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Abstract— We consider a network in which a set of vehicles
is responsible for the pickup and delivery of messages that
arrive according to Poisson process with message pickup and
delivery locations distributed uniformly at random in a region
of bounded area A. The vehicles are required to pickup and
deliver the messages so that the average delay is minimized.

In this paper, we provide lower bounds on the delay achievable
by fully controlled policies, depending on the information
constraint in place. We prove that for any policies in which
only the source location information is known upon message
arrival, the optimal average delay scaling is Θ(λ(n)A/v2n). If in
addition to source location, destination locations of messages are
known to the vehicles, the optimal average delay scaling can be
reduced to Θ(λ(n)A/v2n3/2). We note that these scaling bounds
are achievable given the service policies we have previously
described in [1].

I. INTRODUCTION

We first present a model for a message passing network, and
describe the Dynamic Pickup-Delivery Problem (DPDP) for
serving messages in this network. We will then motivate this
problem in the context of vehicle routing.

A. Model

1) Vehicles and Messages: Let there be n vehicles in a
geographic area A ⊂ R2, which is a convex, compact set
with volume A. For simplicity, we consider A = [0,

√
A]2.

Each vehicle may move in any direction at any time with a
velocity of magnitude ≤ v. For simplicity, assume v = 1.

Messages are generated according to a Poisson process with
time intensity λ(n). We will examine the heavy traffic case,
that is, we assume that the rate of messages arriving to the
system increases much faster than the number of vehicles in
the system available to service these messages, equivalently
λ = Ω(n)1. The precise required scaling of λ(n) will be

1Recall the following notation: (i)f(n) = O(g(n)) means that ∃ a
constant c and integer N such that f(n) ≤ cg(n), ∀n ≥ N . (ii)
f(n) = Ω(g(n)) if g(n) = O(f(n)). (iii) f(n) = Θ(g(n)) means that
f(n) = O(g(n)) and g(n) = O(f(n)).

stated in the theorems. 2

Associated with each message j are source and destination
locations denoted by s(j) ∈ A and d(j) ∈ A respectively.
Both the source and destination locations are independently
and identically distributed (IID) uniformly in A.

The messages need to be picked up from their source
locations and delivered to their destination locations by the
vehicles. A message is picked up (delivered) when a vehicle
spends a fixed on-site service time of s̄(n) at the source
(delivery) location to pick up (deliver) the message. For
stability reasons, the service time, s̄(n), is implictly bounded
by a function of n and λ(n). To see this, compare the system
to an M/D/n queue with service times defined to be only the
total time spent in onsite service, that is, the total service
time per message is 2s̄(n). The average system utilization
for this system is ρ = λ(n)2s̄(n)

n , the product of the arrival
rate and the service time per message divided by the number
of vehicles that serve these messages. The stability condition
for this system is ρ < 1 ⇔ s̄(n) < n

2λ(n) . Therefore, the
maximum onsite service time s̄(n) supportable by a stable
system is implicitly a function of n and λ(n).

We make the requirement that the vehicle that picks up a
message must be the one that delivers it. That is, messages
may not be transferred between vehicles after they have
been picked up. We assume that each vehicle can carry an
unlimited number of messages at any time.

2) Control Policies: A control policy, π, is a set of decision
making rules for each vehicle that decides the pickup and
delivery schedule of arriving messages, based on a set
of constraints on the information available to the vehicle.
Vehicles then follow predetermined protocols to service these
messages without any real-time communication between ve-
hicles to coordinate their protocols dynamically.

We will restrict our attention to time invariant policies that

2For ease of notation, λ(n) will usually be written as just λ.



satisfy the following spatial properties. For each vehicle i,
the control policy induces a scaled probability density pi on
A × A, such that vehicle i serves messages with source-
destination location pairs in a subset S ⊂ A × A at rate
λi(S), where

λi(S) = λ

∫
S

pi(x, y)dxdy.

Furthermore, we also require that the assignment of mes-
sages is independent given these densities. With this, the set
{pi(x, y)}n

i=1 may then be used to fully describe the assign-
ment policy as follows. If pi(x, y) is nonzero for exactly one
i for some fixed pair (x, y), then every message that arrives to
the system at location x that is destined for y will be assigned
to vehicle i. If multiple vehicles have nonzero pi(x, y) at the
pair (x, y), then the message is assigned independently at
random to one of these vehicles. This assignment may be
achieved by a centralized controller or with limited com-
munication between the affected vehicles. The probability of
each assignment is weighted by the magnitude of the nonzero
density at pi(x, y). This policy restriction allows messages to
be assigned to vehicles unambiguously based on message
location, reducing the need for real-time communication
between vehicles regarding message assignments. Note that
a policy may be specified by a set of rules that induce a
set of densities {pi(x, y)}n

i=1, or this set of densities may be
specified directly.

For a fixed policy π, let λi(π) = λ
∫

A
pi(x, y)dxdy denote

the total rate of messages served by vehicle i where pi(x, y)
is the density induced by the policy π.

In deciding which messages to pickup and in what order
to serve them, vehicles may only use information about the
arriving messages according to the information structure in
place. We assume that the vehicles have no knowledge of
individual messages before they arrive although the overall
message arrival process and source and destination distrib-
utions are known. In particular, we consider two types of
information structure:

(a) Source only information: When a message arrives,
its source location is known by all vehicles within
some region of interest, but vehicles do not know
the destination of messages until they pick them up;
and

(b) Source-destination information: When a message
arrives, both its source and also its destination
location are known by all vehicles within some
region of interest.

