
On the Maximal Throughput of Networks with
Finite Buffers and its Application to Buffered

Crossbars
Paolo Giaccone Emilio Leonardi Devavrat Shah

Dipmimento di Elettronica
Politecnico di Torino, Italy

A ~ S ~ ~ U C Z - The advent of packet networks has motivated many
researchers to study the performance of networks of queues
in the last decade or two. However, most of the previous
work assumes the availability of infinite queue-size. Instead,
in this paper, we study the maximal achievable throughput
in a flow-controlled lossless network with finite-queue size, In
such networks, throughput depends on the packet scheduling
policy utilized. As the main of this paper, we obtain a dynamic
scheduling policy that achieves the maximal throughput (equal
to the maximal throughput in the presence of infinite queue-
size) with a minimal finite queue-size at the internal nodes of
the network. Though the performance of the policy is ideal, it is
quite complex and hence difficult to implement. This leads us to
a design of simpler and possibly implementable policy. We obtain
a natural trade-off between throughput and queue-size for this
policy.

We apply our results to the packet switches with buffered
crossbar architecture. We propose a simple, implementable,
distributed scheduling policy which provides high throughput in
the presence of minimal internal buffer. We also obtain a natural
trade-off between throughput, internal speedup and buffer-size
providing a switch designer with a gamut of designs.

To the hest of authors’ knowledge, this is one of the first
attempts to study the throughput for general networks with finite
queue-size. We believe that our methods are general and can be
useful in other contexts.

I. ~NTRODUCTION

Flow-controlled lossless network architectures (like ATM
networks 1121, 1191 or wormhole routed networks [4], [17],
[26]) have failed in the context of Internet. However, such
network architectures are still widely prevalent in several other
contexts such as storage area networks [341, interconnection
networks for parallel computing [13J, etc. In this paper, we
study the throughput performance of such flow-controlled
lossless networks.

The seminal work of Tassiulas and Ephremides [31] pio-
neered the research for studying the maximal throughput of
controlled networks (also called constrained queueing systems
in [31J) with infinite queue-size. For example, the methods
of [31] have been utilized in the context of switching [l],
[61, [151, [ZOI, [331, satellite and wireless networks [24]. [25],
etc. Although these results are quite general, they assume
the availability of infinite queue-size at all the nodes of the
network. In actual applications, queue-sizes are aIways finite.
This is a major limitation of the results of [31] as well as
results known in the network theory in general.

CSEE Department
Stanford University. USA

In this paper, motivated to analyze performance of networks
in the absence of the assumption of infinite queue-size. we
study the maximal achievable throughput in flow-controlled
lossless networks with finite queue-sizes at the internal nodes
of the network. Only the ingress nodes have infinite-size
queues fo allow us to define the achievable throughput. Our
work can be seen as an extension of the results of [31] in the
sense that it gets rid of the assumption of infinite queue-size
inside the network.

As an application of our results, we evaluate the maximal
achievable throughput in the packet switch architecture built
around a crossbar with buffered crosspoints. Such packet
switches have been of a huge recent interest due to the
recent advances in the technology 1351, We propose a novel
distributed scheduling policy, called DMWF, which is shown
to be stable under admissible i.i.d. Bernoulli traffic i f ei-
ther enough internal buffer is present and/or enough internal
speedup is available at the crossbar. In particular, we evaluate
the natural tradeoff between throughput, speedup and buffer-
size,

We would like to note that though the contribution of this
paper is mainly theoretical, we believe that the results obtained
in this paper will be useful in the design of network, in sizing
buffers and in the design of scheduling policies.

A. Organization

In Section 11, we introduce the notation and the main
assumptions of the paper. Then, we present the known results
about the maximal throughput for the network of infinite
queue-size in Section 11-B. In Section III, we present our
main results, Finally, in Section IV, we introduce the buffered
crossbar switch architecture and apply our results to obtain
distributed scheduling policy for buffered crossbar. The proofs
of the theorems are presented in the appendix of the paper.

11. SYSTEM MODEL A N D NOTATION

We consider a network of discrete-time physical queues (or
stations), handling J customer flows. Customers belonging to
flow j , 1 5 j 5 J , enter the network at a station, receive
service at each station along an acyclic path and leave the
network. The number of stations (hops) traversed by customers
of flow j is h.j. We assume that the routing of each flow is
deterministic. Figure 1 depicts an example of such network.

