w. Each such addition creates D — 1 new interior nodes. Thus,
we have essentially created a virtual star topology using the paths of the old graph and totally added O(nD) new

nodes. Now, we define the ergodic flow @ for this graph G as follows: for an edge (¢, j),

5, — [om if (i, j) € E(Ply,) or E(Py)
Y 1-9)Qy if (i,)) € E(G).

It is easy to check that }_,; @ij =12, @ij =2 @j, Hence it defines a Markov chain on G. The stationary



distribution of this lifting is

%W“’ if i € (V(,P{uv) U V(,P{)w))\{wv ’Ul}
Ti=(l—ec+55)m ifieV(G)
55 if i =2

Given the above definition of @ and corresponding stationary distribution 7, it satisfies the pseudo-lifting definition

with parameter § = ¢ (1 — %) if we choose T'= V(G) (i.e. T is the set of old nodes). Clearly, the number of

edges in G is |E| + 2D[V|. We claim the following bound on Mixing time.
Theorem 6: The mixing time of the Markov chain defined by Q is O (£).
Proof: Consider the following stopping rule.
(1) Walk until visiting v/, and stop there with probability 57.
(2) Otherwise, continue walking a directed path P, , and choose an interior node of P/, uniformly at random,

KOXTORS
and stop there with probability a(g)D— L) /(1= 5%).

(3) Otherwise, we will visit w, and stop there with probability (1 — ¢ + 55)/ (1 — 55 — 5([2)5 L)

(4) Otherwise, continue walking until getting a directed path P!

N / .
wo» and an interior node of P, uniformly at
random, and stop there.

With little calculation, it follows that when the stopping rule stops as per (1), (2) or (3), it induces the stopping
distribution as per 7 for nodes in {v'} U V(G) U V(P/,,). Now, when the step (4) is taken, till the walk gets
on a directed path, it is evolving like original Markov chain with transition matrix P on nodes in V(G). Since
the distribution of the walk at the end of (3), conditioned to V(G) is exactly 7 (note that 7 = (1 — ), for an
appropriate ), it follows that the distribution 7 over the nodes of V(&) is preserved under this walk till getting on
a directed path. Therefore, it follows that when walk stops under (4), the distribution of 7 € P, is exactly 7;. Thus,
we have established existence of a stopping rule that takes arbitrary starting distribution to stationary distribution
7. Now, this stopping rule has average length O(D/e): since the probability of getting on a directed path P, at
w is ©(e/D), the expected number of walks in (1) and (4) is O(D/e). This completes the proof of Theorem 6. W

B. Remark

To see the importance of Theorem 6, consider a Barbell graph of 2n nodes: two complete graphs of n nodes
connected by a single edge. The size of this graph, |E| = ©(n?). Now, consider a random walk where the next
transition is uniform among all the neighbor for each node. For such random walk, it is easy to check that C' = 2(n?).
Therefore, the mixing time of any lifted chain is at least 2(n?). However, this random walk is ill-designed because
C' can be decrease up to O(nlogn) by defining its random walk in another way (i.e. increasing the probability
of its linkage edge, and adding self-loops to non-linkage nodes not to change its stationary distribution). However,
for this graph the diameter D = O(1). Therefore, our construction provides pseudo-lifting with mixing time O(1)
with size of the lifted graph being O(n?) (i.e. only constant factor expansion in size).

V. HIERARCHICAL CONSTRUCTION FOR THE PSEUDO-LIFTING: CONSTRUCTION OF L3

Here, we describe a more sophisticated version of the pseudo-lifting described in the previous section. A caricature
of this construction is presented in Figure 3. For this, we need an R-net Y C V of graph G = (V, E) defined as
follows:

(i) For every v € V, there exists u € Y such that the shortest path distance between u, v is at most R.
(i) The distance between any two y, 2z € Y is more than R.

Such an R-net can be found in graph greedily. Given R-net Y, match each node w to the nearest y € Y (breaking
ties arbitrarily). Let C}, = {w| w matched to y} for y € Y. Clearly, V' = U,cyC,. Finally, for each y € ¥ and for
any w € Cy we have path P, Py, between w and y of length exactly R; for each y €Y, P,, and P,, between
y,v of length exactly D.



Fig. 3. A caricature of hierarchical pseudo lifting. The original graph is given by “white” nodes and ”solid” lines. In the lifted graph,
“grey” nodes and “arrow” lines (which represent copies of directional paths) are additional ones. For example, the “arrow” line from v’ to
2’ represents a copy of the directed path from v to x. Nodes x,y and z form a net, and the vertex v is chosen arbitrarily.