Let ΠSO (respectively ΠSD) denote the set of all time
invariant and spatially based policies satisfying the properties

above and using only information available in the Source
Only (respectively Source and Destination) information struc-
ture. Our results will show that the performance of optimal
control policies is significantly affected by the particular
information structure in place.

3) Performance Metrics: The delay of message j, denoted
W (j), is defined to be the elapsed time between the mes-
sage’s arrival to the system and its delivery to its destination
location. This includes any time the message waits to be
picked up, the onsite service time for pickup, travel time on
the vehicle before arriving at the delivery location, and finally
onsite service time for delivery. The quantity W is defined
to be

W = lim sup
j→∞

E[W (j)]. (1)

If the limit exists when limsup is replaced by limit in the
definition above, W is the steady state expected value of the
delay of a message in the system. We say that the system is
stable if W < ∞. A necessary condition for the existence of
a stable policy is ρ = λ(n)2s̄(n)

n < 1. If π is a stable policy,
W (π) is defined to be the average delay associated with that
policy.

We may also define the average waiting time experienced by
messages served by a particular vehicle:

Wi = lim sup
j→∞

E[W (j) · 1message j served by vehicle i] (2)

where 1A is the indicator variable of the event A. The system
is then stable if

∑n
i=1 λi = λ and Wi < ∞,∀i. For a single

vehicle with message arrival rate λi, a necessary condition
for the existence of a stable policy is ρi = λi2s̄(n) < 1.
Therefore, ρi < 1,∀i is necessary to guarantee Wi < ∞,∀i.
If π is a stable policy, Wi(π) is defined to the be the average
delay of messages served by vehicle i under that policy. The
average waiting time of all messages in the system W (π)
above is then equivalent to W (π) =

∑n
i=1

λi(π)
λ Wi(π).

4) Problem Definition: We seek stable policies that minimize
the average delay per message. We restrict our attention
to time invariant and spatially based policies and utilize
information only according to the particular information
structure in place. That is, we must solve the following
optimization problem which will be denoted as OPT 1:

min
π∈ΠI

W =
n∑

i=1

λi(π)
λ

Wi(π) (3)

s.t.
n∑

i=1

λi(π) = λ (4)

ρi(π) < 1,∀i (5)



Note that each policy π under consideration may be uniquely
described by the set of densities {pi(x, y)}n

i=1 and that each
of the λi(π) is defined in terms of pi(x, y) as λi(π) =
λ
∫
A
∫
A pi(x, y)dxdy. Therefore, the optimization above is

implicitly a function of pi(x, y) alone.

We call this problem the Dynamic Pickup-Delivery Problem
(DPDP).

Our model and problem thus stated, we make the connection
to various problems in the field of vehicle routing.

B. Relation to Previous Work

In the DPDP, information about a particular demand is
not available until the demand has arrived. Because the
information available to the controllers evolves according
to the arrival of new demands, the DPDP problem is nat-
urally related to the problem of dynamic vehicle routing.
In constrast to classical static vehicle routing problems, the
solution to this dynamic problem takes the form not of a
fixed route through a given set of demands, but is instead
a control policy that determines how the routes evolve in
time as a function of the demands in the system. Dynamic
vehicle routing problems have received much less attention
than their static counterparts, but recent surveys on dynamic
vehicle routing problems include [2] and [3].

Because each message in the DPDP must be both picked
up and delivered, this problem may be further categorized
as a Pickup and Delivery problem (PDP). Recent surveys of
pickup and delivery problems include [4] and [5], although
most of these works focus on static pickup and delivery
problems only. If demands are interpreted to be people to
be picked up and transported from one location to another,
this is also known as the Dial-a-Ride problem (DARP). Other
applications of PDPs include courier services and less than
truckload trucking.

There are significant theoretical results on a simplified dy-
namic VR problem, the Dynamic Traveling Repairperson
Problem (DTRP), proposed by Bertsimas and van Ryzin [6]–
[8]. In the DTRP, demand service requires only a single onsite
service time, without the delivery requirement of the DPDP
studied here. Intuitively, our problem seems very similar
to the DTRP as both the pickup and delivery of messages
in DPDP can be treated as separate requests in the DTRP
problem setup. However, the pick-up and delivery services
of a single message are strongly linked, making our problem
significantly distinct from the DTRP. Because the DTRP
treats a simplified version of our problem, the lower bounds
on DTRP delay presented will serve as a lower bound over a

DPDP policies. The DTRP will be discussed in more detail
in Section II-B.

The Dynamic Pick-up Deliveryperson Problem (DPDP) has
been previously studied in [9]. This work provides a theo-
retical analysis of a simplified pickup and delivery problem,
considering only the single vehicle case, and focusing mainly
on vehicles with unit capacity. We are interested in the multi-
vehicle case with infinite capacity vehicles, and so our work
here is a significant extension of the DPDP analysis in [9].

