
Optimal Queue-Size Scaling in Switched Networks

Devavrat Shah
MIT, LIDS

Cambridge, MA 02139, USA
devavrat@mit.edu

Neil Walton
University of Amsterdam

1012 ZA Amsterdam
The Netherlands

n.s.walton@uva.nl

Yuan Zhong
MIT, LIDS

Cambridge, MA 02139, USA
zhyu4118@mit.edu

ABSTRACT
We consider a switched (queueing) network in which there
are constraints on which queues may be served simultane-
ously; such networks have been used to effectively model
input-queued switches and wireless networks. The schedul-
ing policy for such a network specifies which queues to serve
at any point in time, based on the current state or past his-
tory of the system. In the main result of this paper, we pro-
vide a new class of online scheduling policies that achieve
optimal average queue-size scaling for a class of switched
networks including input-queued switches. In particular, it
establishes the validity of a conjecture (documented in [24])
about optimal queue-size scaling for input-queued switches.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet Switch-
ing Networks; G.3 [Probability and Statistics]: Markov
Processes, Queueing Theory, Stochastic Processes

General Terms
Algorithms, Performance, Theory

Keywords
Switched Network, Markov Chain, Large Deviations, Emu-
lation, Heavy Traffic, Store-and-Forward

1. INTRODUCTION.
A switched network consists of a collection of, say N ,

queues, operating in discrete time. At each time slot, queues
are offered service according to a service schedule chosen
from a specified finite set, denoted by S. The rule for choos-
ing a schedule from S at each time slot is called the schedul-
ing policy. New work may arrive to each queue at each
time slot exogenously and work served from a queue may
join another queue or leave the network. We shall restrict
our attention, however, to the case where work arrives in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06 ...$10.00.

the form of unit-sized packets, and once it is served from a
queue, it leaves the network, i.e., the network is single-hop.

Switched networks are special cases of what Harrison [12]
calls “stochastic processing networks”. Switched networks
are general enough to model a variety of interesting appli-
cations. For example, they have been used to effectively
model input-queued switches, the devices at the heart of
high-end Internet routers, whose underlying silicon archi-
tecture imposes constraints on which traffic streams can be
transmitted simultaneously [8]. They have also been used
to model multihop wireless networks in which interference
limits the amount of service that can be given to each host
[31]. Finally, they can be instrumental in finding the right
operational point in a data center [27].

In this paper, we consider online scheduling policies, that
is, policies that only utilize historical information (i.e., past
arrivals and scheduling decisions). The performance objec-
tive of interest is the total queue size or total number of
packets waiting to be served in the network on average (ap-
propriately defined). The questions that we wish to answer
are: (a) what is the minimal value of the performance ob-
jective among the class of online scheduling policies, and (b)
how does it depend on the network structure, S, as well as
the effective load.

Consider a work-conserving M/D/1 queue with a unit-
rate server in which unit-sized packets arrive as a Poisson
process with rate ρ P p0, 1q. Then, the average queue size
scales1 as 1{p1´ ρq. Such scaling dependence of the average
queue size on 1{p1 ´ ρq (or the inverse of the gap, 1 ´ ρ,
from the load to the capacity) is a universally observed be-
havior in a large class of queueing networks. In a switched
network, the scaling of the average total queue size ought
to depend on the number of queues, N . For example, con-
sider N parallel M/D/1 queues as described above. Clearly,
the average total queue size will scale as N{p1 ´ ρq. On the
other hand, consider a variation where all of these queues
pool their resources into a single server that works N times
faster. Equivalently, by a time change, let each of the N
queues receive packets as an independent Poisson process of
rate ρ{N , and each time a common unit-rate server serves
a packet from one of the non-empty queues. Then, the av-
erage total queue size scales as 1{p1 ´ ρq. Indeed, these are
instances of switched networks that differ in their scheduling

1In this paper, by scaling of quantity we mean its depen-
dence (ignoring universal constants) on 1

1´ρ
and/or the num-

ber of queues, N , as these quantities become large. Of par-
ticular interest is the scaling of ρ Ñ 1 and N Ñ 8, in that
order.

17

set S, which leads to different queue-size scalings. Therefore,
a natural question is the determination of average queue-size
scaling in terms of S and p1 ´ ρq, where ρ is the effective
load. In the context of an n-port input-queued switch with
N “ n2 queues, the optimal scaling of average total queue
size has been conjectured to be n{p1´ρq, that is, ?

N{p1´ρq
[24].

As the main result of this paper, we propose a new on-
line scheduling policy for any single-hop switched network.
This policy effectively emulates an insensitive bandwidth
sharing network with a product-form stationary distribution
with each component of this product-form behaving like an
M/M/1 queue. This crisp description of stationary distri-
bution allows us to obtain precise bounds on the average
queue sizes under this policy. This leads to establishing, as
a corollary of our result, the validity of the conjecture stated
in [24] for input-queued switches. In general, it provides ex-
plicit bounds on the average total queue size for any switched
network. Furthermore, due to the explicit bound on the sta-
tionary distribution of queue sizes under our policy, we are
able to establish a form of large-deviations optimality of the
policy for any single-hop switched network.
We note that the validity of the conjecture in [24] for

input-queued switches, stating that optimal average total
queue size scales as

?
N{p1´ρq, is a significant improvement

over the best known bounds of OpN{p1 ´ ρqq (due to the
moment bounds of [20] for the maximum weight policy) or

O
´?

N logN
p1´ρq2

¯
(obtained by using a batching policy [21]).

Our analysis consists of two principal components. Firstly,
a scheduling mechanism that is able to emulate, in discrete
time, any continuous-time bandwidth allocation within a
bounded degree of error. This scheduler maintains a continuous-
time queueing process and tracks its own queue size process.
If, valued under a certain decomposition, the gap between
the idealized continuous-time process and the real queueing
process becomes too large then an appropriate schedule is
allocated. Secondly, we implement specific bandwidth allo-
cation named the store-and-forward allocation policy (SFA).
This policy was first considered by Massoulié (see page 63,
sec 3.4.1 [22]), and was consequently discussed in Section
3.4 of Proutière’s thesis [22]. It was shown to be insensitive
with respect to phase-type service distributions in works by
Bonald and Proutière [3, 4]. The insensitivity of this policy
for general service distributions was established by Zachary
[37]. The Store-and-Forward bandwidth allocation policy is
closely related to classical product-form multiclass queueing
network, which have highly desirable queue-size scalings. By
emulating these queueing networks, we are able to trans-
late results which render optimal queue-size bounds for a
switched network.

We make two remarks here. First, the focus of this paper
is on policies that achieve provably (close-to-)optimal per-
formance bounds, but not on their implementation complex-
ity. While the design of low-complexity, and hence practi-
cally implementable, scheduling policies with provably opti-
mal performance remains an important challenge, we believe
that our result is a substantial advancement in this direction.
Second, besides classical product-form queueing networks,
SFA is also closely related to the so-called proportionally
fair bandwidth allocation (see, for example, [16]), and their
relationship is explored in [34]. Proportional fairness can be
viewed as a low-complexity approximation to SFA, and it is

natural to conjecture that a version of proportional fairness
is optimal for a large class of switched networks, including
the input-queued switch. See Section 3 for more discussions.

1.1 Organization.
In Section 2, we specify a stochastic switched network

model. In Section 3, we discuss related works. Section 4
details the necessary background on the insensitive store-
and-forward bandwidth allocation (SFA) policy. The main
result of the paper is presented and proved in Section 5. We
first describe the policy for single-hop switched networks,
and state our main result, Theorem 5.2. This is followed by
a discussion of the optimality of the policy. We then provide
a proof of Theorem 5.2. A discussion of directions for future
work is provided in Section 6.

Notation.
Let Z` “ t0, 1, 2, . . . u be the set of non-negative integers, R
the set of real numbers, and R` “ tx P R : x ě 0u.
We will reserve bold letters for vectors in R

N , where N is
the number of queues. For example, x “ rxns1ďnďN . Super-
scripts on vectors are used to denote labels, not exponents,
except where otherwise noted; thus, for example, px0,x1,x2q
refers to three arbitrary vectors. Let 0 be the vector of all
0s, and 1 be the vector of all 1s. The vector ei is the ith unit
vector, with all components being 0 but the ith component
equal to 1. We use the norm |x| “ maxn |xn|. For vectors u
and v, and functions f : R Ñ R, we let u ¨v “ řN

n“1 unvn,
uv “ runvns1ďnďN , and fpuq “ “

fpunq‰
1ďnďN

, and let ma-

trix multiplication take precedence over dot product so that

u¨Av “ u¨pAvq .
For a set S Ă R

N , denote its convex hull by xSy.

