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Abstract

We consider approximating a single component of the solution to a system of linear equations
Ax = b, where A is an invertible real matrix and b ∈ R

n. If A is either diagonally dominant
or positive definite, we can equivalently solve for xi in x = Gx + z for some G and z such that
spectral radius ρ(G) < 1. For example, if A is symmetric positive definite, there is a trans-
formation such that ρ(G) = (κ(A) − 1)/(κ(A) + 1), where κ(A) is the condition number of A.
Existing algorithms either focus on computing the full vector x or use Monte Carlo methods
to estimate a component xi under the condition ‖G‖∞ < 1. We consider the setting where n
is large, yet G is sparse, i.e., each row has at most d nonzero entries. We present synchronous
and asynchronous randomized variants of a local algorithm which relies on the Neumann series
characterization of the component xi, e

T
i

∑∞
k=0 G

kz, and allows us to limit the sparsity of the
vectors involved in the computation, leading to improved convergence rates. Both variants of
our algorithm produce an estimate x̂i such that |x̂i − xi| ≤ ǫ‖x‖2, and we provide convergence
guarantees when ‖G‖2 < 1, thus encompassing a larger class of systems. We prove that the
synchronous local algorithm uses at most O(min(dǫln(d)/ ln(‖G‖2), dn ln(ǫ)/ ln(‖G‖2))) multipli-
cations. The asynchronous local algorithm adaptively samples one coordinate to update among
the nonzero coordinates of the current iterate in each time step. We prove with high probability
that the error contracts by a time varying factor in each step, guaranteeing that the algorithm
converges to the correct solution. With probability at least 1− δ, the asynchronous randomized
algorithm uses at most O(min(d(ǫ

√

δ/5)−d/(1−‖G‖2),−dn ln(ǫ
√
δ)/(1−‖G‖2))) multiplications.

Thus our algorithms obtain an approximation for xi in constant time with respect to the size of
the matrix when d = O(1) and 1/(1− ‖G‖2) = O(1) as a function of n, which holds for sparse
expanders.
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1 Introduction

We consider approximating the ith component of the solution to the linear system of equations

Ax = b, (1)

where A is a nonsingular n×n real matrix, and b is a vector in R
n. Under some generic conditions

on A, such as either positive definite or symmetric diagonally dominant (see details in Section 2.3),
there exists an appropriate choice of G and z, such that this problem is equivalent to approximating
the ith component of the solution to

x = Gx+ z, (2)

where ρ(G) < 1.1 We consider the setting where n is large, yet G is sparse, i.e., the number of
nonzero entries in every row of G is at most d.

Solving large systems of linear equations is a problem of great interest due to its relevance to a
variety of applications across science and engineering, such as solving large scale optimization prob-
lems, approximating solutions to partial differential equations, and modeling network centralities
(e.g. PageRank and Bonacich centrality). Due to the large scale of these systems, it becomes useful
to have a local algorithm which can approximate only a few components of the solution without
computing over the entire matrix. As solving a system of linear equations is fundamentally a global
problem, obtaining a local solution is non-trivial.

1.1 Contributions

In this paper, we propose and analyze two variants of an algorithm which provides an estimate
x̂i for a single component of the solution vector to (2), such that |x̂i − xi| ≤ ǫ‖x‖2. One variant is
synchronous and the other is asynchronous and randomized. We show that our algorithm converges
when ‖G‖2 < 1 and provide bounds on the convergence rate as a function of ‖G‖2, the sparsity
d, the approximation factor ǫ, and the size of the matrix n.2 Recall that when G is symmetric,
ρ(G) = ‖G‖2, so our algorithm converges whenever the Neumann series is well defined. When
1/(1 − ‖G‖2) = O(1) and d = O(1) with respect to n, our algorithm converges in time which is
constant with respect to n. If A is symmetric positive definite, then there exists a choice of G and z
which transforms the problem from (1) to (2) such that ρ(G) = (κ(A)−1)/(κ(A)+1).3 Our results
for solving (1) extends to solving (1) with the corresponding relation between ρ(G) and κ(A).

Our algorithm relies upon the Neumann series representation of the solution to (2)

x =
∞
∑

k=0

Gkz. (3)

The Neumann series converges to the solution of (2) if and only if ρ(G) < 1 [2, 4, 14]. We compute4

∞
∑

k=0

(GT )kei, (4)

1Let ρ(G) denote the spectral radius of G, i.e., the maximum magnitude eigenvalue of G.
2Let ‖G‖2 denote the induced 2-norm of G, i.e., max‖v‖2=1 ‖Gv‖2 =

√

ρ(GTG).
3κ(A) is the condition number of matrix A, i.e., the ratio between the largest and smallest magnitude eigenvalues.
4Let ei denote the standard basis vector which has as 1 at coordinate i and 0 elsewhere.
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and take the inner product with the vector z to obtain an estimate. This modification allows us
to guarantee that intermediate vectors involved in our algorithm are sparse as long as G. This
transforms the computation from global to local updates. Our algorithm provides the estimate and
residual error at each iteration, and recursively refines the estimate while contracting the error,
providing clear termination conditions.

The asynchronous variant implements the local algorithm by adaptively sampling a coordinate
from the current iterate, and applying a local update involving the corresponding row from the
matrix G. This implementation maintains the local properties (i.e., sparsity of involved vectors) of
the algorithm by sampling uniformly among coordinates which have nonzero values in the current
iterate. The asynchronous variant eliminates the coordination cost in the local updates at each
coordinate.