C. Main Results

The goal of the current paper is to find the minimum average
message delay achievable by any valid control policy that
satisfies the assumptions in Section I-A.2. We further divide
the control policies into two categories based on the infor-
mation structure in place for making the control decisions.
In the Source Only structure, only message source locations
are known before the message is picked up. In the Source
and Destination structure, both the source and destination
locations of messages are known as soon as the message
arrives. We will prove lower bounds on the average message
delays achieveable by control policies from these two groups.
We will note that the delay bounds derived here in fact match
the order of the delay scaling demonstrated by the policies
in [1], and therefore these policies are order optimal and the
lower bound may be achieved. In particular, we prove the
following two theorems:

Theorem 1:

(a) For any policy in ΠSO under the Source Only in-
formation structure, the average delay per message
scales as

WSO ≥ γ2

(
λ(n)A

v2(1− ρ)2n

)
− n(1− 2ρ)

2λ(n)
(6)

with constant γ = 2/3
√

2π. For λ(n) = Ω(n) this
bound scales as WSO = Ω(λ(n)A/v2(1− ρ)2n).

(b) (Theorem 2 from [1]) Further, there exists a pol-
icy using Source Only information, for which the
average delay scales as O(λ(n)A/v2(1 − ρ)2n)
for all λ(n). Therefore the lower bound scaling is
achievable.

Theorem 2:

(a) For any policy in ΠSD under the Source-
Destination information structure, the average delay
per message with λ(n) = Ω(n) scales as

WSD ≥ γ2

4
λ(n)A

v2(1− ρ)2n3/2
(7)



with constant γ = 2/3
√

2π.
(b) (Theorem 3 from [1]) Further, there exists a policy

using Source and Destination information for which
the delay scales as O(λ(n)A/v2(1 − ρ)2n3/2) for
λ(n) = Ω(n3/2). Therefore the lower bound scaling
is achievable in heavy traffic.

Theorem 1 first quantifies the achievable performance for
control policies with some minimal amount of information.
Theorem 2 then quantifies the effect of additional informa-
tion on achievable performance. We note that even the full
information case is greater than the results on the DTRP in
[7] by a factor of

√
n.

D. Organization

The rest of the paper is organized as follows. In Section
II, we provide some additional notation and detail some
mathematical results from vehicle routing that will be useful
in our analysis. In Section III, we give the proofs of the
lower bounds in Theorem 1(a) and Theorem 2(a). Section
IV describes and analyzes policies that achieves the claimed
performance. Finally, in Section V we present discussion and
directions for future work.

II. PRELIMINARY TECHNICAL RESULTS

Before proving Theorems 1(a) and 2(a), we first provide some
notation and a more detailed discussion of the results on the
Dynamic Traveling Repairperson Problem from [6]–[8].

First, we will adopt the following notation: for any reasonable
function g(·)

Eθ[g(·)] 4=
∫
A

g(θ) dθ.

Essentially, Eθ is the standard (Lebesgue) integration. We
retain the reference to the variable θ in order to sometimes
differentiate the integration with respect to source and desti-
nation location.

A. Induced Service Densities

In Section I-A.2, we assumed the existence of a scaled service
density pi(x, y) for each vehicle that gives the steady state
probability of the vehicle i serving a given message that
originates at x and is destined for y. In this section, we
provide some additional properties of the pi(x, y) that will
be useful in the optimization of OPT 1.

Unless specified otherwise, in the rest of the paper, variables
x and y will be used to refer to source and destination
locations respectively. By definition,

pi(x, y) ≥ 0, ∀(x, y).

For stability, the n vehicles must collectively serve all the
arriving traffic. That is,

n∑
i=1

pi(x, y) = φs(x)φd(y) =
1

A2
. (8)

Further, from the definition of λi we have,

Ex[Ey[pi(x, y)]] =
λi

λ
. (9)

Finally, note that since the vehicle must both pickup and
deliver each message assigned to it, exactly half of the
service locations visited by a vehicle are pickup locations.
Therefore, we may define fi(ζ), ζ ∈ A, the normalized
probability density of vehicle i servicing (i.e. either picking
up or delivering) a message at location ζ, as a uniform
mixture of the pickup and delivery distributions. That is,

fi(ζ) =
1
2

λ

λi
[Ex[pi(·, ζ)] + Ey[pi(ζ, ·)]] . (10)

B. The Dynamic Traveling Repairperson Problem

Before beginning our analysis of the DPDP problem, it
is important to more precisely state a few results on the
related Dynamic Traveling Repair-person Problem (DTRP)
that were proven by Bertsimas and van Ryzin [6]–[8] and
that will be used in our lower bound analysis of the DPDP.
The DTRP considers the case in which demands arrive to a
convex environment A of area A according to some arrival
process with demands being randomly located in the region
according to some distribution. A demand is serviced when a
vehicle arrives to the demand location and spends a random
amount of onsite service time, s, to service the demand.
To perform these services, there are n vehicles that travel
with bounded velocity ≤ v within A. The average system
utilization is defined in the standard queueing theory sense to
be ρ = λs̄/n. The demands are to be serviced in such a way
that all demands are eventually serviced and average delay
between arrival and service of the demands, W , is minimized.

In the case that demands arrive according to a Poisson
process with rate λ and demand locations are independently
and identically uniformly distributed in A, the average delay
of message in the system is:

Theorem 3: (Theorem 2 in [7])

W ≥ γ2 λA

v2(1− ρ)2n2
− 1− 2ρ

2λ
(11)

for constant γ = 2/3
√

2π.

The more general case of non-Poisson arrivals and nonuni-



form iid demand distributions is treated in [8]. Although the
DPDP presently considers Poisson arrivals, [8] shows that
the Poisson assumption is easily taken care of with little
change to the delay results. Further, they consider two classes
of policies: spatially unbiased and spatially biased. Spatially
unbiased policies require that the average expected delay of
a message is the same regardless of the demand location,
and spatially biased policies simply remove this restriction.
Therefore, if we do not care about the notion of spatial
biasedness, the results on spatially biased policies provide the
strongest result. Below we state a slightly modified version
of result in [8] on the average delay over all messages that
arrive according to demand distribution f(ζ) and are served
under a spatially biased policy.

