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Abstract

For a packet erasure broadcast channel with three receivers,
we propose a new coding algorithm that makes use of feed-
back to dynamically adapt the code. Our algorithm is
throughput optimal, and we conjecture that it also achieves
an asymptotically optimal average decoding delay at the re-
ceivers. We consider heavy traffic asymptotics, where the
load factor ρ approaches 1 from below with either the ar-
rival rate (λ) or the channel parameter (μ) being fixed at
a number less than 1. We verify through simulations that
our algorithm achieves an asymptotically optimal decoding

delay of O
(

1
1−ρ

)
.

1. Introduction

Reliable communication over packet erasure channels is
a well studied problem. Several solutions have been pro-
posed, each with its own requirements, merits and issues.
In this work, we consider a three-receiver packet erasure
broadcast channel with feedback and address questions of
throughput and decoding delay at the receivers.

To communicate over a packet erasure broadcast chan-
nel, one can use the random linear network coding solution
of [1], where the sender transmits a random linear combina-
tion of all packets that have arrived so far. Digital fountain
codes ([2,3]) form another approach to this problem. These
solutions use coding to ensure that with high probability,
the transmitted packet will have what we call the inno-
vation guarantee property, i.e., it will be innovative1

to every receiver that receives it, except if the receiver al-
ready knows as much as the sender. Thus, every successful
reception brings a unit of new information. Such schemes
achieve 100% throughput.

However, both fountain codes and random linear net-
work coding perform block-based encoding. In general, the
receiver may not be able to extract the original packets from
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1An innovative packet is a coded packet whose coefficient vector is
outside the span of previously received packets’ coefficient vectors.

the coded packets till the entire block has been received.
This leads to a decoding delay, which is a problem for real-
time packet streaming applications such as video. Ideally
we want a code that would allow playback even before the
full block is received. In other words, we are interested in
minimizing the average per-packet delay. Related questions
have been studied by [4], [5], [6] and [7].

With full feedback, the optimal scheme over a point-
to-point packet erasure channel is Automatic Repeat re-
Quest (ARQ) – the sender simply retransmits a packet
upon erasure. This scheme also has the advantage of be-
ing a sliding window approach as opposed to a block-based
approach. Although it achieves 100% throughput and opti-
mal packet delay, ARQ does not extend to broadcast-mode
links. On the other hand, network coding readily extends
to broadcast-mode links.

Reference [8] proposes a scheme that uses feedback to
acknowledge degrees of freedom instead of original pack-
ets, thus combining the benefits of network coding and
ARQ. This new framework allows the sender to dynamically
adapt its code to incorporate receivers’ states of knowledge.
This fact was used to design a queue management algo-
rithm called the drop-when-seen algorithm that minimizes
the sender’s queue size, along with a coding module that
provides 100% throughput. Another related reference is
[9], where the authors combine an acknowledgment scheme
with network coding. Here, the main focus is to maximize
the throughput. In contrast to these works, our current
work focuses on achieiving the best possible decoding delay
for all receivers, while maintaining optimal throughput.

By decoding delay of a receiver, we mean the time elapsed
between the arrival of a packet into the sender’s queue and
its getting decoded by the receiver under consideration, av-
eraged over the packets in the long run in a packet stream-
ing scenario. This is different from but related to the notion
of delay used in [7].

For the special case of a packet erasure broadcast chan-
nel with only two receivers, reference [10] proposes a feedback-
based coding algorithm that not only achieves 100% through-
put, but also guarantees that every successful innovative
reception will cause the receiver to decode a new packet.
We call this property instantaneous decodability. Instanta-
neous decodability and 100% throughput are both desirable
goals. However, this approach does not extend to the case
of more than two receivers. With prior knowledge of the
erasure pattern, [7] gives an offline algorithm that achieves
optimal delay and throughput for the case of three receivers.



However, in the online case, even with only three receivers,
[10] shows through an example that it is not possible to si-
multaneously guarantee instantaneous decodability as well
as throughput optimality.