Our method is closely related to work by Andersen et al. which focuses on computing PageRank,
and provides an algorithm and analysis which rely on the conditions that G is a nonnegative scaled
stochastic matrix, z is entry-wise positive and bounded strictly away from zero, and the solution
x is a probability vector (i.e., consisting of nonnegative entries that sum to 1) [1]. In contrast, our
algorithm focuses on general linear systems of equations. Moreover, while their analysis proves a
linear decrease in the error, we prove that the second moment of our error contracts by a time
dependent factor in each iteration, and thus our algorithm converges to the correct solution with
a convergence rate which is similar to the synchronous variant. Our algorithm differs from the
algorithm presented in Andersen et al. by a different choice of termination conditions, and the use
of randomization in the update of every iteration.

Throughout the paper, we will associate a graph to the matrix G, and use the concept of
computation over this graph to discuss our notion of a local and asynchronous algorithm. Let
G(G) = (V, E) denote the graph where V = {1, 2, . . . n}, and (a, b) ∈ E if and only if Gab 6= 0. Each
coordinate in the vector x corresponds to a node in V. Our assumption that the number of nonzero
entries in any row of G is at most d translates to the condition that the outdegree of any node in
G(G) is at most d. The distance from node i to node j is the shortest path from i to j in graph
G(G). Let Ni(t) ⊂ V denote the local neighborhood of radius t around node i, which consists of the
set of nodes within distance t from node i. The algorithm is “local” when the computation only
involves nodes in Ni(t) such that |Ni(t)| < n.

1.2 Related Work

The history of solving systems of linear equations is immense, so we will only give a broad
summary of the types of existing methods in order to give an understanding of where our algorithm
fits within the landscape of methods. We will proceed to highlight the methods which are relevant
to our setting of approximating a single component xi locally and asynchronously. We will also
give specific attention to the methods which share similar concepts or approaches to our algorithm.

Most methods for solving systems of linear equations can be classified into two broad classes:
direct methods, which will compute the exact solution in a finite number of operations, and indi-
rect (or iterative) methods, which begin with an approximation that is then improved iteratively.
Conjugate gradient is a semi-iterative method, as it computes the exact solution in O(n3) time,
but also produces intermediate estimates which are refined iteratively [7, 8, 3]. Direct methods
include Gaussian elimination, Cholesky factorization, orthogonalization, and block decomposition
[23]. These methods generally require O(n3) time, although the current best known direct algo-
rithm for general linear systems is O(nq) where q ≈ 2.373 [24]. Indirect methods include stationary
linear methods (i.e., those that update according to a time invariant linear operator, such as Jacobi,
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Gauss-Seidel, and Richardson updates), gradient methods (such as steepest descent or conjugate
direction methods), and Monte Carlo methods (such as Ulam von Neumann and subsequent vari-
ations) [23]. Recently, there is a class of approximation algorithms which run in nearly linear time
when A is sparse and symmetric diagonally dominant [18, 13, 12]. These methods rely upon connec-
tions between the algebraic properties of graph Laplacian matrices, and combinatorial properties
of its corresponding graph.

Except for the Monte Carlo methods, existing methods for solving linear systems focus on
solving the full vector x. If we are only interested in xi, we would need to compute the entire
vector in the process. The Ulam von Neumann algorithm is a Monte Carlo style method which
depends on the Neumann series representation of the solution x as stated in (3), which we recall
converges for ρ(G) < 1. It characterizes this expression as a sum over weighted walks on graph
G(G), and obtains an estimate by sampling random walks starting from node i over G(G) [6, 21, 5].
This requires designing a transition probability matrix over the graph, and the basic form of the
algorithm requires ‖G‖∞ < 1. There are modifications which propose other transition probability
matrices, or use correlated or importance sampling to reduce the variance of the estimator [9, 10].
However, the scope of this algorithm is still limited, as Ji, Mascagni, and Li proved that there
is a class of matrices G such that ρ(G) < 1, ‖G‖∞ > 1, and there does not exist any transition
probability matrix such that the Ulam von Neumann method converges [11].

Our proposed synchronous algorithm is similar to stationary linear iterative methods, which
use updates of the form xt+1 = Gxt + z to recursively approximate leading terms of the Neumann
series, as stated in (3). The error after t iterations is given by Gt(x − x0), thus the number of
iterations to achieve ‖xt − x‖2 ≤ ǫ‖x‖2, is given by ln(ǫ)/ ln(‖G‖2). These methods do not exploit
the sparsity of G and the locality of computing a single component, and thus each iteration is costly
and requires nd multiplications.

The use of randomization in subsampling matrices as part of a subroutine in iterative methods
has previously been used in the context of other global matrix algorithms, such as the randomized
Kaczmarz method and stochastic iterative projection [19, 17, 16, 15, 20]. The randomized Kaczmarz
method is used in the context of solving overdetermined systems of equations, subsampling rows
to reduce the dimension of the computation matrix in each iteration. Stochastic iterative methods
involve sampling a sparse approximation of matrix G to reduce the computation in each iteration
while maintaining convergence.

2 Our Results
We propose two variants of an algorithm to estimate xi given an equation of the form (2).

The algorithm is local in that the computation involves only the coordinates within the local
neighborhood Ni(t) of graph G(G) for some t which is a function of ǫ, ‖G‖2, and d.

2.1 Synchronous
The synchronous algorithm we propose involves computing leading terms of the sum as stated

in (4). In comparison, standard linear iterative methods compute leading terms of the Neumann
series as stated in (3) using the update equation xt+1 = Gxt + z. If z is not sparse, then any
approximation using the first t terms of the Neumann series will be at least as dense as z, possibly
involving all the coordinates. Thus ‖xt‖0 can be nearly n, such that a single update step could
cost nd multiplications. In contrast, observe that the sparsity of (GT )tei is upper bounded by
the size of the local neighborhood Ni(t), which in turn is upper bounded by dt. Therefore, an
approximation which uses the first t terms of (4) will only have nonzero coordinates corresponding
to the nodes in Ni(t). The number of multiplications that iteration t of our algorithm requires
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is bounded by d|Ni(t)|. In fact the sparsity pattern of the iterates over time resembles that of a
breadth first traversal over G(G) starting from node i, which corresponds to Ni(t). This highlights
how our algorithm keeps the computation local in the setting when we only need to compute a
single component xi, and thus saves computation.