Theorem 4: (Theorem 2 from [8] (modified))

With λ = Ω(n), the average delay W scales as

W ≥ 2γ2 λ(Eζ [f2/3])3

v2(1− ρ)2n2
(12)

where γ ≥ 2
3
√

2π
.

Theorem 4 follows as stated above with a slight modification
of the proof in [8]. The modified proof may be found in the
appendix.

In the following section, we construct DTRP queues to lower
bound the performance of our actual DPDP queues and apply
the above theorems to analyze these lower bounds.

III. LOWER BOUNDS

In this section we prove the claimed lower bounds of Theo-
rems 1(a) and 2(a) for arbitrary policies.

A. Lower bound: Source only

We consider the Source Only information structure to be one
of minimal information. Because destination locations are
not known immediatly upon message arrival, this information
may not be exploited when assigning messages to vehicles.

Theorem 1(a): For any policy in ΠSO under the Source Only
information structure, the average delay per message scales
as

WSO ≥ γ2

(
λ(n)A

v2(1− ρ)2n

)
− n(1− 2ρ)

2λ(n)
(13)

with constant γ = 2/3
√

2π. For λ(n) = Ω(n) this bound
scales as WSO = Ω(λ(n)A/v2(1− ρ)2n).

Proof: Consider a fixed stable service policy in ΠSO.
Each message is assigned to its vehicle immediately upon ar-
rival. Each vehicle can then be treated as a queue of messages

that have been assigned to it. Consider the queue at vehicle
i. Because a spatially based assignment process is used and
the locations of successive messages are independent of each
other, the assignment of messages to vehicles induces a
splitting of the overall Poisson arrival process. The arrival
process to vehicle i is a Poisson process of rate λi.

To lower bound the average delay of messages, we consider
a simplified system in which the same message assignment
process holds, but messages arrive directly at the vehicle
according to a Poisson process of rate λi. That is, vehicles do
not spend any time in picking up messages. This simplified
system naturally has lower delay than the original system.
Because vehicles only have access to information about the
source locations of messages, the destination locations of the
messages may not be exploited by the message assignment
policy. Since the distribution of destination locations is
independent of the arrival locations, the distribution of the
destination locations of the messages assigned to a single
vehicle is the same as that of the overall destination process,
irrespective of policy. So for any policy in ΠSO, each vehicle
will service messages with destination locations distributed
uniformly at random in A. Thus, it is sufficient to lower
bound delay of the following simplified system: each vehicle
has messages arriving according to a Poisson process of rate
λi with uniformly distributed delivery locations.

For each vehicle, this delivery problem may be formulated as
a Dynamic Traveling Repairperson Problem in which a single
vehicle is responsible for servicing all messages that arrive
with rate λi, uniformly distributed in A. In this formulation,
ρi = 2λis̄(n), where the factor 2 reflects the two onsite
service times required for pickup and delivery. Therefore,
applying the DTRP results of Theorem 3 to this formulation,
we obtain the average delay for messages served by a single
vehicle with message arrival rate λi:

Wi ≥ γ2

(
λiA

v2(1− ρi)2

)
− 1− 2ρi

2λi
(14)

To bound the average delay over all messages, we must solve
the following optimization as in OPT 1:

min
{λi}n

i=1

n∑
i=1

λi

λ

(
γ2

(
λiA

v2(1− ρi)2

)
− 1− 2ρi

2λi

)
(15)

s.t.
n∑

i=1

λi = λ (16)

For the moment, we assume that s̄(n) is sufficiently small
such that ρi < 1,∀i and constraint (5) is satisfied.

Removing constant terms and noting that
∑n

i=1 ρi =



∑n
i=1 2λis̄(n) = nρ, this is equivalent to:

min
{λi}n

i=1

n∑
i=1

λ2
i

(1− ρi)2
=

λ2
i

(1− λis̄)2
(17)

s.t.
n∑

i=1

λi = λ (18)

This optimization is straightforward to solve using Lagrange
multipliers. We find that the optimal solution is λi = λ(n)

n ,∀i.
The stability constraint (5) is then satisfied for s̄(n) <
n/2λ(n). Therefore, we have the following lower bound on
the average delay over all vehicles:

WSO ≥ γ2

(
λA

v2(1− ρ)2n

)
− n(1− 2ρ)

2λ
(19)

This lower bound holds for all λ(n) scalings. If λ(n) = Ω(n),
however, the first term in (19) dominates the second and we
have therefore proven Theorem 1(a):

WSO = Ω
(

λA

v2(1− ρ)2n

)
(20)

B. Lower bound: Source-destination

If both the Source and Destination locations are known
upon message arrival, assignment policies may exploit this
information to limit the area covered by each vehicle in
making its pickups and deliveries. We show that this has the
effect of reducing the minimum average delay of messages
in the system.

Theorem 2(a): For any policy in ΠSD under the Source-
Destination information structure, the average delay per mes-
sage with λ(n) = Ω(n) scales as

WSD ≥ γ2

4
λA

v2(1− ρ)2n3/2
(21)

with constant γ = 2/3
√

2π.