In the light of this example, our current work aims for
a relaxed version of instantaneous decodability while still
retaining the requirement of optimal throughput. Our re-
laxation of the condition is as follows. Let λ and μ be the
arrival rate and the channel quality parameter respectively.
Let ρ � λ/μ be the load factor. We consider asymptotics
when the load factor on the system tends to 1 (i.e., 100%),
while keeping either λ or μ fixed at a number less than 1.
The optimal throughput requirement means that the queue
of undelivered packets is stable for all values of ρ less than 1.
Our new requirement on decoding delay is that the growth
of the average decoding delay as ρ → 1 should be the same
as for the single receiver case. The expected per-packet de-
lay of a receiver in a system with more than one receiver is
clearly lower bounded by the corresponding quantity for a
single-receiver system. Thus, instead of optimal decoding
delay, we aim to guarantee asymptotically optimal decod-
ing delay. The motivation is that in most practical systems,
delay becomes a critical issue only when the system starts
approaching its full capacity. When the load on the system
is well within its capacity, the delay is usually small and
hence not an issue. For the case of two receivers, it can
be shown that this relaxed requirement is satisfied by the
scheme in [10] due to the instantaneous decodability prop-
erty, i.e., the scheme achieves the asymptotically optimal
average decoding delay per packet for the two-receiver case.

In our current work, we provide a new coding module for
the case of three receivers that achieves optimal through-
put. We conjecture that at the same time it also achieves
an asymptotically optimal decoding delay in the following
sense. With a single receiver, the optimal scheme is ARQ
with no coding and we show that this achieves an expected

per-packet delay at the sender of Θ
(

1
1−ρ

)
. For the three-

receiver system, we conjecture that our scheme also achieves

a delay of O
(

1
1−ρ

)
, and thus meets the lower bound in an

asymptotic sense. We have verified this behavior through
simulations for values of ρ that are very close to 1. Our
scheme thus achieves feedback-based control of the decod-
ing delay, along the lines suggested in [11]. We believe that
our approach can be extended to an arbitrary number of
receivers as well.

2. Preliminaries

2.1. The setup

The setup is the same as in [8]. Time is slotted. Packets
arrive into the sender’s queue according to a Bernoulli pro-
cess of rate λ. The sender wants to broadcast this stream
to three receivers over a packet erasure broadcast channel.

Figure 1: Relative timing of arrival, service and departure
points within a slot
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Figure 2: Markov chain for the sender’s queue size – single
receiver case. Here λ̄ := (1 − λ) and μ̄ := (1 − μ).

The sender has one queue with no preset size constraints.
The channel accepts one packet per slot. Each receiver ei-
ther receives this packet with no errors (with probability μ)
or an erasure occurs (with probability (1 − μ)). Erasures
occur independently across receivers and across slots and
can be detected by receivers. There is perfect feedback in
each slot. Figure 1 shows the timing of events in a slot.
In particular, we assume that the sender finds out whether
the receivers received the previous slot’s transmission be-
fore selecting the current slot’s transmission.

2.2. The lower bound

The expected per-packet delay for the single receiver
case is clearly a lower bound for the corresponding quan-
tity at one of the receivers in a three-receiver system. We
will compute this lower bound in this section. Figure 2
shows the Markov chain for the queue size. If ρ := λ

μ
< 1,

then the chain is positive recurrent and its steady state dis-
tribution can be found ([12]). Based on this, the steady

state expected queue size can be computed to be ρ(1−μ)
(1−ρ) =

Θ
(

1
1−ρ

)
. Now, if ρ < 1, then the system is stable and

Little’s law can be applied to show that the expected per-

packet delay in the single receiver system is also Θ
(

1
1−ρ

)
.

2.3. Representing knowledge

We treat packets as vectors over some finite field. Through-
out this paper, we consider a single source that generates a
stream of packets. The kth packet that the source generates
is said to have an index k and is denoted as pk. We assume



that the sender uses only linear codes, i.e., the transmission
is some linear combination of packets. The linear combi-
nation is uniquely specified using the vector of coefficients
used to form it. With linear codes, the state of knowledge
of a node after receiving some set of linear combinations
has a vector space structure. This is because the node can
compute any linear combination whose coefficient vector is
within the linear span of the coefficient vectors of previously
received linear combinations. This leads to the following
definition of knowledge space which we restate from [8].