Theorem 2.1. If ‖G‖2 < 1, SynchronousLocalAlgorithm produces an estimate x̂i such that
|x̂i − xi| ≤ ǫ‖x‖2, and the total number of multiplications is bounded by

O

(

min

(

dǫln(d)/ ln(‖G‖2),
dn ln(ǫ)

ln(‖G‖2)

))

.

We show that the number of iterations is bounded by ln(ǫ)/ ln(‖G‖2). Each iteration involves
multiplying G with an intermediate vector which has sparsity at most Ni(t). The right hand
expression comes from bounding the cost of each iteration by dn, which holds even in the nonsparse
setting, and obtains the same result as standard linear iterative methods. The left hand expression
comes from bounding the cost of iteration k by dk+1. If G is sparse, then the left hand bound
may be tighter. We thus utilize sparsity to achieve an approximation for xi in constant time with
respect to the size of the matrix when n is large, and d = O(1) and −1/ ln(‖G‖2) = O(1) as a
function of n.

2.2 Asynchronous
The second algorithm we propose is an asynchronous randomized modification of the first al-

gorithm. Instead of multiplying by matrix G in every iteration, the algorithm multiplies by some
Ĝt, which consists only of a single row of G, and is 0 elsewhere. This row is adaptively sampled
among the nonzero coordinates of the current iterate, therefore the nodes in graph G(G) which
correspond to nonzero coordinates of the current iterate are all connected by a path to node i.
Since the coordinates can be updated in arbitrary order, the sparsity pattern of the iterates over
time no longer corresponds to a breadth first traversal over G(G), but instead resembles a traversal
which grows by adding adjacent nodes in any order beginning from node i. We prove in Theorem
2.2, that with high probability, the number of multiplications the algorithm uses takes a similar
form to the bound given for the synchronous algorithm. The computation involved in each iteration
corresponds to a local operation involving only the node corresponding to the chosen row, and its
neighboring edges.

Theorem 2.2. If ‖G‖2 < 1, with probability 1, AsynchronousLocalAlgorithm terminates and
produces an estimate x̂i such that |x̂i − xi| ≤ ǫ‖x‖2. With probability greater than 1 − δ, the total
number of multiplications is bounded by

O

(

min

(

d
(

ǫ
√

δ/2
)−d/(1−‖G‖2)

,
−dn ln(ǫ

√
δ)

1− ‖G‖2

))

.

We can compare the bounds for the synchronous and asynchronous variants by considering that
1 − ‖G‖2 ≈ − ln(‖G‖2) when ‖G‖2 ≈ 1. The two right hand expressions in Theorems 2.1 and 2.2
are essentially the same, and provide a comparison of our algorithm to standard linear iterative
methods. The left hand bound from Theorem 2.2, which provides a local analysis, is constant with
respect to n as long as d = O(1) and 1/(1−‖G‖2) = O(1). However, the bound which applies in the
sparse setting for the asynchronous variant grows exponentially in d, while the corresponding bound
for the synchronous variant grows only polynomially in d. We will provide a brief discussion of the
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gap between the analyses of both algorithms in Section 4.3. To summarize, the rate of convergence
of the asynchronous variant is slower by a factor of d/ ln(d) because the proven contraction of the
error in each iteration is now spread out among the nonzero coordinates of the current iterate. The
different rates come from comparing the convergence of the error along with the number of nonzero
entires in the iterates over time.

2.3 Transforming Ax = b to x = Gx+ z

We discuss conditions under which a system of linear equations of the form (1) can be trans-
formed into the form given by (2) with ρ(G) < 1. In this setting, the solution x is given by the
Neumann series as stated in (3). There are many existing methods of choosing G and z which sat-
isfy these conditions [23, 22]. We particularly highlight the Richardson and Jacobi methods, which
specify G such that G is as sparse as A, ρ(G) < 1, and Gij can be computed as a simple function of
Aij and Aii. For any γ such that 0 ≤ γ ≤ min‖x‖2=1(2x

TAx)/(xTATAx), the Richardson method
chooses G = I − γA and z = γb. If A is positive definite,5 it is guaranteed that ‖G‖2 ≤ ρ(G) < 1.
Let D be a diagonal matrix such that Duu = Auu. The Jacobi method chooses G = −D−1(A−D)
and z = D−1b. If A is strictly or irreducibly diagonally dominant, it can be shown that ρ(G) < 1.
If G is symmetric, then in addition ρ(G) = ‖G‖2 < 1.

Corollary 2.3. If A is positive definite (A ≻ 0) or diagonally dominant, then we can use standard
methods (e.g. Jacobi or Richardson), to choose a matrix G and vector z such that ρ(G) < 1, and
the solution x which satisfies x = Gx+ z will also satisfy Ax = b.

Corollary 2.3 implies that when A is either positive definite or symmetric diagonally dominant,
we can use either Jacobi or Richardson to choose G and z as a function of A and b so that ‖G‖2 < 1.
If A is symmetric positive definite, then using the Richardson method with an optimal choice of γ
results in a choice of G such that ρ(G) = ‖G‖2 = (κ(A)−1)/(κ(A)+1). We can apply our proposed
algorithm on the transformed problem to obtain an estimate for x̂i, achieving the same accuracy
and convergence rate as specified in Theorems 2.1 and 2.2, with the corresponding corresponding
relation between ρ(G) and κ(A). Given (A, b), there are potentially infinitely many ways to choose
(G, z) to satisfy the condition that ‖G‖2 < 1. Finding the optimal choice of (G, z) given (A, b) is
beyond the scope of this paper.