Proof: Now consider a fixed stable service policy in
ΠSD based on source-destination information. Given the
source and destination assignment distributions induced by
this policy, we will again construct a simplified DTRP
system, the delay of which will lower bound the delay
encountered by messages in the original DPDP system.

As above, examine the service policy of a single vehicle i
and consider the queue induced by messages that are assigned
to this vehicle. The DTRP demand location associated with
each message is selected uniformly at random between the
source s(j) or the destination d(j) location of the message.

That is, instead of performing both pickup and delivery
as in the DPDP or delivery only as in the proof of the
Source Only lower bound above, this DTRP visits either
the pickup location or the delivery location of a single
message, with either location being chosen with probability
1/2. Therefore, the distribution of demand locations arriving
to this DTRP queue is the same as the normalized density of
vehicle i’s pickup and delivery locations, i.e. fi(ζ). Note that
since the DTRP queue ignores either the pickup or delivery
requirement of each message, the delay of the demands in
the DTRP queue is less than that of messages in the original
system.

This DTRP queue fits the framework of the single vehicle
Dynamic Traveling Repairperson Problem with generalized
demand distributions. Then, according to Theorem 4, we have
the following bound on minimum delay for a single vehicle
policy with demand distribution fi(ζ), arrival rate λi, and
ρ = λis̄:

Wi ≥ γ2 λi(Eζ [f
2/3
i ])3

(1− ρi)
2 (22)

Recall the relation of fi(ζ) to pi(x, y) and the constraints im-
posed by the delivery requirement on pi(x, y) from equations
(8), (9) and (10). From (10):

fi(ζ) =
1
2

λ

λi
[Ex[pi(x, ζ)] + Ey[pi(ζ, y)]] .

This implies the following two lower bounds:

E[f2/3
i ] ≥

(
λ

2λi

)2/3

Eζ [Ex[pi(x, ζ)]2/3] (23)

≥
(

λ

2λi

)2/3

Eζ [Ey[pi(ζ, y)]2/3]. (24)

Now, pi(x, y) have the following basic constraints (implied
from (8) and (9)):

pi(x, y) ∈
[
0,

1
A2

]
, (25)

Ex[Ey[pi]] =
λi

λ
. (26)

We may combine the two lower bounds above to form the
following optimization problem OPT 2 which will then be
used to lower bound the delay of a single vehicle policy with
fixed arrival rate λi:

min
pi(x,y)

1

2
(Eζ [(Ex[pi(x, ζ)])2/3] + Eζ [(Ey [pi(ζ, y)])2/3])

subject to pi(x, y) ∈ [0, 1/A2],

Ex[Ey [pi(x, y)]] = Ey [Ex[pi(x, y)]] =
λi

λ
.



Consider a convex combination of two densities satisfy-
ing (25) and (26), i.e. p3

i (x, y) = αp1
i (x, y) + (1 −

α)p2
i (x, y),∀x, y ∈ A. It is easy to see that the set of valid

probability distributions satisfying (25) and (26) is convex.

Further, by the concavity of (·)2/3,

(Ex[p3
i (x, ζ)])2/3 = (αEx[p1

i (x, ζ)] + (1− α)Ex[p2
i (x, ζ)])2/3

≥ α(Ex[p1
i (x, ζ)])2/3 +

(1− α)(Ex[p2
i (x, ζ)])2/3

Eζ [(Ex[p3
i (x, ζ)])2/3] ≥ αEζ [(Ex[p1

i (x, ζ)])2/3] +

(1− α)Eζ [(Ex[p2
i (x, ζ)])2/3]

Therefore both of the lower bounds (23) and (24) are concave
in pi(x, y) and so is their sum. Thus, OPT 2 is a concave
minimization over a convex set. Hence, it must attain its
optima on the boundary of the feasible bounded convex set.

The boundary of the constraint set defined by (25)-(26)
implies that pi(x, y) ∈ {0, 1/A2} for all (x, y) (almost surely
w.r.t. Lebesgue measure). Condition (26), along with this
implication, will provide the following complete character-
ization of boundary.

pi(x, y) =

{
1

A2 for all x ∈ A1, y ∈ A2

0 otherwise
(27)

with A1,A2 ⊂ A of areas such that A1A2 = A2λi

λ .

To minimize the cost function, we must select the boundary
points where the areas of A1 and A2 are equal, i.e. both are
equal to A

√
λi

λ .

For any pi satisfying the above properties we have:

Ex[pi(x, ζ)] = A

√
λi

λ

1
A2

=
1
A

√
λi

λ

and

Eζ [Ex[pi(x, ζ)]2/3] = A

√
λi

λ

(
1
A

√
λi

λ

)2/3

= A1/3

(
λi

λ

)5/6

and therefore the bound (23) on E[f2/3
i ] becomes

E[f2/3
i ] ≥

(
λi

2λ

)2/3

Eζ [Ex[pi(x, ζ)]2/3] =
1

22/3
A1/3

(
λi

λ

)1/6

(28)

Cubing and then substituting this bound into equation (22),
we thus have the following bound on minimum delay for

messages served by vehicle i:

Wi ≥
γ2

4
λiA

v2(1− ρi)2

√
λi

λ
(29)

With this delay solved for a single vehicle serving messages
at rate λi, we again formulate the optimation problem over
all vehicles which reduces similar to the above, to:

min
{λi}n

i=1

λ
5/2
i

(1− λis̄)2
(30)

s.t.
n∑

i=1

λi = λ (31)

As above, this average delay is minimized with all λi equal
to λ/n. Therefore, we have the following lower bound on
the average delay with Source and Destination information:

WSD ≥ γ2

4
λ(n)A

v2(1− ρ)2n3/2
(32)

Since λ = Ω(n) was required for the application of the DTRP
theorem with generalized demand distributions, this bound is
valid for λ = Ω(n) and Theorem 2(a) is proven.