Definition 1 (Knowledge of a node) The knowledge of
a node is the set of all linear combinations of original pack-
ets that it can compute, based on the information it has
received so far. The coefficient vectors of these linear com-
binations form a vector space called the knowledge space of
the node. The dimension of this vector space is called the
rank of the node.

We next restate the definition of a node “seeing” a mes-
sage packet from [8]. A node is said to have seen a message
packet p if it has received enough information to compute
a linear combination of the form (p + q), where q is itself
a linear combination involving only packets with an index
greater than that of p. (Decoding implies seeing, as we
can pick q = 0.) The number of packets seen by a node is
precisely the rank of the node (see [8] for more details).

We introduce a new notion of packets that a node has
“heard of”. A node is said to have heard of a packet if it
knows some linear combination involving that packet.

3. The new coding module

Our coding module works in the Galois field of size 3.
At the beginning of every slot, the module has to decide
what linear combination to transmit. Since there is full
feedback, the module is fully aware of the current state of
knowledge of each of the three receivers. Thus, it can com-
pute the rank of each receiver. We denote the highest rank
among the three receivers as m. Our coding module main-
tains an invariant that the transmission will never involve a
packet whose index is greater than (m + 1). We denote the
receiver(s) whose rank is m as the leader(s). We consider
three cases:

3.1. All three receivers are leaders

In this case, all three receivers have a rank of m which
means each has seen m packets. If pm+1 has not arrived
yet, the module does nothing. Otherwise, since all trans-
missions have involved only the set of packets up to pm+1,
there is exactly one unseen packet for each receiver within
this set. This could be a different packet for each of the
three receivers. The coding module selects a linear com-
bination that if received successfully by any receiver, will

reveal to that receiver its unseen packet, thereby guaran-
teeing innovation. This is done by simply forming a linear
combination involving only the unseen packets of the three
receivers. It can be verified that with a field of size 3, it is
always possible to choose coefficients such that innovation
is guaranteed for all three receivers.

3.2. There are two leaders

It can be shown by induction that at all times, at least
one leader would have decoded all packets from 1 to m.
Now, when there are two leaders, if exactly one leader has
decoded all packets 1 to m, then the coding module per-
forms the operations of case 3, treating this leader as the
unique leader. If both leaders have decoded packets 1 to
m, then module does the following.

If pm+1 has not arrived yet, the module transmits the
oldest undecoded packet of the non-leader (if there are
packets that the non-leader has heard of but not yet de-
coded, then they are preferred). Suppose pm+1 has arrived.
Now, if it has already been decoded by the non-leader, then
the module sends the sum of pm+1 and the oldest unde-
coded packet of the non-leader (again, if there are packets
that the non-leader has heard of but not yet decoded, then
they are preferred). Otherwise, the module sends pm+1 by
itself.

3.3. Unique leader

In this case, the module computes the following sets for
the two non-leaders:

H1:= Set of packets heard of by first non-leader
H2:= Set of packets heard of by second non-leader
D1:= Set of packets decoded by first non-leader
D2:= Set of packets decoded by second non-leader
Note that D1 ⊆ H1 and D2 ⊆ H2. We also define a

universe set U consisting of packets p1 to pm, and also
pm+1 if it has arrived. In this setting, the following sets
partition the universe (refer to Figure 3):

• S1 = D1 ∩ D2

• S2 = D1 ∩ (H2\D2)

• S3 = D2 ∩ (H1\D1)

• S4 = (H1\D1) ∩ (H2\D2)

• S5 = D1\H2

• S6 = D2\H1

• S7 = (H1\D1)\H2

• S8 = (H2\D2)\H1

• S9 = U\(H1 ∪ H2)



Figure 3: Sets used by the coding module

The coding module picks a linear combination depend-
ing on which of these sets pm+1 falls in, as follows:

Case 1 – pm+1 has not arrived: Check if S4 is non-
empty. If it is, then send the oldest packet in S4. Otherwise,
check if both S2 and S3 are non-empty. If they are, pick
the oldest packet from each, and send their sum. If not, try
the following pairs of sets: S3 and S5, else S2 and S6, else
S5 and S6. If none of these pairs of sets work, then send
the oldest packet in S7 if it is non-empty. If not, try S8, S9,
S2, S3, S5 and S6 in that order. If all of these are empty,
then send nothing.