3 Synchronous Local Algorithm

The key observation for the local algorithm is that since we only want to compute the ith

component, we can compute
∑∞

k=0(G
T )kei and take the inner product with z at the end, instead of

computing
∑∞

k=0G
kz, where z could be a dense vector. Even though this is a small modification,

it controls the sparsity of intermediate vectors involved in the algorithm. We proceed to describe
our algorithm. First, observe that xi can be expressed as

xi = eTi

∞
∑

k=0

Gkz =
t−1
∑

k=0

eTi G
kz + eTi

∞
∑

k=t

Gkz =
t−1
∑

k=0

eTi G
kz + eTi G

tx

The algorithm keeps track of two intermediate vectors such that at iteration t, p(t) = (
∑t−1

k=0 e
T
i G

k)T

and r(t) = (eTi G
t)T . Then it follows that for all iterations t, xi = p(t)T z + r(t)Tx. To achieve this,

5Matrix A is positive definite, denoted by A ≻ 0, if for all nonzero x, xTAx > 0.

5



we initialize the vectors with p(0) = 0 and r(0) = ei, and we use the following updates:

p(t+1) = p(t) + r(t), (5)

r(t+1) = GT r(t). (6)

The algorithm computes the estimate according to x̂i = p(t)T z. Thus the error will be exactly
xi − x̂i = r(t)Tx. We refer to r(t) as the residual vector.

3.1 Algorithm and Results

Algorithm: SynchronousLocalAlgorithm(G, z, i, ǫ)

Input: G, i, ǫ
1: p(0) = 0, r(0) = ei, t = 0
2: while ‖r(t)‖2 > ǫ do
3: p(t+1) = p(t) + r(t)

4: r(t+1) = GT r(t)

5: t = t+ 1
6: end while

7: return x̂i = p(t)T z

Theorem 2.1. If ‖G‖2 < 1, SynchronousLocalAlgorithm produces an estimate x̂i such that
|x̂i − xi| ≤ ǫ‖x‖2, and the total number of multiplications is bounded by

O

(

min

(

dǫln(d)/ ln(‖G‖2),
dn ln(ǫ)

ln(‖G‖2)

))

.

Proof. The initial vectors and update rules are chosen such that p(t) = (
∑t−1

k=0G
k)T ei, and r(t) =

(Gt)T ei. Therefore for all t, xi = zT p(t) + xT r(t), and the error in the estimate is given by xT r(t).
Since the algorithm terminates when ‖r(t)‖2 ≤ ǫ, then it follows that

|x̂i − xi| = |r(t)Tx| ≤ ‖r(t)‖2‖x‖2 ≤ ǫ‖x‖2. (7)

In order to upper bound the computation, we observe that

‖r(t)‖2 = ‖(GT )tei‖2 ≤ ‖G‖t2. (8)

Therefore the algorithm terminates with ‖r(t)‖2 < ǫ within at most ln(ǫ)/ ln(‖G‖2) iterations. Since
each row of G has at most d nonzero entries, ‖r(t)‖0 ≤ dt. The number of multiplications in each
iteration is at most d‖r(t)‖0. Therefore, we can upper bound the total number of multiplications
by

d





⌊ln(ǫ)/ ln(‖G‖2)⌋
∑

t=0

dt



 =

(

d

d− 1

)

(

d⌊ln(ǫ)/ ln(‖G‖2)⌋+1 − 1
)

= O
(

d · dln(ǫ)/ ln(‖G‖2)
)

= O
(

dǫln(d)/ ln(‖G‖2)
)

. (9)
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Alternatively, we can naively bound the number of multiplications in each iteration by dn. Then
it follows that the total number of multiplications is also bounded by O(dn ln(ǫ)/ ln(‖G‖2)).

The right hand expression in Theorem 2.1 does not require sparsity, and applies when the com-
putation reaches all the coordinates and the algorithm behaves similarly to standard linear iterative
methods. The left hand expression in Theorem 2.1 proves that when G is sparse and −1/ ln(‖G‖2)
is small, the algorithm utilizes the sparsity to save computation over standard methods.

When G is symmetric, then ‖G‖2 = ρ(G), proving that the algorithm converges whenever the
infinite series converges. When G is nonsymmetric, this condition may be stricter since ‖G‖2 could
be larger than ρ(G). However, we suspect that even for nonsymmetric G, the spectral radius ρ(G)
governs the performance of the algorithm. This intuition comes from Gelfand’s spectral radius

formula, which states that ρ(M) = limk→∞ ‖Mk‖1/k2 . The precise result would depend on the
convergence rate of this limit.

3.2 Local Convergence Properties

We can also interpret the algorithm in terms of computation over the graph G(G). Multiplying
r(t) by GT then corresponds to a message passing operation from each of the nonzero coordinates
of r(t) along their corresponding adjacent edges in the graph. The sparsity of r(t) thus grows as a
breadth first traversal over the graph starting from node i. Therefore, ‖r(t)‖0 ≤ Ni(t), which we
consider to be the set of nodes involved in the computation up to time t.