2. SWITCHED NETWORK MODEL.
We now introduce the switched network model. Section

2.1 describes the general system model, Section 2.2 lists the
probabilistic assumptions about the arrival process, and Sec-
tion 2.3 introduces some useful definitions.

2.1 Queueing dynamics.
Consider a collection of N queues. Let time be discrete,

and indexed by τ P t0, 1, . . . u. Let Qipτq be the amount of
work in queue i P t1, . . . , Nu at time slot τ . Following our
general notation for vectors, we writeQpτq for rQipτqs1ďiďN .
The initial queue sizes are Qp0q. Let Aipτq be the total
amount of work arriving to queue i, and Bipτq be the cu-
mulative potential service to queue n, up to time τ , with
Ap0q “ Bp0q “ 0.

We first define the queueing dynamics for a single-hop
switched network. Defining dApτq “ Apτ ` 1q ´ Apτq and
dBpτq “ Bpτ ` 1q ´ Bpτq, the basic Lindley recursion that
we will consider is

Qpτ ` 1q “ “
Qpτq ´ dBpτq‰` ` dApτq (1)

where the operation r¨s` is applied componentwise. The fun-
damental switched network constraint is that there is some
finite set S Ă R

N` such that

dBpτq P S, for all τ . (2)

For the purpose of this work, we shall focus on S Ă t0, 1uN .
We will refer to σ P S as a schedule, and S as the set of

18

allowed schedules. In the applications in this paper, the
schedule is chosen based on current queue sizes, which is
why it is natural to write the basic Lindley recursion as (1)
rather than the more standard rQpτq ` dApτq ´ dBpτqs`.
For the analysis in this paper, it is useful to keep track of

two other quantities. Let Zipτq be the cumulative amount
of idling at queue n, defined by Zp0q “ 0 and

dZpτq “ “
dBpτq ´ Qpτq‰`

, (3)

where dZpτq “ Zpτ ` 1q ´ Zpτq. Then, (1) can be rewritten
as

Qpτq “ Qp0q ` Apτq ´ Bpτq ` Zpτq. (4)

Also, let Sσpτq be the cumulative amount of time that is
spent on using schedule σ up to time τ , so that

Bpτq “
ÿ
σPS

Sσpτqσ. (5)

A policy that decides which schedule to choose at each
time slot τ P Z` is called a scheduling policy. In this paper,
we will be interested in online scheduling policies. That is,
the scheduling decision at time τ will be based on historical
information, i.e., the cumulative arrival processAp¨q till time
τ .

2.2 Stochastic model.
We shall assume that the exogeneous arrival process for

each queue is independent and Poisson. Specifically, unit-
sized packets arrive to queue i as a Poisson process of rate λi.
Let λ “ rλisNi“1 denote the vector of all arrival rates. The
results presented in this paper extend to more general arrival
process with i.i.d. interarrival times with finite means, using
a Poissonization trick. We discuss this extension in Section
6.

2.3 Useful quantities.
We shall assume that the scheduling constraint set S is

monotone. This is captured in the following assumption.

Assumption 2.1 (Monotonicity). If S contains a sched-
ule, then S also contains all of its sub-schedules. Formally,
for any σ P S, if σ1 P t0, 1uN and σ1 ď σ component-wise,
then σ1 P S.
Without loss of generality, we will assume that each unit
vector ei belongs to S. Next, we define some quantities that
will be useful in the remainder of the paper.

Definition 2.2 (Admissible region). Let S Ă t0, 1uN
be the set of allowed schedules. Let xSy be the convex hull of
S, i.e.,
xSy “

!ÿ
σPS

ασσ :
ÿ
σPS

ασ “ 1, and ασ ě 0 for all σ
)
.

Define the admissible region C to be

C “ �
λ P R

N
` : λ ď σ componentwise, for some σ P xSy(.

Note that under Assumption 2.1, the capacity region C and
the convex hull xSy of S coincide.

Given that xSy is a polytope contained in r0, 1sN , there
exists an integer J ě 1, a matrix R P R

JˆN
` , and a vector

C P R
J` such that

xSy “
!
x P r0, 1sN : Rx ď C

)
. (6)

We call J the rank of xSy in the representation (6). When
it is clear from the context, we simply call J the rank of
xSy. Note that this rank may be different from the rank of
matrix R. Our results will exploit the fact that the rank J
may be an order of magnitude smaller than N .

Definition 2.3 (Static planning problems and load).

Define the static planning optimization problem PRIMALpλq
for λ P R

N` to be

minimize
ÿ
σPS

ασ (7)

subject to λ ď
ÿ
σPS

ασσ, (8)

ασ P R`, for all σ P S. (9)

Define the load induced by λ, denoted by ρpλq, as the value
of the optimization problem PRIMALpλq.
Note that λ is admissible if and only if ρpλq ď 1. It also
follows immediately from Definition 2.3 that

ρpλq “ inf
!
γ ě 0 : Rλ ď γC

)
,

and λ is admissible if and only if Rλ ď C, component-wise.
The following is a simple and useful property of ρp¨q: for

any a, b P R
N` ,

ρpa ` bq ď ρpaq ` ρpbq. (10)

2.4 Motivating example.
An Internet router has several input ports and output

ports. A data transmission cable is attached to each of these
ports. Packets arrive at the input ports. The function of
the router is to work out which output port each packet
should go to, and to transfer packets to the correct output
ports. This last function is called switching. There are a
number of possible switch architectures; we will consider
the commercially popular input-queued switch architecture.

Figure 1 illustrates an input-queued switch with three in-
put ports and three output ports. Packets arriving at input
k destined for output � are stored at input port k, in queue
Qk,�, thus there are N “ 9 queues in total. (For this ex-
ample, it is more natural to use double indexing, e.g., Q3,2,
whereas for general switched networks it is more natural to
use single indexing, e.g., Qi for 1 ď i ď N .)

The switch operates in discrete time. At each time slot,
the switch fabric can transmit a number of packets from in-
put ports to output ports, subject to the two constraints that
each input can transmit at most one packet, and that each
output can receive at most one packet. In other words, at
each time slot the switch can choose a matching from inputs
to outputs. The schedule σ P R

3ˆ3
` is given by σk,� “ 1 if

input port k is matched to output port � in a given time slot,
and σk,� “ 0 otherwise. The matching constraints require
that

ř3
m“1 σk,m ď 1 for k “ 1, 2, 3, and

ř3
m“1 σm,� ď 1 for

� “ 1, 2, 3. Figure 1 shows two possible matchings. On the
left-hand side, the matching allows a packet to be transmit-
ted from input port 3 to output port 2, but since Q3,2 is
empty, no packet is actually transmitted.

In general, for an n-port switch, there are N “ n2 queues.
The corresponding schedule set S is defined to be!
σ P t0, 1unˆn :

nÿ
m“1

σk,m ď 1,
nÿ

m“1

σm,� ď 1, 1 ď k, � ď n
)
.

19

Input
ports

Output ports

input 1

input 2

input 3

output 1output 2output 3

Figure 1: An input-queued switch, and two example
matchings of inputs to outputs.

It can be checked that S is monotone. Furthermore, due
to Birkhoff-von Neumann Theorem, [2, 33], the convex hull
xSy of S is given by!
x P r0, 1snˆn :

nÿ
m“1

xk,m ď 1,
nÿ

m“1

xm,� ď 1, 1 ď k, � ď n
)
.

That is, the rank of xSy is less than or equal to 2n “ 2
?
N

for an n-port switch. Finally, given an arrival rate matrix2

λ P r0, 1snˆn, ρpλq is given by

ρpλq “ max
1ďk,�ďn

! nÿ
m“1

λk,m,
nÿ

m“1

λm,�

)
.

3. RELATED WORKS.
The question of determining the optimal scaling of queue

sizes in switched networks, or more generally, stochastic pro-
cessing networks, has been an important intellectual pur-
suit for more than a decade. The complexity of the generic
stochastic processing network makes this task extremely chal-
lenging. Therefore, in search of tractable analysis, most of
the prior work has been on trying to understand optimal
scaling and scheduling policies for scaled systems: primarily,
with respect to fluid and heavy-traffic scaling.