IV. POLICIES

In this section, we briefly describe policies that achieve the
delay performance claimed in Theorems 1(b) and 2(b) for
Source Only and Source Destination information respectively.
The delay analysis of these policies may be found in [1].

A. Source Only Policy

Recall that in the Source Only information structure, vehicles
do not know the destination of messages before they are
picked up, thus this information may not be used by vehicles
in deciding which messages to pick up.

In the source only policy described below, each message
is assigned to a random vehicle. Messages are not served
immediately upon arrival but all arrivals occurring in a
interval of length T are accumulated into a batch. Given the
fixed collection of pickup locations in the batch, a Traveling
Salesperson (TSP) tour is formed through these points to
minimize the time required to pickup all these messages.
Likewise, once messages are picked up and destination
locations are known, a second TSP tour is formed to perform
the deliveries. Note that while each vehicle is performing a
batch service, new messages are being assigned to it. The
vehicle collects this assignment information into a new batch
to be served once other outstanding batches have been served.



A more complete description of the policy is given below.

(a) Message Assignment. Upon arrival, each message
is assigned to the vehicle closest to its source
location at the time of the message arrival. All
messages assigned to a single vehicle that arrive
in the interval [kT, (k + 1)T ) form a batch, where
T , the batch time interval, is a parameter to be
determined. Each batch is deposited into a queue for
its assigned vehicle upon formation at time (k+1)T
for appropriate k.

(b) Message pickup and delivery. Batches for each vehi-
cle are served in First Come, First Serve order from
the vehicle’s batch queue. Pickups are performed
along a shortest path through the source locations
which is computed at the beginning of the interval.
Once pickups are complete, a shortest path through
the delivery locations is computed and the deliveries
are performed accordingly. To perform each service,
the vehicle stops at the source (destination) location
for n

λK time to pickup (deliver) the associated
message.

The delay analysis of this policy in [1] gives the following
result:

Theorem 1(b): The average delay per message for the Source
only policy described above scales as:

WSO = O

(
λ(n)A

v2(1− ρ)2n

)
(33)

Therefore, the optimal average delay per message over all
policies with Source Only information is Θ

(
λ(n)A

v2(1−ρ)2n

)
.

B. Source-Destination Policy

In the Source-Destination information structure, destination
information may be used by vehicles in deciding which
messages to pick up. By exploiting this information, vehi-
cles need not traverse the entire geographical region when
servicing messages, but may instead only pick up messages
that have both source and destination locations in a limited
area. For this, a spatially based message assignment policy
is used.

That is, in the source destination policy described below,
each vehicle is assigned a pickup region and a delivery
region. Messages are not assigned to a random vehicle
as above, but are instead assigned to the vehicle that has
the message’s source location in its pickup region and the
message’s destination location in its delivery region. Again,
as above, message assignments are accumulated into batches
and batch services are performed along TSP tours through

the pickup and delivery regions. Even though the message
service policy is similar to that used in the Source Only policy
above, Theorem 2(b) shows that the change in assignment
policy made possible by using both source and destination
information has a significant effect on message delay.

A more complete description of the policy is given below.

(a) Message Assignment. Divide the geographical re-
gion into an

√
A√
n
×
√

A√
n

grid of subregions,

each of area A√
n

. To each of the n ordered pairs
of subregions, assign exactly one vehicle to service
that pair. Each vehicle is assigned to pickup all
messages that originate in the first subregion of
its assigned ordered pair that have a destination
location in second assigned subregion. As before,
all messages assigned to a single vehicle that arrive
in the interval [kT, (k + 1)T ) form a batch, where
T , the batch time interval, is a parameter to be
determined. Each batch is deposited into a queue for
its assigned vehicle upon formation at time (k+1)T
for appropriate k.

(b) Message Pickup and Delivery. As before, batches
for each vehicle are served in First Come, First
Serve order from the vehicle’s batch queue. Batch
pickups and deliveries are performed in the same
way as in the policy with Source only information
with the notable addition of possible interregion
travel time between source region and destination
region.

The delay analysis of this policy in [1] gives the following
result:

Theorem 2(b): The average delay per message for the Source-
Destination policy described above scales as:

WSD = O

(
λ(n)A

v2(1− ρ)2n3/2

)
(34)

Therefore, the optimal average delay per message over
all policies with Source and Destination information is
Θ
(

λ(n)A
v2(1−ρ)2n3/2

)
.

V. DISCUSSION

In this paper, we have proven lower bounds on the average
delay for messages in the DPDP system under two different
information constraints. In the case that Source Only infor-
mation is available, the average delay scales as Θ(λ(n)A

v2n ).
In the case that both Source and Destination information
is available, the average delay scales as Θ( λ(n)A

v2n3/2 ) which
is an additional O(

√
n) improvement over the case where



only source information is available. From a system design
standpoint, these scalings quantify the perfomance improve-
ments achievable by adding additional information gathering
capabilities to the vehicles.