The algorithm only involves nodes that are within distance ln(ǫ)/ ln(‖G‖2) from the initial node
i. We define the matrix GNi(t) such that GNi(t)(a, b) = G(a, b) if and only if (a, b) ∈ Ni(t)×Ni(t).
It follows that

‖r(t)‖2 = ‖eTi Gt‖2 = ‖eTi
t
∏

k=1

GNk(i)‖2 = ‖eTi Gt
Nt(i)

‖2 ≤ ‖GNt(i)‖t2. (10)

It is possible that for some choices of i and t, ‖GNt(i)‖2 < ‖G‖2, in which case the algorithm
would converge more quickly as a function of the local neighborhood. If G corresponds to a scaled
adjacency matrix of an unweighted undirected graph, then it is known that

max
(

daverage,
√

dmax

)

≤ ρ(G) ≤ dmax. (11)

In this case, we would only expect ‖GNt(i)‖2 to be smaller than ‖G‖2 if the local degree distribution
of the neighborhood around node i is different from the global degree distribution.

4 Asynchronous Randomized Local Algorithm

The previous solution requires the multiplications in each iteration to be synchronous. In this
section, we modify the algorithm to only apply the update to a single coordinate at a time, which
corresponds to multiplying by only a single row of G, rather than the full matrix. The asynchronous
algorithm directly follows from a randomized coordinate-based implementation of the synchronous
algorithm. We rewrite the update equations of the synchronous algorithm to show the incremental
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updates that each coordinate of r(t) is involved in:

p(t+1) = p(t) +
∑

u

eue
T
u r

(t), (12)

r(t+1) = r(t) +
∑

u

(GT − I)eue
T
u r

(t) (13)

The asynchronous algorithm chooses a single coordinate u, and applies the updates corresponding
to the calculations involving the uth coordinate of r(t):

p(t+1) = p(t) + eue
T
u r

(t), (14)

r(t+1) = r(t) + (GT − I)eue
T
u r

(t). (15)

The algorithm samples the coordinate u according to the following distribution:6

For all u, P(u) =
1
(

r
(t)
u 6= 0

)

‖r(t)‖0
. (16)

To prove that the estimate converges to the correct solution, we establish an invariant that for
all t, xi = p(t)T z + r(t)Tx. This holds for all possible selections of update coordinates. Since the
distribution P chooses uniformly among the nonzero coordinates of r(t), in expectation the update
step corresponds to multiplying a scaled version of matrix G to vector r(t). We proceed to show
that in addition ‖r(t)‖2 contracts with high probability due to the choice of distribution P.

4.1 Algorithm and Results

Algorithm: AsynchronousLocalAlgorithm(G, z, i, ǫ)

Input: G, i, ǫ
1: p(0) = 0, r(0) = ei, t = 0
2: while ‖r(t)‖2 > ǫ do
3: Pick a coordinate u with probability P(u)
4: p(t+1) = p(t) + eue

T
u r

(t)

5: r(t+1) = r(t) − (I −GT )eue
T
u r

(t)

6: t = t+ 1
7: end while

8: return x̂i = p(t)T z

Theorem 2.2. If ‖G‖2 < 1, with probability 1, AsynchronousLocalAlgorithm terminates and
produces an estimate x̂i such that |x̂i − xi| ≤ ǫ‖x‖2. With probability greater than 1 − δ, the total
number of multiplications is bounded by

O

(

min

(

d
(

ǫ
√

δ/2
)−d/(1−‖G‖2)

,
−dn ln(ǫ

√
δ)

1− ‖G‖2

))

.

6Let 1(·) denote the indicator function. Let r
(t)
u denote the uth coordinate of vector r(t). For simpler notation, we

suppress the dependence of P on r(t).
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Lemma 4.1 (Invariant). The variables in the AsynchronousLocalAlgorithm(G, z, i, ǫ) satisfy the
invariant that for all t, xi = p(t)T z + r(t)Tx.

Proof. Recall that x = z +Gx. We prove that the invariant holds by using induction. First verify
that for t = 0, p(0)T z + r(0)Tx = 0 + eTi x = xi. Then assuming that xi = p(t)T z + r(t)Tx, we show
that

p(t+1)T z + r(t+1)Tx = p(t)T z + (eue
T
u r

(t))T z + r(t)Tx− (eue
T
u r

(t))Tx+ (GT eue
T
u r

(t))Tx

= p(t)T z + (eue
T
u r

(t))T z + r(t)Tx− (eue
T
u r

(t))T (z +Gx) + (GT eue
T
u r

(t))Tx

= p(t)T z + r(t)Tx = xi.

The left hand expression of Theorem 2.2 applies when G is sparse, and 1/(1−‖G‖2) is not too
large, such that the algorithm terminates while the vector r(t) is still sparse, i.e., the computation
remains local to a neighborhood of i. The right hand expression of Theorem 2.2 is comparable to
the cost of standard linear iterative methods, and applies when ‖G‖2 is close to 1 and n is not too
large, such that the algorithm does not terminate before the computation reaches the entire graph.

4.2 Proof Sketch of Theorem 2.2

Since the algorithm terminates when ‖r(t)‖2 ≤ ǫ, it follows from Lemma 4.1 that |x̂i − xi| =
|r(t)Tx| ≤ ǫ‖x‖2. Recall that the algorithm chooses a coordinate in each iteration according to
the distribution P, as specified in (16). To simplify the analysis, we introduce another probability
distribution P̃ , which has a fixed size support of min(td, n) rather than ‖r(t)‖0. We first analyze the
convergence of a modified algorithm which samples coordinates according to P̃ . Then we translate
the results back to the original algorithm.