In heavy-traffic analysis, one studies the queue-size behav-
ior under a diffusion (or heavy-traffic) scaling. This regime
was first considered by Kingman [18]; since then, a substan-
tial body of theory has developed, and modern treatments
can be found in [11, 5, 36, 35]. Stolyar [30] has studied a
class of myopic scheduling policies, known as the maximum
weight policy, introduced by Tassiulas and Ephremides [31],
for a generalized switch model in the diffusion scaling. In
a general version of the maximum weight policy, a schedule
with maximum weight is chosen at each time step, with the
weight of a schedule being equal to the sum of the weights
of the queues chosen by that schedule. The weight of a
queue is a function of its size. In particular, for the choice
of one parameter class of functions parameterized by α ą 0,
fpxq “ xα, the resulting class of policies are called the max-
imum weight policies with parameter α ą 0, and denoted as
MW-α.
In [30], a complete characterization of the diffusion ap-

proximation for the queue-size process was obtained, un-
der a condition known as “complete resource pooling”, when
the network is operating under the MW-α policy, for any
α ą 0. This condition effectively requires that there exists
a scheduling policy which is able to balance the weights of

2not a vector, for notational convenience, as discussed earlier

all the heavily loaded queues. Stolyar [30] showed the re-
markable result that the limiting queue-size vector lives in a
one-dimensional state space. Operationally, this means that
all one needs to keep track of is the one-dimensional total
amount of work in the system (called the rescaled workload),
and at any point in time one can assume that the individ-
ual queues have all been balanced. Furthermore, it was es-
tablished that a max-weight policy minimizes the rescaled
workload induced by any policy under the heavy-traffic scal-
ing (with complete resource pooling). Dai and Lin [6, 7]
have established that a similar result holds (with complete
resource pooling) in the more general setting of a stochas-
tic processing network. In summary, under the complete
resource pooling condition, the results in [30, 6, 7] imply
that the performance of the maximum weight policy in an
input-queued switch, or more generally in a stochastic pro-
cessing network, is always optimal (in the diffusion limit,
and when each queue size is approriately weighted). These
results suggest that the average total queue size scales as
1{p1 ´ ρq in the ρ Ñ 1 limit. However, such analyses do not
capture the dependence on the network scheduling structure
S. Essentially, this is because the complete resource pool-
ing condition reduces the system to a one-dimensional space
(which may be highly dependent on a network’s structure),
and optimality results are then initially expressed with re-
spect to this one-dimensional space.

Motivated to capture the dependence of the queue sizes on
the network scheduling structure S, a heavy-traffic analysis
of switched networks with multiple bottlenecks (without re-
source pooling) was pursued by Shah andWischik [28]. They
established the so-called multiplicative state space collapse,
and identified a member, denoted by MW-0` (obtained by
taking α Ñ 0), of the class of maximum-weight policies as
optimal with respect to a critical fluid model. In a more re-
cent work, Shah and Wischik [27] established the optimality
of MW-0` with respect to overloaded fluid models as well.
However, this collection of works stops short of establishing
optimality for diffusion scaled queue-size processes.

Finally, we take note of the work by Meyn [19], which
establishes that a class of generalized maximum weight poli-
cies achieve logarithmic (in 1{p1´ ρq) regret with respect to
an optimal policy under certain conditions.

In a related model — the bandwidth-sharing network model
— Kang et al. [15] have established a diffusion approxima-
tion for the proportionally fair bandwidth allocation policy,
assuming a technical “local traffic” condition, but without
assuming complete resource pooling3. They show that the
resulting diffusion approximation has a product-form sta-
tionary distribution. Shah et al. [25] have recently estab-
lished that this product-form stationary distribution is in-
deed the limit of the stationary distributions of the origi-
nal stochastic model (an interchange-of-limits result). As
a consequence, if one could utilize a scheduling policy in a
switched network that corresponds to the proportionally fair
policy, then the resulting diffusion approximation will have
a product-form stationary distribution, as long as the effec-
tive network scheduling structure S (precisely xSy) satisfies
the “local traffic condition”. Now, proportional fairness is a
continuous-time rate allocation policy that usually requires
rate allocations that are a convex combination of multiple
schedules. In a switched network, a policy must operate in

3Kang et al. [15] assume that critically loaded traffic is such
that all the constraints are saturated simultaneously.

20

discrete time and has to choose one schedule at any given
time from a finite discrete set S. For this reason, propor-
tional fairness cannot be implemented directly. However, a
natural randomized policy inspired by proportional fairness
is likely to have the same diffusion approximation (since the
fluid models would be identical, and the entire machinery of
Kang et al. [15], building upon the work of Bramson [5] and
Williams [36], relies on a fluid model). As a consequence, if S
(more accurately, xSy) satisfies the “local traffic condition”,
then effectively the diffusion-scaled queue sizes would have
a product-form stationary distribution, and would result in
bounds similar to those implied by our results. In compar-
ison, our results are non-asymptotic, in the sense that they
hold for any admissible load, they have a product-form struc-
ture, and they do not require technical assumptions such as
the ‘local traffic condition’. Furthermore, such generality
is needed because there are popular examples, such as the
input-queued switch, that do not satisfy the ‘local traffic
condition’.

We note that Stolyar [29] and Venkataramanan and Lin
[32] established that the maximum weight policy with weight
parameter α ą 0, MW-α, optimizes the tail exponent of the
1 ` α norm of the queue-size vector. However, it does not
characterize the tail exponent explicitly. See [23] which has
the best known explicit bounds on the tail exponent.
In the context of input-queued switches, the example that

has primarily motivated this work, the policy that we pro-
pose has the average total queue size bounded within factor
2 of the same quantity induced by any policy, in the heavy-
traffic limit. Furthermore, this result does not require con-
ditions like complete resource pooling. More generally, our
policy provides non-asymptotic bounds on queue sizes for
every arrival rate and switch size. The policy even admits
exponential tail bounds with respect to the stationary dis-
tribution; and the exponent of these tail bounds is optimal.
These results are significant improvements on the state-of-
the-art bounds for best performing policies for input-queued
switches. As noted in the introduction, our bound on the
average total queue size is

?
N times better than the exist-

ing bound for the maximum-weight policy, and logN{p1´ρq
times better than that for the batching policy in [21]. (Here
N is the number of queues, and ρ the system load.) For
more details of these results, see [24].

For a generic switched network, our policy induces aver-
age total queue size that scale linearly with the rank of xSy,
under the diffusion scaling. This is in contrast to the best
known bounds, such as those for maximum weight policy,
where the average queue-size scales as N , under the diffu-
sion scaling. Therefore, whenever the rank of xSy is smaller
than N (the number of queues), our policy provides tighter
bounds. Under our policy, queue sizes admit exponential
tail bounds. The bound on the distribution of queue-sizes
under our policy leads to an explicit characterization of the
tail exponent, which is optimal for any single-hop switched
network.

4. INSENSITIVITY IN STOCHASTIC NET-
WORKS.

This section recalls the background on insensitive stochas-
tic networks that underlies the main results of this work. We
shall focus on descriptions of the insensitive bandwidth al-
location in so-called bandwidth-sharing networks operating

in continuous time. Justifications of claims made in this
section are omitted in the interest of space.

We consider a bandwidth-sharing network operating in
continuous time with capacity constraints. The particular
bandwidth-sharing policy of interest is the so-called “store-
and-forward allocation (SFA),” introduced by Bonald and
Proutière [4]. We shall use the SFA as an idealized policy to
design online scheduling policies for switched networks. We
now describe the precise model, the SFA policy, and what
we know about its performance.

Model.
Let time be continuous and indexed by t P R`. Consider

a network with J ě 1 resources indexed from 1, . . . , J . Let
there be N routes, and suppose that each packet on route
i consumes an amount Rji ě 0 of resource j, for each j P
t1, 2, . . . , Ju. Let K be the set of all resource-route pairs pj, iq
such that route i uses resource j, i.e., K “ tpj, iq : Rji ą
0u. Without loss of generality, we assume that for each i P
t1, 2, . . . , Nu, řJ

j“1 Rji ą 0. Let R be the J ˆ N matrix

with entries Rji. Let C P R
J` be a positive capacity vector

with components Cj . For each route i, packets arrive as an
independent Poisson process of rate λi. Packets arriving on
route i require a unit amount of service, deterministically.

We denote the number of packets on route i at time t by
Miptq, and define the queue-size vector at time t by Mptq “
rMiptqsNi“1 P Z

N` . Each packet gets service from the network
at a rate determined according to a bandwidth-sharing pol-
icy. Once a packet receives its total (unit) amount of service,
it departs the network.