Case 2 – pm+1 ∈ S1: This is identical to case 1, except
that pm+1 must also be added to the linear combination
that case 1 suggests.

Case 3 – pm+1 ∈ S2: Send pm+1 added to another
packet. The other packet is chosen to be the oldest packet
in the first non-empty set in the following sets, tested in
this particular order: S3, S4, S6, S8, S7 and then S9.

Case 4 – pm+1 ∈ S3: This is similar to the S2 case
(using symmetry) – test S2, S4, S5, S7, S8 and then S9.

Case 5 – pm+1 ∈ S4: Send pm+1 as it is.
Case 6 – pm+1 ∈ S5: Send pm+1 added to another

packet. The other packet is chosen to be the oldest packet
in the first non-empty set in the following sets, tested in
the following order: S3, S6, S4, S8, S7 and then S9.

Case 7 – pm+1 ∈ S6: This is similar to the S5 case
(using symmetry) – test S2, S5, S4, S7, S8 and then S9.

Case 8 – pm+1 ∈ S7: Send pm+1 as it is.
Case 9 – pm+1 ∈ S8: Send pm+1 as it is.
Case 10 – pm+1 ∈ S9: Send pm+1 as it is.
In all these cases, the coefficient for the chosen packets

must be selected to be either 1 or 2, in such a way that the
resulting linear combination is innovative to any receiver
that receives it, except if the receiver already knows all
that the sender knows. It can be shown that such a choice
is always possible with a field of size 3.

Remark 1 We conjecture based on the simulations that
the algorithm maintains the following invariant – at most
one of H1\D1 and H2\D2 is non-empty at any given time.
If proved to be true, this observation can be used to simplify
the algorithm.

4. The intuition behind the algorithm

The main idea behind the algorithm is to first of all
guarantee innovation. It can be shown that the linear com-
bination computed by this coding module is indeed inno-
vative to any receiver that receives it. In addition to this
requirement however, the module also tries to cause each
receiver that has a successful reception to decode as many
packets as possible.

An interesting property of this algorithm is that the
transmitted linear combination always has at most two un-
decoded packets involved in it from any receiver’s point of
view. In other words, every transmission is essentially ei-
ther an uncoded packet or the sum of two packets. This
property leads to a nice structure in the knowledge space
of the receivers, using which, we present a strategy to con-
trol the extent to which packets get mixed with each other,
thereby controlling the decoding delay.

In order to explain this structure, we define the follow-
ing relation. The ground set G of the relation contains all
packets that have arrived at the sender so far, along with
a fictitious all-zero packet that is known to all receivers
even before transmission begins. The relation is defined
with respect to a specific receiver. Two packets px ∈ G
and py ∈ G are defined to be related to each other if the
receiver knows at least one of px + py and px + 2py.

Now, a packet added with two times the same packet
gives 0 which is trivially known to the receiver. Hence, the
relation is reflexive. It is also symmetric since addition is a
commutative operation. Now, for any px,py,pz in G, if a
receiver knows px+αpy and py+βpz, then it can compute
either px+pz or px+2pz by canceling out the py, for α = 1
or 2 and β = 1 or 2. Therefore the relation is also transitive
and is thus an equivalence relation. It defines a partition
on the ground set, namely the equivalence classes, which
provide a structured way to represent the knowledge of the
node. It can be seen that the class containing the all-zero
packet is precisely the set of decoded packets (D1 or D2).
Packets that have not been involved in any of the success-
fully received linear combinations so far will form singleton
equivalence classes. These correspond to the packets that
the receiver has not heard of (U\H1 or U\H2).

We say a class is nontrivial if it is neither a singleton
class nor the class of decoded packets. Thus, nontrivial
classes contain the packets that have been heard of but not
decoded. Revealing any packet in a class will reveal the
entire class to the node. The number of nontrivial classes
is thus the number of packets that the node needs to know
in order to decode all packets it has heard of. This number
is thus a measure of how far away a node is from decoding
all packets it has heard of. We call this number the deficit
of the node.