Observe that for any t ∈ Z+, there exists a function St : Rn → {0, 1}n, which satisfies the
properties that for any v ∈ R

n and u = St(v), if vi 6= 0, then ui = 1, and if ‖v‖0 ≤ td, then
‖u‖0 = min(td, n). In words, St(v) is a function which takes a vector of sparsity at most td, and
maps it to a binary valued vector which preserves the sparsity pattern of v, yet adds extra entries
of 1 in order that the sparsity of the output is exactly min(td, n). We define the distribution P̃ to
choose uniformly at random among the nonzero coordinates of St

(

r(t)
)

, as follows:7

P̃(u) =
eTuSt

(

r(t)
)

min(td, n)
. (17)

This is a valid probability distribution since for all t, ‖r(t)‖0 ≤ td. We can show that for the
variation of the asynchronous algorithm which samples coordinates accoridng to P̃ ,

EP̃

[

r(t+1)
∣

∣

∣
r(t)
]

=

(

I −
(

I −GT

min(td, n)

))

r(t). (18)

This shows that in expectation, the error contracts in each iteration by (1−(1−‖G‖2)/min(td, n)).
We prove an upper bound on the expected L2-norm of the residual vector r(t), stated in Lemma 4.2.
Then we apply Markov’s inequality to prove that the algorithm terminates with high probability
within a certain number of multiplications.

7For simpler notation, we suppress the dependence of P̃ on t and r(t).
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Lemma 4.2. If ‖G‖2 < 1, d ≥ 4, and n ≥ 8,

EP̃

[

‖rt‖22
]

≤ min
(

2t−2(1−‖G‖2)/d, 4e−2(t−1)(1−‖G‖2 )/n
)

.

In order to extend the proofs from P̃ to P, we define a coupling between two implementations
of the algorithm, one which sample coordinates according to P̃ , and the other which samples
coordinates according to P. We prove that in this joint probability space, the implementation
which uses distribution P always terminates in number of iterations less than or equal to the
corresponding termination time of the implementation using P̃ . Therefore, computing an upper
bound on the number of multiplications required under P̃ is also an upper bound for the algorithm
which uses P. Further details and formalization of the coupling argument and the proof of Lemma
4.2 are included in the Appendix.

4.3 Comparison between Synchronous and Asynchronous Algorithms
The main difference between Theorem 2.1 and Theorem 2.2 is in the dependence on d. There is

an intuitive reasoning which shows why our analyses result in such a gap. Let CS(t) = dt denote the
upper bound on the number of multiplications performed by the synchronous algorithm in the first
t iterations. Let CA(t) = td denote the upper bound on the number of multiplications performed by
the asynchronous algorithm in the first t iterations. For some tS > 0, let tA = C−1

A (CS(tS)) = dtS−1,
such that CA(tA) = CS(tS). This allows us to compare the error in the two algorithms given the
same number of multiplications. From (8), the residual vector of the synchronous algorithm after
tS iterations is bounded by ‖r(tS)‖22 ≤ ‖G‖2tS2 . From Lemma 4.2, the expected residual vector of
the asynchronous algorithm after tA iterations is bounded by

E[‖r(tA)‖22]‖ ≤ 2t
−2(1−‖G‖2)/d
A ≈ 2t

2 ln(‖G‖2)/d
A = 2‖G‖2 ln(tA)/d

2 = 2‖G‖2(tS−1) ln(d)/d
2 . (19)

Therefore the ratio of the convergence rates of the two algorithms obtained by our analysis is given
by ln(‖r(tS )‖2)/ ln(‖E[r(tA)]‖2) ≈ d/ ln(d).

5 Discussion
In this paper, we presented two variants of a local algorithm which estimates a single component

xi of the solution to a system of linear equations. The synchronous algorithm is a modification of
standard stationary linear iterative methods using an observation which allows the vectors involved
in the computation to remain sparse when G is sparse, 1/(1 − ‖G‖2) is small, and n is large. The
asynchronous algorithm is a randomized modification of the synchronous algorithm, allowing the
coordinates to update themselves in arbitrary order according to a given distribution. We show that
the asynchronous algorithm converges to the correct solution with similar converges guarantees.

Compared to the Ulam von Neumann algorithm, which is the standard approach to solving
for single components of the solution, our algorithm had broader conditions for convergence, en-
compassing a larger set of systems of linear equations. Our method is similar to the algorithm by
Andersen et al. for computing PageRank, but we use randomization techniques to improve the
analysis and extend it past limiting properties specific to the PageRank application.

It is open problem to design the optimal distribution for choosing coordinates within the asyn-
chronous randomized algorithm. Our analysis only applies when the algorithm samples uniformly
among nonzero coordinates of the residual vector r(t). However, simulations indicate that choosing

the coordinate proportional to r
(t)
u seems to improve the convergence of the algorithm. Establishing

theoretical analysis of this observation remains an open problem.
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A Proof of Theorem 2.2
Lemma A.1. If ‖G‖2 < 1, for all t,

(a) EP̃

[

r(t+1)
∣

∣

∣ r(t)
]

=

(

I −
(

I −GT

min(td, n)

))

r(t),

(b)
∥

∥

∥EP̃

[

r(t)
]∥

∥

∥

2
≤ min

(

t−(1−‖G‖2)/d, e−(t−1)(1−‖G‖2)/n
)

.

Proof. We will use induction to get an expression for EP̃

[

r(t)
]

. Recall that r(0) = ei. Since there

is only a single coordinate to choose from, r(1) is also predetermined, and is given by r(1) = GT ei.