We consider online, myopic bandwidth allocations. That
is, the bandwidth allocation at time t only depends on the
queue-size vector Mptq. When there are mi packets on route
i, that is, if the vector of packets is m “ rmisNi“1, let the
total bandwidth allocated to route i be φipmq P R`. We
consider a processor-sharing policy, so that each packet on
route i is served at rate φipmq{mi, if mi ą 0. If mi “ 0,
let φipmq “ 0. If the bandwidth vector φpmq “ rφipmqsNi“1

satisfies the capacity constraints

Rφpmq ď C, component-wise, (11)

for all m P Z
N` then, in light of Definition 2.2, we say that

φp¨q is an admissible bandwidth allocation. A Markovian
description of the system is given by a process Xptq which
contains the queue-size vector Mptq along with the residual
workloads of the set of packets on each route.

Now, on average, λi units of work arrive to route i per
unit time. Therefore, in order for the Markov process Xp¨q
to be positive (Harris) recurrent, it is necessary that

Rλ ă C, component-wise. (12)

All such λ “ rλisNi“1 P R
N` will be called strictly admissible,

in the same spirit as the admissible region for a switched
network.

Store-and-Forward Allocation (SFA) policy.
We describe the store-and-forward allocation policy that

was first considered by Massoulié and later analysed in the
thesis of Proutière [22]. Bonald and Proutière [4] established
that it induces product-form stationary distributions and is
insensitive with respect to phase-type service distributions.
This policy is shown to be insensitive for general service time

21

distributions, including the deterministic service considered
here, by Zachary [37]. The relation between this policy,
the proportionally fair allocation, and multiclass queueing
networks is discussed in depth by Walton [34] and Kelly et
al. [16]. The insensitivity property implies that the invariant
measure of the processMptq only depends on the parameters
λ “ rλisNi“1 P R

N` , and no other aspects of the stochastic
description of the system.

We, first, give an informal motivation for SFA. SFA is
closely related to quasi-reversible queueing networks. Con-
sider a continuous-time multi-class queueing network (with-
out scheduling constraints) consisting of processor sharing
queues indexed by j P t1, ..., Ju and job types indexed by
the routes i P t1, ..., Nu. Each route i job has a service re-
quirement Rji at each queue j, and a fixed service capacity
Cj is shared between jobs at the queue. Here each job will
sequentially visit all the queues (so called store-and-forward)
and will visit each queue a fixed number of times. If we as-
sume jobs on each route arrive as a Poisson process, then the
resulting queueing network will be stable for all strictly ad-
missible arrival rates. Moreover, each stationary queue will
be independent with a queue size that scales, with its load
ρ, as ρ{p1 ´ ρq. For further details, see Kelly [17]. So, as-
suming each queue has equal load, the total number of jobs
within the network is of the order Jρ{p1´ρq. In other words,
these networks have the stability and queue-size scaling that
we require, but they do not obey the necessary scheduling
constraints (11). However, these networks do emit an ad-
missible schedule on average. For this reason, we consider
SFA which, given the number of jobs on each route, allo-
cates the average rate that jobs are transferred through this
multi-class network. Next, we describe this policy (using
notations similar to those used in [16, 34]).

Given m P Z
N` , define

Upmq “
" rm “ p rmji : pj, iq P Kq P Z

|K|
` :

ÿ
j:jPi

rmji “ mi for all 1 ď i ď N

*
.

For L P Z
J`, we also define

V pLq “
" rm “ p rmji : pj, iq P Kq P Z

|K|
` :

ÿ
i:iQj

rmji “ Lj for all 1 ď j ď J

*
.

Here, by notation j P i (and i Q j) we mean Rji ą 0. The
notation i Q j is used when we consider a collection of i
satisfying this condition for a given j. For each rm P Upmq,
we exploit notation somewhat and define

rmj “
ÿ
i:jPi

rmji, for all j ď J.

Also define ˜ rmjrmji : i Q j

¸
“ rmj !ś

i:jPip rmji!q .

For m P Z
N` , we define Φpmq as

Φpmq “
ÿ

ĂmPUpmq

ź
jPJ

˜˜ rmjrmji : i Q j

¸ ź
i:jPi

ˆ
Rji

Cj

˙Ămji
¸
. (13)

We shall define Φpmq “ 0 if any of the components of m
is negative. The store-and-forward allocation (SFA) assigns
rates according to the function φ : ZN` Ñ R

N` so that for
any m P Z

N` , φpmq “ pφipmqqNi“1, with

φipmq “ Φpm ´ eiq
Φpmq , (14)

where, recall that m´ei is the same as m at all but the ith
component; its ith component equalsmi´1. The bandwidth
allocation φpmq is the stationary throughput of jobs on the
routes of a multi-class queueing network (described above),
conditional on there being m jobs on each route.

A priori it is not clear if the above described bandwidth
allocation is even admissible (i.e., satisfies (11)). This can be
argued as follows. The φpmq can be related to the stationary
throughput of a multi-class network with a finite number of
jobs, m, on each route. Under this scenario (due to finite
number of jobs), each queue must be stable. Therefore, the
load on each queue, Rφpmq, must be less than the overall
system capacity C. That is, the allocation is admissible.
The precise argument along these lines is provided in, for
example [16, Corollary 2] and [34, Lemma 4.1].

The SFA induces a product-form invariant distribution for
the number of packets waiting in the bandwidth-sharing net-
work and is insensitive. We summarize this in the following
result.

Theorem 4.1. Consider a bandwidth-sharing network with
Rλ ă C. Under the SFA policy described above, the Markov
process Xptq is positive (Harris) recurrent and Mptq has a
unique stationary probability distribution π given by

πpmq “ Φpmq
Φ

Nź
i“1

λmi
i , for all m P Z

N
` , (15)

where

Φ “
Jź

j“1

˜
Cj

Cj ´ ř
i:iQj Rjiλi

¸
(16)

is a normalizing factor. Furthermore, in steady state, the
residual workload of each packet in the network is uniformly
distributed on r0, 1s and is conditionally independent from
the residual workloads of other packets, when we condition
on the number of packets on each route of the network.

Note that statements similar to Theorem 4.1 have appeared
in other works, for example, [3], [34, Proposition 4.2] and
[16]. Theorem 4.1 is a summary of these statements.

The following property of the stationary distribution π
described in Theorem 4.1 that will be useful.

Proposition 4.2. Consider the setup of Theorem 4.1 and

let π be as described by (15). Define a measure rπ on Z
|K|
`

as follows: for rm P Z
|K|
` ,

rπp rmq “ 1

Φ

Jź
j“1

˜˜
m̃j

m̃ji : i Q j

¸ ź
i:jPi

ˆ
Rjiλi

Cj

˙m̃ji
¸
. (17)

Then, for any L P Z`,

π

ˆ"
m :

Nÿ
i“1

mi “ L

*˙
“ rπˆ" rm :

Jÿ
j“1

rmj “ L

*˙
. (18)

22

Finally, we relate the distribution rπ to the stationary distri-
bution of an insensitive multiclass queueing network with a
product-form stationary distribution and geometrically dis-
tributed queue sizes.

Proposition 4.3. Consider the distribution rπ defined in
(17). Then, for any L “ pL1, . . . , LJq P Z

J`,

rπ` rm1 “ L1, . . . , rmJ “ LJ

˘ paq“
ÿ

pm̃jiqPV pLq
rπpp rmjiqq

“
Jź

j“1

rρLj

j p1 ´ rρjq, (19)

where rρj “ `ř
i:iQj Rjiλj

˘{Cj .

5. MAIN RESULT: A POLICY AND ITS PER-
FORMANCE

In this section, we describe an online scheduling policy
and quantify its performance in terms of explicit, closed-
form bounds on the stationary distribution of the induced
queue sizes. Section 5.1 describes the policy for a generic
switched network and provides the statement of the main
result. Section 5.2 discusses its implications. Specifically, it
discusses (a) the optimality of the policy for any single-hop
switched network with respect to exponential tail bounds,
and (b) the optimality of the policy for a class of switched
networks, including input-queued switches, with respect to
the average total queue size. Section 5.3 proves the main
result stated in Section 5.1.

5.1 A policy for switched networks.
The basic idea behind the policy, to be described in detail

shortly, is as follows. Given a switched network, denoted by
SN, with constraint set S and N queues, let xSy have rank
J and representation (cf. (6))

xSy “ �
x P r0, 1sN : Rx ď C

(
, R P R

JˆN
` , C P R

J
`.