The DTRP results in [7], [8] bound the average delay for the
each of the pickup and delivery problems as Ω(λ(n)A/v2n2).
This is an additional O(

√
n) improvement over the full

information case we have examined here. We note that as
long as vehicles are required to perform physical pickups and
deliveries at the source and destination locations, the DTRP
lower bound serves as a lower bound on the DPDP problem.
It is conjectured that this delay bound can be achieved by
removing the restriction that the same vehicle that picks up
a message is the one that delivers it. Preliminary results show
that this delay bound can indeed be achieved for the pickup
and delivery problem in relay networks.
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APPENDIX

Proof of Theorem 4 In this appendix, we prove the modified
version of Theorem 2 in [8] as stated in Theorem 4.

The Dynamic Traveling Repairperson (DTRP) problem refers
to the following setup: demands arrive to a closed and
bounded region A of area A according to a stationary renewal
process. We will assume for our purposes that demands arrive
according to a Poisson process with rate λ. This is not as
general as the orginal DTRP result in [8], but it is all we re-
quire for our DPDP problem. Demands are independently and
identically distributed according to the demand distribution
f(x). It is assumed that f is K-lipschitz and is bounded from
above and below, such that 0 < f < f(x) < f̄ < ∞,∀x.
Note that in applying this theorem to the DPDP, we may
have fi(ζ) such that fi(ζ) = 0 for some ζ. We may assume
for our application that we apply the following analysis only
to the regions Ai ⊂ A such that fi(ζ) > 0,∀ζ ∈ Ai.

There are n vehicles traveling in the region with bounded
velocity v to service these demands. A demand is serviced
when a vehicle arrives at the demand location and spends a
random service time s at that location. The goal is to service
the demands with the minimum average delay W between
message arrival and service.

Before proving lower bounds on this average delay, [8]
provides a few additonal definitions and assumptions. First,
with every subset S ∈ R2, associate a queue S, viewed as
a black box that has arrivals and departures according to the
arrival and service of demands in S. Let N(S) denote the
time average number of customers in S and assume that this
time average exists for all S. Let N = N(A) denote the time
average number of customers in the whole system.

The conditional waiting time W (x) is defined to be W (x) ≡
E[Wj |Xj = x] where Wj is the waiting time of a demand
arriving at Xj . That is, W (x) is the expected waiting time for
a demand arriving at x. The normalized waiting time Ψ(x) is
then defined to be Ψ(x) ≡ W (x)/W . The analysis of [8] is
limited to policies such that Ψ(x) is k-lipschitz and bounded
from above and below, such that 0 < Ψ < Ψ(x) < Ψ̄ <
∞,∀x. Given these assumptions on the waiting time density,
Lemma 1 [8] proves the existence of the queue occupancy
density φ(x) = f(x)Ψ(x) such that∫

A
φ(x)dx =

∫
A

f(x)W (x)
W

dx = 1. (35)

Furthermore, if S ⊂ A, then

N(S) = N

∫
S

φ(x)dx. (36)



The proof of Theorem 2 in [8] is outlined as follows. Lemma
2 is unimportant to our analysis since we assume Poisson
arrivals. The total service time associated with a demand is
defined to be the onsite service time s plus the incremental
travel time between the demand and the next demand to be
serviced. Denoting the distance to be traveled after the jth
demand as dj , the total service time associated with demand
j is then dj/v+sj . Lemma 3 bounds the average interdemand
travel time d̄ as

E[Z∗] ≡ lim
j→∞

E[Z∗(j)] ≤ lim
j→∞

E[dj ] ≡ d̄.

where E[Z∗] is the expected minimum distance between any
two active demands.

Lemma 4 relates E[Z∗], the expected minimum distance
between active demands, to the system parameters as follows:

lim
N→∞

√
NE[Z∗] ≥ γ

∫
A

φ−1/2(x)f(x)dx (37)

where γ ≥ 2
3
√

π
. Note that as there are more demands are in

the queue on average, the interpoint distance decreases, thus
decreasing the service time associated with each demand.

Lemma 5 then uses a stability condition to bound the
minimum average number in queue, N , required to make
the demand services small enough with respect to the arrival
rate for stability. Then, Little’s Theorem is used to bound
W = N/λ in terms of φ(x). A modified proof of this lemma
is shown below.

In [8], Lemma 5 is then stated as follows:

Lemma 5 from [8]

lim
ρ→1

W (1− ρ)2 ≥ γ2 λ[
∫
A φ−1/2(x)f(x)dx]2

v2n2
(38)

As we are interested in the case where λ/n →∞, we instead
prove the following result:

Lemma 1: (Lemma 5 from [8] (modified))

For λ
n →∞,

W ≥ γ2 λ[
∫
A φ−1/2(x)f(x)dx]2

v2(1− ρ)2n2
(39)

Proof: Consider the following necessary condition for
stability

s̄ +
d̄

v
≤ n

λ
. (40)

Using the fact that E[Z∗] ≤ d̄, multiplying the second term

on the left hand side above by
√

N√
N

and rearranging implies

√
N ≥ λ

nv(1− ρ)

√
NE[Z∗] (41)

Note that from equation (37) above and the definition of the
limit, for every ε > 0, there exists an N0 such that for all
N > N0,

√
NE[Z∗] ≥ γ

∫
A

φ−1/2(x)f(x)dx− ε. (42)

Taking ε = 1
2γ
∫
A φ−1/2(x)f(x)dx, we have that

√
NE[Z∗] ≥ 1

2
γ

∫
A

φ−1/2(x)f(x)dx. (43)

Substituting this into (41), we have
√

N ≥ λ

nv(1− ρ)
γ

2

∫
A

φ−1/2(x)f(x)dx (44)

for all N > N0.