EP̃

[

r(t+1)
∣

∣

∣
r(t)
]

= r(t) − (I −GT )
∑

u

P̃(u)eur
(t)
u . (20)
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By design of P̃ , we know that P̃(u) = 1/min(td, n) for all u such that r
(t)
u 6= 0. Therefore,

∑

u

P̃(u)eur
(t)
u =

r
(t)
u

min(td, n)
. (21)

We substitute this into (20) to show that

EP̃

[

r(t+1)
∣

∣

∣
r(t)
]

=

(

I −
(

I −GT

min(td, n)

))

r(t). (22)

Using the initial conditons r(1) = GT ei and the law of iterated expectation, it follows that

EP̃

[

r(t)T
]

= eTi G

t−1
∏

k=1

(

I −
(

I −G

min(kd, n)

))

. (23)

Therefore,

∥

∥

∥EP̃

[

r(t)
]∥

∥

∥

2
≤ ‖G‖2

t−1
∏

k=1

(

1−
(

1− ‖G‖2
min(kd, n)

))

,

≤ ‖G‖2 exp
(

−
t−1
∑

k=1

1− ‖G‖2
min(kd, n)

)

,

≤ ‖G‖2 min

(

exp

(

−
t−1
∑

k=1

1− ‖G‖2
kd

)

, ‖G‖2 exp
(

−
t−1
∑

k=1

1− ‖G‖2
n

))

. (24)

Since ‖G‖2 < 1 by assumption, and using the property that
∑t−1

k=1
1
k > ln(t), it follows that

∥

∥

∥
EP̃

[

r(t)
]∥

∥

∥

2
≤ min

(

t−(1−‖G‖2)/d, e−(t−1)(1−‖G‖2)/n
)

. (25)

Lemma 4.2. If ‖G‖2 < 1, d ≥ 4, and n ≥ 8,

EP̃

[

∥

∥rt
∥

∥

2

2

]

≤ min
(

2t−2(1−‖G‖2)/d, 4e−2(t−1)(1−‖G‖2 )/n
)

.

Proof. Observe that

EP̃

[

∥

∥

∥
r(t+1)

∥

∥

∥

2

2

]

= EP̃

[

∥

∥

∥
r(t+1) − EP̃

[

r(t+1)
]∥

∥

∥

2

2

]

+
∥

∥

∥
EP̃

[

r(t+1)
]∥

∥

∥

2

2
, (26)

and

EP̃

[

∥

∥

∥r(t+1) − EP̃

[

r(t+1)
]∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

= EP̃

[

∥

∥

∥r(t+1)
∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

−
∥

∥

∥EP̃

[

r(t+1)
∣

∣

∣ r(t)
]∥

∥

∥

2

2
. (27)
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Based on the update equation r(t+1) = r(t) − (I −GT )eur
(t)
u , we can compute that

EP̃

[

∥

∥

∥r(t+1)
∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

=
∑

u

P̃(u)(r(t) − (I −GT )eur
(t)
u )T (r(t) − (I −GT )eur

(t)
u ),

= r(t)T r(t) −
(

∑

u

P̃(u)r(t)u eTu

)

(I −G)r(t) − r(t)T (I −GT )

(

∑

u

P̃(u)eur
(t)
u

)

+
∑

u

P̃(u)r(t)2u

[

(I −G)(I −GT )
]

uu
. (28)

By the design, P̃(u)r
(t)
u = r

(t)
u /min(td, n), so that

∑

u

P̃(u)eur
(t)
u =

r
(t)
u

min(td, n)
. (29)

Similarly, since P̃(u)r
(t)2
u = r

(t)2
u /min(td, n),

∑

u

P̃(u)r(t)2u

[

(I −G)(I −GT )
]

uu
=

r(t)TDr(t)

min(td, n)
, (30)

where D is defined to be a diagonal matrix such that

Duu =
[

(I −G)(I −GT )
]

uu
= 1− 2Guu +

∑

k

G2
uk. (31)

Therefore, we substitute (29) and (30) into (28) to show that

EP̃

[

∥

∥

∥r(t+1)
∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

= r(t)T
(

I − 2I −G−GT −D

min(td, n)

)

r(t). (32)

We substitute (32) and Lemma A.1a into (27) to show that

EP̃

[

∥

∥

∥
r(t+1) − EP̃

[

r(t+1)
]∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

,

= r(t)T
(

I − 2I −G−GT −D

min(td, n)

)

r(t) − r(t)
T

(

I −
(

I −G

min(td, n)

))(

I −
(

I −GT

min(td, n)

))

r(t),

= r(t)T
(

D

min(td, n)
− (I −G)(I −GT )

min(td, n)2

)

r(t),

≤
∥

∥

∥

∥

D

min(td, n)
− (I −G)(I −GT )

min(td, n)2

∥

∥

∥

∥

2

∥

∥

∥r(t)
∥

∥

∥

2

2
. (33)

By definition, for all u,

‖G‖2 =
∥

∥GT
∥

∥

2
= max

‖x‖2=1

∥

∥GTx
∥

∥

2
≥
√

eTuGGT eu =

√

∑

k

G2
uk. (34)
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Therefore, G2
uu ≤∑k G

2
uk ≤ ‖G‖22, and

Duu = 1− 2Guu +
∑

k

G2
uk ≤ 1 + 2‖G‖2 + ‖G‖22 = (1 + ‖G‖2)2. (35)

Substitute (35) into (33) to show that

EP̃

[

∥

∥

∥r(t+1) − EP̃

[

r(t+1)
]∥

∥

∥

2

2

∣

∣

∣

∣

r(t)
]

≤ (1 + ‖G‖2)2
min(td, n)

(

1 +
1

min(td, n)

)

∥

∥

∥r(t)
∥

∥

∥

2

2
. (36)

We will use the two expressions given in Lemma A.1b to get different upper bounds on EP̃ [‖r(t+1)‖22],
and then take the minimum. The first bound is most relevant in the sparse setting when n is large
and d and ‖G‖2 are small. We substitute (36) and the first expression in Lemma A.1b into (26) to
show that

EP̃ [‖r(t+1)‖22] ≤ atEP̃ [‖r(t)‖22] + bt, (37)

for

at =
(1 + ‖G‖2)2
min(td, n)