Now consider a virtual bandwidth-sharing network, denoted
by BN, with N routes corresponding to each of these N
queues. The resource-route relation is determined precisely
by the matrix R; and the J resources have capacities given
by C. Both networks, SN and BN are fed identical arrivals.
That is, whenever a packet arrives to queue i in SN, a packet
is added to route i in BN at the same time. The main ques-
tion is that of determining a scheduling policy for SN; this
will be derived from BN. Specifically, the BN will operate
under the insensitive SFA policy described in Section 4. Due
to Theorem 4.1 as well as Propositions 4.2 and 4.3, this will
induce a desirable stationary distribution of queue sizes in
BN. Therefore, if we could use the rate allocation of BN,
that is, the policy SFA, directly in SN, it would give us a
desired performance in terms of the stationary distribution
of the induced queue sizes. Now the rate allocation in BN is
such that the instantaneous rate is always inside xSy. How-
ever, it could change all the time and need not utilize points
of S as rates. In contrast, in SN we require that the rate
allocation can change only once per discrete time slot and
it must always employ one of the generators of xSy, that
is, a schedule from S. The key to our policy is an effective
way to emulate the rate allocation of BN under SFA (or for
that matter, any admissible bandwidth allocation) by uti-
lizing schedules from S in an online manner and with the

discrete-time constraint. We will see shortly that this em-
ulation policy relies on S being monotone (cf. Assumption
2.1).

To that end, we describe this emulation policy. Let us
start by introducing some useful notation. LetAp¨q “ `

Aip¨q˘
be the vector of exogenous, independent Poisson processes
according to which unit-sized packets arrive to both BN and
SN, simultaneously. Recall that Aip¨q is a Poisson process
with rate λi. Let Mptq “ `

Miptq˘ denote the vector of num-
bers of packets waiting on the N routes in BN at time t ě 0.
In BN, the services are allocated according to the SFA pol-
icy described in Section 4. Let ΛSFAp¨q “ `

ΛSFA
i p¨q˘ P R

N`
denote the cumulative amount of service allocated to the
N routes in BN under the SFA policy: ΛSFA

i ptq denotes
the total amount of service allocated to all packets on route
i during the interval r0, ts, for t ě 0, with ΛSFA

i p0q “ 0
for 1 ď i ď N . By definition, all components of ΛSFAp¨q
are non-decreasing and Lipschitz continuous. Furthermore,
pΛSFApt ` sq ´ ΛSFAptqq{s P xSy for any t ě 0 and s ą 0.
Recall that the (right-)derivative of ΛSFAp¨q is determined
by Mp¨q through the function φp¨q as defined in (14).

Now we describe the scheduling policy for SN that will
rely on ΛSFAp¨q. Let Bpτq “ `

Bipτq˘ denote the cumulative
amount of service allocated in SN by the scheduling policy
up to time slot τ ě 0, with Bp0q “ 0. The scheduling policy
determines how Bp¨q is updated. Let Qpτq “ `

Qipτq˘ be the
queue sizes measured at the end of time slot τ . Let service be
provided according to the scheduling policy instantly at the
begining of a time slot. Thus, the scheduling policy decides
the schedule dBpτq “ Bpτ `1q´Bpτq P S at the very begin-
ning of time slot τ `1. This decision is made as follows. Let
Dpτq “ ΛSFApτq ´ Bpτq. We will see shortly that by virtue
of our policy, Dpτq ě dBpτq, and hence Dpτq ě 0, for all
time τ . This fact will be key for many subsequent proofs.
Let ρpDpτqq be the optimal objective value in the optimiza-
tion problem PRIMALpDpτqq defined in (7). In particular,
there exists a non-negative combination of schedules in S
such thatÿ

σPS
α̃σσ ě Dpτq, and

ÿ
σPS

α̃σ “ ρpDpτqq. (20)

We claim that in fact, we can find non-negative numbers ασ,
σ P S, such thatÿ

σPS
ασσ “ Dpτq, and

ÿ
σPS

ασ “ ρpDpτqq. (21)

This is formalized in the following lemma.

Lemma 5.1. Let D P R
N` be a non-negative vector. Con-

sider the static planning problem PRIMALpDq defined in
(7). Let the optimal objective value to PRIMALpDq be ρpDq.
Then there exist ασ ě 0, σ P S, such that (21) hold.

The proof of the lemma relies on Assumption 2.1. The detail
of the proof is provided in [26].

There could be many possible non-negative combinations
of Dpτq satisfying (21). If there exists non-negative numbers
ασ, σ P S, satisfying (21) with ασ1 ě 1 for some σ1 P S,
then choose σ1 as the schedule: set dBpτq “ σ1. If no such
decomposition exists for Dpτq, then set dBpτq “ rσ, whererσ is a solution (ties broken arbitrarily) of

maximize
ÿ
i

σi over σ P S, σ ď Dpτq. (22)

23

Note that 0 is a feasible solution for the above problem as
0 P S and 0 ď Dpτq. Observe also that for all time τ ,
dBpτq ď Dpτq.

The above is a complete description of the scheduling pol-
icy. Observe that it is an online policy, as the virtual net-
work BN can be simulated in an online manner, and, given
this, the scheduling decision in SN relies only on the his-
tory of BN and SN. The following result quantifies the
performance of the policy.

Theorem 5.2. Given a strictly admissible arrival rate vec-
tor λ, with ρpλq ă 1, under the above described policy,
the switched network SN is positive recurrent and has a
unique stationary distribution. Let ρ̃j “ `ř

i Rjiλi

˘{Cj ,
j “ 1, 2, . . . , J be as in Proposition 4.3. With respect to
this stationary distribution, the following properties hold:

1. The expected total queue size is bounded as

E

” Nÿ
i“1

Qi

ı
ď 1

2

˜
Jÿ

j“1

ρ̃j
1 ´ ρ̃j

¸
` KpN ` 2q, (23)

where K “ maxσPS
`ř

i σi

˘
.

2. The distribution of the total queue size has an expo-
nential tail with exponent given by

lim
LÑ8

1

L
log P

` Nÿ
i“1

Qi ě L
˘ “ max

j“1,...,J
log ρ̃j . (24)

5.2 Optimality of the policy.
This section establishes the optimality of our policy for

input-queued switches, both with respect to expected total
queue size scaling and tail exponent. The policy produces an
optimal tail exponent for any single-hop switched network.

Scaling of queue sizes.
We start by formalizing what we mean by the optimal-

ity of expected queue sizes and of their tail exponents. We
consider policies under which there is a well-defined limit-
ing stationary distribution of the queue sizes for all λ such
that ρpλq ă 1. Note that the class of policies is not empty;
indeed, the maximum weight policy and our policy are mem-
bers of this class. With some abuse of notation, let π denote
the stationary distribution of the queue-size vector under the
policy of interest. We are interested in two quantities:

1. Expected total queue size. Let Q̄ be the expected total
queue size under the stationary distribution π, defined
by

Q̄ “ Eπ

“ÿ
i

Qi

‰
.

Note that by ergodicity, the time average of the total
queue size and the expected total queue size under π
are the same quantity.

2. Tail exponent. Let βLpQq, βU pQq P r´8, 0s be the
lower and upper limits of the tail exponent of the total
queue size under π (possibly ´8 or 0), respectively,
defined by

βLpQq “ lim inf
�Ñ8

1

�
log Pπ

`ÿ
i

Qi ě �
˘
, (25)

and βU pQq “ lim sup
�Ñ8

1

�
log Pπ

`ÿ
i

Qi ě �
˘
. (26)

If βLpQq “ βU pQq, then we denote this common value
by βpQq.

We are interested in policies that can achieve minimal Q̄
and βpQq. For tractability reasons, we focus on the scaling
of these quantities with respect to S (equivalently, N) and
ρpλq, as 1{p1 ´ ρpλqq and N increase. Now, for different λ1
and λ, it is possible that ρpλq “ ρpλ1q, but the scaling of Q̄,
for example, could be wildly different. For this reason, we
consider the worst possible dependence on 1{p1 ´ ρq and N
among all λ with ρpλq “ ρ.

Note that we are considering scalings with respect to two
quantities ρ and N , and we are interested in two limiting
regimes ρ Ñ 1 and N Ñ 8. The optimality of average
queue-size stated here is with respect to the order of limits
ρ Ñ 1 and then N Ñ 8. As noted in [24], taking the
limits in different orders could potentially result in different
limiting behaviors of the object of interest, e.g., Q̄. For more
discussions, see Section 6. It should be noted, however that
the optimality of the tail exponent holds for any ρ and N .