A. Construction

Now, we construct the lifted graph G. As before, select an arbitrary node v € V and create its copy v’ again.
Further, for each y € Y create two copies v} and y5. Now, add directed paths P{Uy, a copy of Py, from w to yj
and add Py, a copy of Py, from ¢} to v'. Similarly, add 7P, and P,,, between v', y5 and y5, w. This construction
adds 2D|Y| + nR edges in G to give G. Now, the ergodic flow @ on G is defined as follows: for any (i,7) of G,

mﬂ'w if (Z,]) S E(P'z,uy) or E(Péw)
Qi = { sty (Cy)  if (ir) € E(P,) o B(Pl) -
(1 —¢)Qs; if (i, 7) € E(G)

where 7(Cy) = > e, Tw- It can be checked that 3. @\ij =1> @ij =2 @ﬂ Hence it defines a Markov

chain on G. The stationary distribution of this lifted chain is

RTD) W if i € (V(Ppy) UV (Py))\{w, 41,45}
7= 3wy " (Cy) if i € (V(Py,) UV(P,))\{v'}

(I-em+smpym ifieV(G)

NRTD) ifi=0v

To establish this lifting as pseudo-lifting of original Markov chain P, consider 7" = V(G) and parameter § =

€ <1 — M)' The G has exactly |E|+2R|V|+2D|Y| edges as noted earlier. We state and prove the following

result about the mixing time. R
Theorem 7: The mixing time of the Markov chain defined by @ is O (%).



Proof: Consider the following stopping rule. Walk until visiting v’, and toss a coin X with the following
probability.

with probability m
eD
2(R+D)
e(R—1)
2(R+D)

with probability 1 — §
e(R—1)
2(R+D)
eD
2(R+D)

with probability

with probability

with probability

T = W N = O

with probability

If X =0, stop at v'. Else if, X = 1 and 5, walk until getting on to P{,y and Pg’ﬂ, respectively, select its node on the
path except for v’ uniformly at random to stop there. If X = 2 and 4, walk until getting P;w and P{Uy respectively,
select its interior node on the path uniformly at random to stop there. If X = 3, walk until getting an old node,
and stop there. It can be checked, using arguments similar to that in proof of Theorem 6, that the distribution of
the stopped node is precisely 7.

Similar to the proof of Theorem 6, we can show that the expected length of stopping rule is O(R‘g—D) = O(g) =
O(Z). This is primarily true because the probability of getting on a directed path Pyyy at w is O(e/(R + D)).
B. Application to Constant Doubling Dimension Graph

Here, we apply the hierarchical construction to the case of the graph with constant doubling dimension. To this
end, let G have constant doubling dimension p with respect to the shortest path metric.

Corollary 8: Graph G = (V, E) with constant doubling dimension p and diameter D. Then, the hierarchical
construction gives § pseudo-lifting G with its size O(D\V\l_ﬁ) and mixing time is O(D/J).

Proof: The property of doubhng dimension graph implies that there exists an R-net Y such that |Y'| < (2D/R)”

(cf. [2]). Consider R = D2++1 o+1 V|~ w1 ThlS is approprlate choice as by definition of doubling dimension,
and hence R = D271 |V|~ > D]V| > \48 71 > 1. Given this, the size of the lifted graph G is

~ 2o+1 Tll 1
|E| = |E|+ 2R|V |+ 2D|Y| < |E| + 2D (V ) V| +2D ( |‘2/|p+ > = |E| —i—O(D‘V’l ).

’p+1 p+1
Since |E| = O(|V]) and D = Q(|V|/#), we have that |E| = O(D|V|1_ﬁ). [ |

VI. CONCLUSION

Motivated by application of Markov chain in designing fast distributed algorithms, we considered the problem of
constructing lifting Markov chains for arbitrary graphs with small mixing time and size. We first obtained a slimmer
lifting by means of expander graphs compared to the result of Chen et. al. [5]. To overcome the limitation of this
notion of lifting in terms of the mixing time, we introduced new notion of lifting, the pseudo-lifting. This allows us
to construct a simple lifting that have the fastest mixing time for a given graph irrespective of the starting Markov
chain and the stationary distribution. Using our hierarchical construction, we showed how the size of lifting can
be optimized by utilizing information about the geometry of the underlying graph. We believe that our technique
of hierarchical construction can be applied recursively to reduce size of lifting with little loss in the mixing time.
Our pseudo lifting can allow for designing fast distributed iterative algorithms.
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