The above equation (44) is valid for N sufficiently large.
Recall that we are considering the scaling behavior as λ/n →
∞. We must then show that N →∞ as λ/n →∞. Corollary
1 below proves that this is the case.

Therefore we have shown that (44) is valid for λ/n suffi-
ciently large. Squaring both sides of (44) and applying Little’s
Theorem, N = λW , we then have

W ≥ γ2 λ[
∫
A φ−1/2(x)f(x)dx]2

v2(1− ρ)2n2
(45)

and the modified lemma is proven.

To complete the proof of Theorem 4, we use the proof of
Theorem 2 in [8] as originally written. Since φ(x) is policy
dependent, this proof solves for min[

∫
A φ−1/2(x)f(x)dx]2

as a function of f(x). Theorem 4 here differs from Theorem
2 in [8] only in the restatement of the limiting terms as in
the modified lemma.

Finally, to complete our modifed proof of Lemma 5, we must
show that N → ∞ as λ/n → ∞ in the DTRP system.
We first prove a preliminary lemma on the scaling of the
system workload in a DTRP queue where workload is defined
as in the standard definition of workload in the context of
networks:

Definition 1 (Workload): The workload in the system at time
t, V (t), is the amount of time it takes the n vehicles to serve
all of the messages currently in the system at time t.

To show that the average work in system goes to∞ as λ/n →



∞, we have the following lemma.

Lemma 2: The average workload in the system V is lower
bounded by:

V ≥ c
λE[

√
f ]2

n
(46)

where c = β2
T SP (

√
2−1)

64 ≈ 0.0064β2
TSP .

Proof: Assume the vehicle started serving at time
−∞. Now consider any time, say 0. Let V (0) denote the
amount of workload in the system at time 0. Since time 0 is
arbitrary, V (0) is distributed like the stationary distribution
of workload. Let A(s) denote the minimal amount of time it
takes to serve messages arriving in interval [−t, 0]. Then, it
is easy to see that

V (0) ≥ (A(t)− nt)+ . (47)

That is, the work in system is greater than difference between
the amount of arrived work in an interval of length t and the
maximum possible work completed by the n vehicles in the
interval. The equation (47) is true for all t. Further, the time 0
is a randomly chosen time and hence represents the stationary
time. Hence, we obtain the time average of workload in the
system, E[V ], is lower bounded as

E[V ] ≥ E[A(t)]− nt, ∀t ≥ 0. (48)

Thus, to compute lower bound on average workload V , we
need to compute E[A(t)]. That is, we need to compute the
average minimal time required to serve messages arriving to
the system in an interval of length t. Now, recall that demands
arrive according to the distribution f(x) and that we assume
a Poisson arrival process of rate λ. Let N(t) be random
number of arrivals happening in time interval of length t.
Then, A(t) can be lower bounded by the length of shortest
path connecting all source and destination locations of these
N(t) messages. Now, the length of a shortest path through
a set of locations is no longer than twice the length of the
shortest cycle through these points, the TSP tour. Similarly,
note that the TSP tour is no more than twice the length of
the shortest path through these points. Hence, to obtain lower
bound A(t), it is sufficient to consider the length of TSP tour
through the source and destination location of N(t) points.

The following is a well-known Beardwood, Halton, and
Hammersley [10] bound on the length of a TSP tour.

Theorem 5: (BHH Theorem)

Let LN denote the length of the TSP tour through N points.
For N →∞, if point are distributed according to probability
density f(·), then

E[LN ] ≈ βTSP

√
NE[

√
f ], (49)

where βTSP is a finite positive constant.

Note that E[N(t)] = λt. Therefore, as t →∞, E[N(t)] →∞
and the BHH result becomes tight. Also due to the Poisson
property of the arrival process, N(t) ≥ λt/2 with probability
at least 1/2 for large enough λ. Therefore, P (

√
N(t) ≥√

λt/2) ≥ 1/2 and

E[
√

N(t)] ≥ 1
2

√
λt

2
. (50)

Assuming that t is sufficiently large so that Theorem 5 is
tight and substituting in (50), we may lower bound A as

E[A(t)] ≥ β̂
√

λtE[
√

f ], (51)

where β̂ = βT SP

4
√

2
. From (48) and (51), we obtain

E[V ] ≥ β̂
√

λtE[
√

f ]− nt. (52)

Consider t∗ = λβ̂2E[
√

fi]
2

2n . Note that as λ/n → ∞ this t is
sufficiently large as required for the tightness of Theorem 5.
Then, from (52) we obtain

E[V ] ≥
√

2− 1
2

β̂2λE[
√

f ]2

n
. (53)

and Lemma 2 is proven.

Corollary 1: As λ/n → ∞, the average number in queue
N →∞ .

Proof: First use Lemma 2 to show that the average
workload V → ∞. By assumption, E[

√
f ] > 0. Since the

arrival distribution f(x) does not depend on λ or n and
E[
√

f ]2 is bounded away from 0, as λ/n →∞, the workload
V ≥ cλE[

√
f ]2

n →∞ as well.

Now note that the work associated with each message is
upper bounded by the diameter of the region plus the onsite
service time,

√
2
√

A + n
λK . Therefore, if the average work

in the system is going to ∞ and the work associated with
each message is finite, the average number of messages in
the system, N , must be going to ∞ as well.

This completes the proof of Theorem 4.
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