Optimality of the tail exponent.
Here we establish the optimality of the tail exponent for

any single-hop switched network under our policy. Consider
any policy under which there exists a well-defined limiting
stationary distribution of the queue sizes for all λ such that
ρpλq ă 1. Let π0 denote the stationary distribution of queue
sizes under this policy. The optimality of the tail exponent
under our policy is an immediate consequence of the follow-
ing lemma.

Lemma 5.3. Let π0 and λ be as described. Let ρ̃1, . . . , ρ̃J
be as defined in (4.3). Then under π0,

lim inf
�Ñ8

1

�
log Pπ0

˜ÿ
i

Qi ě �

¸
“ max

j“1,2,...,J
log ρ̃j .

Proof. Recall that ρ̃j “ `ř
i Rjiλi

˘ {Cj , for j “ 1, 2, . . . , J ,
under the representation

xSy “
!
x P r0, 1sN : Rx ď C

)
.

Without loss of generality, suppose that ρ̃1 “ maxj“1,2,...,J ρ̃j .
We now lower bound the total queue size stochastically by
that of an M{D{1 queue. Consider an M{D{1 queue where
the arrival rate is ρ̃1, and the service capacity has a deter-
ministic rate of 1. Since in the original network, this service
capacity has to be shared among the queues,

ř
i Qi stochas-

tically dominates this M{D{1 queue. Now the stationary
distribution of this M{D{1 queue has a tail exponent log ρ̃1,
which provides a lower bound on the same quantity in the
original network, under π0.

Input-queued switches.
Here we argue the optimality of our policy for input-

queued switches. As discussed above, the scaling of tail
exponent is optimal under our policy for any switched net-
works, and hence for input-queued switches. We would ar-
gue the optimal scaling of the average total queue size under
our policy for input-queued switches. To that end, as argued
in Shah et al. [24], when all input and output ports ap-
proach critical load, the average total queue size under any
policy for input-queued switch must scale at least as fast
as

?
N{p1 ´ ρq, for any n-port switch with N “ n2 queues.

24

For completeness, we include the proof for this lower bound
here. As in Section 2.4, we use double indexing.

Lemma 5.4. Consider a n-port input-queued switch, with
an arrival rate vector λ. Suppose that the loads on all in-
put and output ports are ρ, i.e.,

řn
k“1 λk,� “ ř

m λ�,m “ ρ,
for all � P t1, 2, . . . , nu, where ρ P p0, 1q. Consider any pol-
icy under which the queue-size process has a well-defined
limiting stationary distribution, and let this distribution be
denoted by π0. Then under π0, we must have

Eπ0

«
nÿ

k,�“1

Qk,�

ff
ě nρ

2p1 ´ ρq .

Proof. We consider the sums of queue sizes at each out-
put port, i.e., the quantities

řn
k“1 Qk,� for each � P t1, 2, . . . , nu.

Since at most one packet can depart at each time slot,
řn

k“1 Qk,�

stochastically dominates the queue size in an M{D{1 sys-
tem, with arrival rate ρ and deterministic service rate 1.
Therefore, for each � P t1, 2, . . . , nu,

Eπ0

«
nÿ

k“1

Qk,�

ff
ě ρ

2p1 ´ ρq .

Here, ρ
2p1´ρq is the expected queue size in steady state in

an M{D{1 system. Summing over � gives us the desired
bound.

The optimality in terms of the average total queue size is
a direct consequence of Theorem 5.2 and Lemma 5.4.

Corollary 5.5. Consider the same setup as in Lemma
5.4. Then in the heavy-traffic limit ρ Ñ 1, our policy is
2-optimal in terms of the average total queue size. More
precisely, consider the expected total queue size in the diffu-
sion scale in steady state, i.e., p1 ´ ρqQ̄. Then

lim sup
ρÑ1

p1 ´ ρqQ̄ ď n

under our policy, and

lim inf
ρÑ1

p1 ´ ρqQ̄ ě n

2

under any other policy.

Proof. Lemma 5.4 implies that

lim inf
ρÑ1

p1 ´ ρqQ̄ ě n

2

under any policy. For the upper bound, note that by Theo-
rem 5.2, under our policy,

Q̄ ď J

2p1 ´ ρq ` pN ` 2qK.

For input-queued switches, J ď 2n, as remarked in Section
5.2, N “ n2, and K “ n. Therefore, we have that under our
policy, the expected total queue size scales as

Q̄ ď n

1 ´ ρ
` pn2 ` 2qn. (27)

Now consider the steady-state heavy-traffic scaling p1´ρqQ.
We have that

p1 ´ ρqQ̄ ď n ` p1 ´ ρqpn2 ` 2qn. (28)

The term p1 ´ ρqpn2 ` 2qn goes to zero as ρ Ñ 1, and hence
under our policy,

lim sup
ρÑ1

p1 ´ ρqQ̄ ď n.

Our policy is not optimal in terms of the average total queue
size, in general switched networks. In cases where J ąą N ,
the moment bounds for the maximum-weight policy give
tighter upper bounds. For more discussions, see Section 6.

5.3 Proof of Theorem 5.2.
The proof is divided in three parts. The first part de-

scribes a sample-path-wise relation between Qp¨q and Mp¨q,
which implies that Qp¨q is essentially dominated by Mp¨q at
all times. Note that this domination is a distribution-free
statement. The second part utilizes this fact to establish
the positive recurrence of the SN Markov chain. Given the
technical nature of the second part, we skip the detail, which
can be found in [26]. The third part, as a consequence of
the first two parts, and using Theorem 4.1, establishes the
quantitative claims in Theorem 5.2.

Part 1. Dominance. We start by establishing that the
queue sizes Qp¨q of SN are effectively dominated by the
workloads Wp¨q of BN at all times. We state this result
formally in Proposition 5.8, which is a consequence of Lem-
mas 5.6 and 5.7 below.

Lemma 5.6. Consider the evolution of queue sizes in both
BN and SN networks fed by identical arrival process. Ini-
tially, Qp0q “ Mp0q “ 0. Let Wpτq “ pWipτqq denote the
amount of unfinished work in all N queues under the BN
network at time τ . Then for any τ ě 0 and 1 ď i ď N ,

Qipτq ď Wipτq ` Dipτq ď Mipτq ` Dipτq, (29)

where Dpτq “ ΛSFApτq´Bpτq is as described in Section 5.1.

Proof. Consider any i P t1, 2, . . . , Nu and τ ě 0. From
(4), in SN,

Qipτq “ Aipτq ´ Bipτq ` Zipτq, (30)

where Zipτq is the cumulative amount of idling at the ith
queue in SN. In a similar manner, in BN,

Wipτq “ Aipτq ´ ΛSFA
i pτq ` pZipτq, (31)

where pZipτq is the cumulative amount of idling for the ith
queue in BN. Since by construction, Dpτq “ ΛSFApτq ´
Bpτq, and Dpτq ě 0, we have that

Bipτq ď ΛSFA
i pτq ď Bipτq ` Dipτq. (32)

By definition, the instantaneous rate allocation to the ith
queue satisfies d

dt` ΛSFA
i ptq “ 0 if Wiptq “ 0 (equivalently, if

Miptq “ 0) for any t ě 0. Therefore, pZipτq “ 0. On the
other hand, by Skorohod’s map,

Zipτq “ sup
0ďsďτ

“
Bipsq ´ Aipsq‰`

ď sup
0ďsďτ

“
ΛSFA

i psq ´ Aipsq‰`

“ pZipτq. (33)

25

From (32) and (33), it follows that

Qipτq “ Aipτq ´ Bipτq ` Zipτq
ď Aipτq ´ ΛSFA

i pτq ` Dipτq ` Zipτq
ď Aipτq ´ ΛSFA

i pτq ` Dipτq ` pZipτq
“ Wipτq ` Dipτq. (34)

Since the workload at the ith queue equals the total amount
of unfinished work for all of the Mipτq packets waiting at the
ith queue, and since each packet has at most a unit amout
of unfinished work, Wipτq ď Mipτq.