For instance, revealing a packet from H1\D1 will allow
the entire class containing that packet to be decoded by re-
ceiver 1. The algorithm ensures that a packet from H1\D1



or H2\D2 is revealed whenever possible, as opposed to a
packet that the receiver has not heard of. This ensures that
the deficit is reduced whenever possible. As a result, the
deficit drops to zero frequently, thereby causing the node
to decode packets.

5. Performance of the algorithm

5.1. Throughput optimality

The algorithm has been designed in such a way that
innovation is guaranteed to all the receivers whenever pos-
sible. Packet pm+1 is always included in the linear com-
bination if it has arrived, in order to guarantee innovation
to the leader. If both the other receivers have also not
decoded it, then sending pm+1 by itself satisfies the inno-
vation guarantee. This happens in cases 5, 8, 9 and 10.

If however, some receiver has already decoded it as in
the other cases, then another packet is included in the linear
combination that the receiver has not yet decoded, thereby
ensuring innovation. While choosing such a packet, pref-
erence is given to packets that the receiver has heard of,
as revealing such a packet will cause several packets to be
decoded at once.

If pm+1 has not yet arrived, then the leader is already
satisfied. For the other two receivers, the transmission is
selected in such a way that it simultaneously reveals an
undecoded packet to both of them whenever possible.

We can show that in all these cases, over a field of size
3, the coefficients can also be chosen carefully to guarantee
innovation for all those who receive the linear combination
successfully. This discussion is summarized in the following
theorem.

Theorem 1 The coding module satisfies the innovation guar-
antee property.

This means that the algorithm achieves optimal through-
put, i.e., for all ρ < 1, the decoding delay and the queue at
the sender will remain stable.

5.2. Decoding delay

We now study the delay experienced by an arbitrary
arrival before it gets decoded by one of the receivers, say
receiver 1. We consider a system where μ is fixed at 0.5.
The value of ρ is varied as follows: 0.95, 0.97, 0.98, 0.99
and 0.995. We plot the expected decoding delay per packet

averaged across the three receivers, as a function of
(

1
1−ρ

)

in Figure 4. We also plot the log of the same quantities in
Figure 5. The value of the delay is averaged over 500000
time slots for the first three points and 106 time slots for
the last two points.

Figure 4 shows that the growth of the expected decod-

ing delay is linear in
(

1
1−ρ

)
as ρ approaches 1. Figure 5
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Figure 4: Decoding delay as load approaches capacity
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Figure 5: Decoding delay – log-log plot

confirms this behavior – we can see that the slope on the
plot of the logarithm of these quantities is indeed close to
1. This observation leads to the following conjecture:

Conjecture 1 For the newly proposed coding module, the
expected decoding delay per packet from one particular re-

ceiver’s point of view grows as O
(

1
1−ρ

)
, which is asymp-

totically optimal.

5.3. Queue size

The queue update rule is as follows – the sender drops
a packet if all the receivers have decoded it. This means
that by Little’s law, the expected queue size will be pro-
portional to the time a packet spends in the system before
it is decoded. Thus, if the expected decoding delay is in-

deed O
(

1
1−ρ

)
as conjectured above, then the drop-when-

decoded queue update rule will ensure that the expected

queue size at the sender is O
(

1
1−ρ

)
, which is asymptoti-

cally optimal.



6. Conclusions

For a three receiver packet erasure broadcast channel
with feedback, we have proposed a new coding scheme that
makes use of the feedback to dynamically adapt the code.

As argued earlier, Θ
(

1
1−ρ

)
is an asymptotic lower bound on

the decoding delay. We have observed through simulations
that this lower bound seems to be achieved by our scheme,
which would imply the asymptotic optimality of our coding
module in terms of decoding delay. We conjecture that
this is indeed true. All these delay benefits are obtained
without compromising on throughput. If the conjecture is
true, then the expected queue size of undecoded packets

is also O
(

1
1−ρ

)
, which is asymptotically optimal. Thus,

our scheme also simplifies the queue management at the
sender. In the future, we wish to extend this approach to
an arbitrary number of receivers. Also, we wish to make the
algorithm robust to delays and erasures in the feedback.
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