(

1 +
1

min(td, n)

)

, (38)

and

bt = (t+ 1)−2(1−‖G‖2)/d. (39)

Therefore, EP̃ [‖r(t+1)‖22] ≤
∑t

k=1Qk for

Qk =

(

t
∏

m=k+1

am

)

bk =

(

t
∏

m=k+1

(1 + ‖G‖2)2
min(md,n)

(

1 +
1

min(md,n)

)

)

(k + 1)−2(1−‖G‖2)/d. (40)

The ratio between subsequent terms can be upper bounded by

Qk

Qk+1
≤ (1 + ‖G‖2)2

min((k + 1)d, n)

(

1 +
1

min((k + 1)d, n)

)(

k + 1

k + 2

)−2(1−‖G‖2)/d

. (41)

For k ≥ 1, d ≥ 4, and n ≥ 8,

Qk

Qk+1
≤ 4

8

(

1 +
1

8

)(

2

3

)2/4

<
1

2
. (42)

It follows that

EP̃

[

∥

∥

∥
r(t+1)

∥

∥

∥

2

2

]

≤ Qt

t
∑

k=1

(

1

2

)t−k

≤ 2(t+ 1)−2(1−‖G‖2)/d. (43)

We similarly obtain another bound by using the second expression of Lemma A.1b. This
bound applies in settings when the residual vector r(t) is no longer sparse. By Lemma A.1b,
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EP̃ [‖r(t+1)‖22] ≤ atEP̃ [‖r(t)‖22] + b′t, for b
′
t = e−2t(1−‖G‖2)/n. Therefore, EP̃ [‖r(t+1)‖22] ≤

∑t
k=1Q

′
k for

Q′
k =

(

t
∏

m=k+1

(1 + ‖G‖2)2
min(md,n)

(

1 +
1

min(md,n)

)

)

e−2k(1−‖G‖2)/n. (44)

The ratio between subsequent terms can be upper bounded by

Q′
k

Q′
k+1

≤
(

(1 + ‖G‖2)2
min((k + 1)d, n)

(

1 +
1

min((k + 1)d, n)

))

e2(1−‖G‖2))/n. (45)

For k ≥ 1, d ≥ 4, and n ≥ 8,

Q′
k

Q′
k+1

≤ 9e2(1−‖G‖2)/n

16
<

3

4
. (46)

It follows that

EP̃ [‖r(t+1)‖22] ≤ Q′
t

t
∑

k=1

(

3

4

)t−k

≤ 4e−2t(1−‖G‖2)/n. (47)

By Markov’s inequality, P(‖r(t)‖2 ≥ ǫ) ≤ δ for EP̃ [‖r(t)‖22] ≤ δǫ2. Therefore, we can directly
apply Lemma 4.2 to show that if ‖G‖2 < 1, d ≥ 4, and n ≥ 8, the algorithm terminates with
probability at least 1− δ for

t ≥ min

(

(

2

δǫ2

)d/2(1−‖G‖2)

, 1 +
n

2(1− ‖G‖2)
ln

(

4

δǫ2

)

)

. (48)

Since we are concerned with asymptotic performance, the conditions d ≥ 4 and n ≥ 8 are insignif-
icant. To bound the total number of multiplications, we multiply the number of iterations by the
maximum degree d.

Translating analysis for P̃ to P

Let us consider implementation A, which samples coordinates from P̃ , and implementation B,
which samples coordinates from P. Let RA denote the sequence of residual vectors r(t) derived
from implementation A, and let RB denote the sequence of residual vectors r(t) derived from
implementation B. The length of the sequence is the number of iterations until the algorithm
terminates. We define a joint distribution such that P(RA, RB) = P(RA)P(RB |RA).

Let P(RA) be described by the algorithm sampling coordinates from P̃. The sequence RA can
be sampled by separately considering the transitions when non-zero valued coordinates are chosen,
and the length of the repeat in between each of these transitions. Given the current iteration t and
the sparsity of vector r(t), we can specify the distribution for the number of iterations until the
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next transition. If we denote τt = min{s : s > t and r(s) 6= r(t)}, then

P(τt > k|r(t)) =
k
∏

q=1

(

1− ‖r(t)‖0
min((t+ q)d, n)

)

. (49)

Conditioned on the event that a non-zero valued coordinate is chosen at a particular iteration t,
the distribution over the chosen coordinate is the same as P.

For all t, r(t+1) 6= r(t) if and only if the algorithm chooses a non-zero valued coordinate of r(t)

at iteration t, which according to P̃ , occurs with probability 1 − ‖r(t)‖0/min(td, n). Therefore,
given the sequence RA, we can identify in which iterations coordinates with non-zero values were
chosen. Let P(RB |RA) be the indicator function which is one only if RB is the subsequence of RA

corresponding to the iterations in which a non-zero valued coordinate was chosen.
We can verify that this joint distribution is constructed such that the marginals correctly cor-

respond to the probability of the sequence of residual vectors derived from the respective imple-
mentations. For every (RA, RB) such that P(RB |RA) = 1, it also follows that |RA| ≥ |RB |, since
RB is a subsequence. For every q,

{(RA, RB) : |RA| ≤ q} ⊂ {(RA, RB) : |RB | ≤ q}, =⇒ P(|RA| ≤ q) ≤ P(|RB | ≤ q). (50)

Therefore, we can conclude that since the probability of the set of realizations such that implementa-
tion A terminates within the specified bound is larger than 1−δ, it also follows that implementation
B terminates within the specified bound with probability larger than 1 − δ. Therefore, since we
have proved Theorem 2.2 for implementation A, the result also extends to implementation B, i.e.,
our original algorithm.
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