Lemma 5.7. Let Dpτq be as in Lemma 5.6. For all τ ě 0,
ρpDpτqq ď N ` 2. In particular,ÿ

i

Dipτq ď KpN ` 2q, where K “ max
σPS

ÿ
i

σi. (35)

Proof. This result is established as follows. First, ob-
serve that Dp0q “ 0 and therefore ρpDp0qq “ 0. Next, we
show that ρpDpτ ` 1qq ď ρpDpτqq ` 1. That is, ρpDp¨qq can
at most increase by 1 in each time slot. And finally, we
show that it cannot increase once it exceeds N ` 1. That is,
if ρpDpτqq ě N ` 1, then ρpDpτ ` 1qq ď ρpDpτqq. This will
complete the proof.

We start by establishing that ρpDp¨qq increases by at most
1 in unit time. By definition,

Dpτ ` 1q “ ΛSFApτ ` 1q ´ Bpτ ` 1q
“ ΛSFApτq ´ Bpτq (36)

`
´
ΛSFApτ ` 1q ´ ΛSFApτq ´ dBpτq

¯
“ Dpτq ` dΛSFApτq ´ dBpτq
“

´
Dpτq ´ dBpτq

¯
` dΛSFApτq, (37)

where dΛSFApτq “ ΛSFApτ ` 1q ´ ΛSFApτq. As remarked
earlier, dBpτq ď Dpτq component-wise. Therefore, by (10)
it follows that

ρ
`
Dpτ ` 1q˘ ď ρ

`
Dpτq ´ dBpτq˘ ` ρpdΛSFApτqq.

Note that ρpdΛSFApτqq ď 1 because the instantaneous ser-
vice rate under SFA is always admissible. Since Dpτq ě
Dpτq ´dBpτq ě 0, any feasible solution to PRIMAL

`
Dpτq˘

is also feasible to PRIMAL
`
Dpτq ´ dBpτq˘, and hence

ρ
`
Dpτq ´ dBpτq˘ ď ρ

`
Dpτq˘.

Hence it follows that

ρ
`
Dpτ ` 1q˘ ď ρpDpτqq ` 1. (38)

Next, we shall argue that if ρpDpτqq ě N ` 1, then ρpDpτ `
1qq ď ρpDpτqq. To that end, suppose that ρpDpτqq ě N `1.
Now 1

ρpDpτqqDpτq P xSy. Note that xSy is a convex set in

a N -dimensional space with extreme points contained in S.
Therefore, by Carathéodory’s theorem, 1

ρpDpτqqDpτq can be

written as a convex combination of at most N ` 1 elements
in S. That is, there exists αk ě 0 with

řN`1
k“1 αk “ 1, and

σk P S, k P t1, 2, . . . , N ` 1u, such that

1

ρpDpτqqDpτq “
N`1ÿ
k“1

αkσ
k. (39)

Therefore, there exists some k˚ P t1, 2, . . . , N`1u, such that
αk˚ ě 1{pN ` 1q. Since ρpDpτqq ě N ` 1, ρpDpτqqαk˚ ě 1.

That is, Dpτq can be written as a convex combination of

elements from S with one of them, σk˚
, having an associated

coefficient that satisfies ρpDpτqqαk˚ ě 1, as required. In this
case, we have

Dpτq ´ σk˚ “
N`1ÿ

k“1,k‰k˚
ρpDpτqqαkσ

k ` pρpDpτqqαk˚ ´ 1qσk˚
.

(40)

Therefore,

ρ
´
Dpτq ´ σk˚¯ ď ρpDpτqq ´ 1. (41)

Our scheduling policy chooses such a schedule, i.e., σk˚
;

that is, dBpτq “ σk˚
. Therefore,

Dpτ ` 1q “ Dpτq ´ σk˚ ` dΛSFApτq. (42)

By another application of (10) it follows that

ρpDpτ ` 1qq ď ρ
`
Dpτq ´ σk˚˘ ` ρpdΛSFApτqq

ď ρ
`
Dpτq˘ ´ 1 ` 1,

“ ρ
`
Dpτq˘, (43)

where again we have used the fact that ρpdΛSFApτqq ď 1, due
to the feasibility of SFA policy and (41). This establishes
that ρpDpτqq ď N ` 2 for all τ ě 0. That is, for each τ ě 0,
there exist ασ ě 0 for all σ P S, řσ ασ ď N ` 2 and

Dpτq ď
ÿ
σ

ασσ. (44)

Therefore, ÿ
i

Dipτq “ Dpτq¨1

ď
ÿ
σ

ασσ ¨1

ď
´ÿ

σ

ασ

¯´
max
σPS

ÿ
i

σi

¯
ď pN ` 2qK, (45)

where K “ maxσPS
ř

i σi. This completes the proof of
Lemma 5.7.

Lemma 5.6 and 5.7 together imply the following proposi-
tion.

Proposition 5.8. Let Qp¨q, Wp¨q and Mp¨q be as in Lemma
5.6. Then

Nÿ
i“1

Qipτq ď
Nÿ
i“1

Wipτq `KpN `2q ď
Nÿ
i“1

Mipτq `KpN `2q,
(46)

where K “ maxσPS
´řN

i“1 σi

¯
.

Proof. We obtain the bounds (46) by summing inequal-
ity (29) over i P t1, 2, . . . , Nu, and using the bound (35).

Part 2. Positive recurrence. See [26].

Part 3. Completing the proof. The positive recur-
rence of the Markov chain Xp¨q implies that it possesses
a unique stationary distribution and it is ergodic. Let ĎW “

26

Eπ

”řN
i“1 Wi

ı
, where, similar to Lemma 5.6, Wi is the steady-

state workload on queue i in BN. Define ĎM similarly. By
ergodicity, the time average of the total queue size equals
the expected total queue size in steady state, i.e., sQ, and
similarly for ĎW . Therefore, by Proposition 5.8,sQ ď ĎW ` KpN ` 2q.
We now claim that

ĎW ď 1

2

˜
Jÿ

j“1

rρj
1 ´ rρj

¸
.

First, we have that

ĎM ď
Jÿ

j“1

rρj
1 ´ rρj .

By Propositions 4.2 and 4.3, ĎM is the sum of J indepen-
dent geometric random variables, with parameters 1´rρ1, 1´rρ2, . . . , 1 ´ rρJ . Hence, in fact, we have

ĎM “
Jÿ

j“1

rρj
1 ´ rρj .

By Theorem 4.1, the individual residual workload in steady
state is independent from the number of packets in the net-
work, and is uniformly distributed on r0, 1s. Therefore,ĎW “ 1

2
ĎM , and the claim is proved.

We now establish the tail exponent in (24). By Lemma
5.3,

βLpQq ě max
j“1,2,...,J

log rρj ,
so we only need to show that

βU pQq ď max
j“1,2,...,J

log rρj ,
where βLpQq and βU pQq are defined in (25) and (26) respec-
tively.

First note that βU pQq ď βU pMq, where M is the queue-
size vector of the virtual system BN. This is because, by
Proposition 5.8,

Nÿ
i“1

Qipτq ď
Nÿ
i“1

Mipτq ` KpN ` 2q,

deterministically and for all times τ . Thus, in steady state,řN
i“1 Qi is upper bounded by

řN
i“1 Mipτq ` KpN ` 2q, de-

terministically. Since KpN ` 2q is a constant,
řN

i“1 Mipτq `
KpN`2q andřN

i“1 Mipτq have the same tail exponent. This
establishes that βU pQq ď βU pMq.

We now consider βU pMq. As noted earlier, in steady
state, M is the sum of J independent geometric random
variables, with parameters 1 ´ rρ1, 1 ´ rρ2, . . . , 1 ´ rρJ . The
following lemma states that the tail exponent of the sum
of these J geometric random variables is upper bounded by
maxj“1,2,...,J log rρj .

Lemma 5.9. Let M be the sum of J independent geomet-
ric random variables, with parameters 1 ´ rρ1, . . . , 1 ´ rρJ re-
spectively, where rρj P r0, 1q for all j P t1, 2, . . . , Ju. Then
we have

lim sup
�Ñ8

1

�
log P pM ě �q ď max

j“1,2,...,J
log rρj .

The detailed proof is provided in [26].
In conclusion,

βU pQq ď βU pMq “ max
j“1,2,...,J

log rρj .
6. DISCUSSION.

We presented a novel scheduling policy for a generic single-
hop switched network model. The policy, in effect, emu-
lates the so-called Store-and-forward (SFA) continuous-time
bandwidth-sharing policy. The insensitivity property of SFA
along with the relation of its stationary distribution with
that of multi-class queueing network leads to the explicit
characterization of the stationary distribution of queue sizes
induced by our policy. This allows us to establish the opti-
mality of our policy in terms of tail exponent for any single-
hop switched network and that with respect to the average
total queue size for a class of switched networks, including
the input-queued switches. As a consequence, this settles a
conjecture stated in [24]. On the technical end, a key con-
tribution of the paper is creating a discrete-time scheduling
policy from a continuous-time rate allocation policy, and this
on its own may be of potential interest in other domains of
applications.

The switched network model considered here requires the
arrival processes to be Poisson. However, this is not a ma-
jor restriction, due to a Poissonization trick considered, for
example in [9] and [14]: all arriving packets are first passed
through a ‘regularizer’, which emits packets according to a
Poisson process with a rate that lies between the arrival rate
and the network capacity. This leads to the arrivals being
effectively Poisson, as seen by the system with a somewhat
higher rate — by choosing the rate of ‘regularizer’ so that
the effective gap to the capacity, i.e., p1 ´ ρq, is decreased
by factor 2.

The scheduling policy that we propose is not optimal for
general switched networks. For example, in the context
of ad-hoc wireless networks, in the independent-set model,
there are as many constraints as the number of edges in the
interference graph, which is often much larger than the num-
ber of nodes. Under our policy, the average total queue size
would scale with the number of edges, whereas maximum-
weight policy achieves a scaling with the number of nodes.

There are many possible directions for future research.
One direction is the search for low-complexity and optimal
scheduling policies. In the context of input-queued switches,
our policy has a complexity that is exponential in N , the
number of queues, because one has to compute the sum
of exponentially many terms at every time instance. This
begs the question of finding an optimal policy with polyno-
mial complexity in N . One candidate is the MW-α policies,
which has polynomial complexity, but their optimality ap-
pears difficult to analyze. Another possible candidate could
be, as discussed in the introduction, a (randomized) version
of proportional fairness.

Acknowledgements.
Devavrat Shah and Yuan Zhong would like to thank John
Tsitsiklis for a careful reading of the paper which has helped
improve the readability, for his insights and support of this
project. They would also like to acknowledge the support
of NSF TF collaborative project and NSF CNS CAREER
project.

27

7. REFERENCES

[1] S. Asmussen. Applied probability and queues. Second
edition, Springer Verlag, 2003.

[2] G. Birkhoff. Tres observaciones sobre el algebra lineal.
Univ. Nac. Tucuman Rev. Ser. A, 5:147–151, 1946.

[3] T. Bonald and A. Proutiére. Insensitivity in
processor-sharing networks. Performance Evaluation,
49(1-4):193–209, 2002.

[4] T. Bonald and A. Proutiére. Insensitive bandwidth
sharing in data networks. Queueing systems,
44(1):69–100, 2003.

[5] M. Bramson. State space collapse with application to
heavy traffic limits for multiclass queueing networks.
Queueing Systems, 30:89–148, 1998.

[6] J. G. Dai and W. Lin. Maximum pressure policies in
stochastic processing networks. Operations Research,
53(2), 2005.

[7] J. G. Dai and W. Lin. Asymptotic optimality of
maximum pressure policies in stochastic processing
networks. The Annals of Applied Probability, 18(6),
2008.

[8] J. G. Dai and B. Prabhakar. The throughput of
switches with and without speed-up. In Proceedings of
IEEE Infocom, pages 556–564, 2000.

[9] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah.
Optimal throughput-delay scaling in wireless networks
– part ii: Constant-size packets. Information Theory,
IEEE Transactions on, 52(11):5111–5116, 2006.

[10] S. Foss and T. Konstantopoulos. An overview of some
stochastic stability methods. Journal of Operations
Research, Society of Japan, 47(4), 2004.

[11] J. M. Harrison. Balanced fluid models of multiclass
queueing networks: A heavy traffic conjecture.
Stochastic Networks, 71:1–20, 1995. IMA Volumes in
Mathematics and Its Applications.

[12] J. M. Harrison. Brownian models of open processing
networks: canonical representation of workload. The
Annals of Applied Probability, 10:75–103, 2000. Also
see [13].

[13] J. M. Harrison. Correction to [12]. The Annals of
Applied Probability, 13:390–393, 2003.

[14] S. Jagabathula and D. Shah. Optimal delay scheduling
in networks with arbitrary constraints. In Proceedings
of the 2008 ACM SIGMETRICS, pages 395–406.
ACM, 2008.

[15] W. Kang, F. Kelly, N. Lee, and R. Williams. State
space collapse and diffusion approximation for a
network operating under a fair bandwidth sharing
policy. The Annals of Applied Probability, 2009.

[16] F. Kelly, L. Massoulié, and N. Walton. Resource
pooling in congested networks: proportional fairness
and product form. Queueing Systems, 63(1):165–194,
2009.

[17] F. P. Kelly. Reversibility and Stochastic Networks.
Wiley, Chicester, 1979.

[18] J. F. C. Kingman. On queues in heavy traffic. Journal
of the Royal Statistical Society, series B,
24(2):383–392, 1962.

[19] S. Meyn. Stability and asymptotic optimality of
generalized maxweight policies. SIAM J. Control and
Optimization, 2008.

[20] S. Meyn and R. Tweedie. Markov chains and
stochastic stability. Springer New York, 1993.

[21] M. Neely, E. Modiano, and Y. Cheng. Logarithmic
delay for nˆ n packet switches under the crossbar
constraint. IEEE/ACM Transactions on Networking
(TON), 15(3):657–668, 2007.

[22] A. Proutiére. Insensitivity and stochastic bounds in
queueing networks–Applications to flow level traffic
modelling in telecommunication networks. PhD thesis,
Ecoloe Doctorale de l’Ecole Polytechnique, 2003.

[23] D. Shah, J. N. Tsitsiklis, and Y. Zhong. Qualitative
properties of α-weighted scheduling policies. In ACM
SIGMETRICS Performance Evaluation Review,
volume 38, pages 239–250. ACM, 2010.

[24] D. Shah, J. N. Tsitsiklis, and Y. Zhong. Optimal
scaling of average queue sizes in an input-queued
switch: an open problem. Queueing Systems,
68(3-4):375–384, 2011.

[25] D. Shah, J. N. Tsitsiklis, and Y. Zhong. Qualitative
properties of alpha-fair policies in bandwidth sharing
network. Unpublished, available on arxiv.org, 2011.

[26] D. Shah, N. Walton, and Y. Zhong. Optimal
queue-size scaling in switched networks.
http: // arxiv. org/ pdf/ 1110. 4697v1. pdf .

[27] D. Shah and D. Wischik. Fluid models of congestion
collapse in overloaded switched networks. Queueing
Systems, 69(2):121–143, 2011.

[28] D. Shah and D. Wischik. Switched networks with
maximum weight policies: Fluid approximation and
state space collapse. The Annals of Applied
Probability, 2011.

[29] A. Stolyar. Large deviations of queues sharing a
randomly time-varying server. Queueing Systems,
59(1):1–35, 2008.

[30] A. L. Stolyar. MaxWeight scheduling in a generalized
switch: State space collapse and workload
minimization in heavy traffic. The Annals of Applied
Probability, 14(1):1–53, 2004.

[31] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control,
37:1936–1948, 1992.

[32] V. Venkataramanan and X. Lin. Structural properties
of LDP for queue-length based wireless scheduling
algorithms. In Proceedings of Allerton, 2007.

[33] J. von Neumann. A certain zero-sum two-person game
equivalent to the optimal assignment problem. In
Contributions to the theory of games, 2, 1953.

[34] N. Walton. Proportional fairness and its relationship
with multi-class queueing networks. The Annals of
Applied Probability, 19(6):2301–2333, 2009.

[35] W. Whitt. Stochastic-Process Limits. Springer, 2001.

[36] R. J. Williams. Diffusion approximations for open
multiclass queueing networks: sufficient conditions
involving state space collapse. Queueing Systems,
30:27–88, 1998.

[37] S. Zachary. A note on insensitivity in stochastic
networks. Journal of applied probability,
44(1):238–248, 2007.

28

http://arxiv.org/pdf/1110.4697v1.pdf

	Introduction.
	Organization.

	Switched network model.
	Queueing dynamics.
	Stochastic model.
	Useful quantities.
	Motivating example.

	Related works.
	Insensitivity in stochastic networks.
	Main result: a policy and its performance
	A policy for switched networks.
	Optimality of the policy.
	Proof of Theorem 5.2.

	Discussion.
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