971 0-7803-8968-9/05/$20.00 (CJ2005 IEEE

- 1 1 r=4-

ingress queue

Fig. 1. Example of flow controlled network with 5 servcrs and 6 flows

Customers belonging to the same flow. and stored at the
same physical queue, form a virtual queue. The number of
virtual queues in a network is denoted by Q. We denote wilh
uq the q-th virtual queue in the network. Let q (j , h) , with
h = 1: . . . ~ hj. be the index of the queue traversed by flow
j at the h-th hop. Virtual queue vq(j:l) is also called “ingress
queue” for flow j. The set of all the flow ingress virtual queues
{ v q (j , l) ? 1 5 j 5 J} is denoted with +I$ whose cardinality is
J since each ingress queue is associated with a flow. The set
of all the remaining virtual queues, called “internal queues”,
is denoted with $.hi. Note that includes also “egress
queues”, i.e. queues traversed by customers just before leaving
the network. We now introduce some mapping functions. f (q)
maps queue index q to the index of its corresponding ingress
queue (first queue): f (q (j , h)) = q (j : 1); noie that f(q) = q if
q E 4’1. Function u(q) returns the index of the queue upstream
to queue q, and it is defined for a11 the queues except for
the ingress queues: u(q(j? h,)) = q (j , h - 11, 2 5 h 5 hi.
Function p (q) returns the index of queue downstream to queue
eUg and it is defined for every queue except the egress queues:
p (q (j , k)) = q(j : h + l) , 1 5 h 5 hj - 1. Function j (q) returns
the index of the flow traversing queue w q .

Servers are associated with physical queues. A server pro-
vides service to customers queued at the logical queues (virtual
queues) located at its physical queue according to a service
policy. Packets are assumed of fixed length normalized to a
time slot. All the servers in the network are synchronized.
They start service at the beginning of a time slot.

All vectors are, by default, row vectors. Let X (n) =
[~ ~ (n .)] : ! ~ = [z l (n) sa(n). . . z ~ (n)] , be the vector whose
q-th component zp(n) represents the number of customers
present in w, (Le.? its queue length1) at the beginning of time n,
with 31 E N+. For the sake of easier notation, let q > k (n .) equal
to z q (j , h j (n) . We suppose the size of all the ingress virtual
queues (belonging to !PI) to be infinite, whereas we assume
all the other virtual queues along the flow paths (belonging to
@ M) to be of Bnire size. AI1 the virtual queues traversed by
flow j can store up to Zj customers. A flow control mechanism
inhibits the transmission of packets toward queues which are
full, thus preventing buffer overflows.

The evolution of the number of customers at vp is described

‘Note that “length” denotes (he time-variable queue-occupancy. whereas
“size” denotes the fixed maximum allowed queue-occupancy.

by .,(a + 1) = zg(iz) + e,(.) - dq(,u), where e,(n) repre-
sents the number of customers that entered vq (and thus its
corresponding physical queue) in time interval (n.: n.+ I] , and
d q (n) represents the number of customers departed from
in time interval (71:n + 11. E (n) = [eq(n)]:=l is the vector

is
the vector of departures from virtual queues; let dj, ,>(n.) be
defined equal to dq(j ,h) (77,). Given the network stare, A’(v),
the following service constraints on D (n) express h e fact that
no services can be provided to empty queues and no queue
overflows are allowed (thanks to the flow control mechanism):

of entrances in virtual queues, and D (n) = [dq(i i)]q , l Q

D (n) 5 S (n) and D(n)R 5 L -X(n.) (1)

being L = [lq]$l the vector with all the queue sizes
(assuming 1, = CO for q E $1). This is equivalent to say:
if queue q is empty (z , (n) = 0) or the downstream queue to
q is full (~ ~ (~) (n) = li(q)), then no service can be provided
to queue q (d q (n) = 0).

With this notation, the system evolution equation can be
written as:

(2)
The entrance vector E(n) is sum of two terms: vector

A(n) = [a,(7~)]7=~, representing the customers arrived at the
system from outside the network of queues (we also call them
external arrivals), and vector of recirculating customers, who
are advancing along their paths inside the network, in time
interval (n, n -t 11.

Since we assume deterministic routing, let the Q x Q matrix
R be the roufing matrix, with binary elements RqIg2 = 1 iff
p (q l) = qz and Rqlg2 = 0 otherwise. The evolution of virtual
queues can be rewritten as:

X (n + 1) = X (n) + E(n) - D(n.)

X (T I + 1) = X(n) + A(TI) - D(n)(I - R) (3)
where I denotes the identity matrix.

We suppose that the external arrival process {A(n.) : n E
N+} is a stationary memoryless process, i.e. A (n) are i i d .
random vectors with average G (A (n)) = A = Note
that, since external arrivals are directed only to ingress queues,
A, = O if q E GM.

At time slot n the scheduling policy selects the service vec-
tor S’(n), whose element sq (n) represents the amount of work
provided to up during time slot n; let s j , h (n) = q j , h) (n) .

The departure vector D (n) is related to S(n) according to the
following equation:

In other words, the number of packets served from a queue
is given by the amount (approximated to the integer part)
of cumulative service provided to the queue. We define the
difference between the two quantilies by:

n n

A(n.) = Sj t) - E D (t)
~

t=O t= 0

972

whose q-th element d,(n) E [O: 1) represents the amount of
work provided by the scheduling policy to the head-of-the-
line packets of cq at the end of time slot n. In this paper we
restrict our investigation to the class of dynamic scheduling
policies, i.e. those scheduling policies which select S(n) on
the only basis of the instantanous network state information
without requiring any knowledge on the uaffic pattern.

In general we assume that the set of possible service
vectors S(n) is constrained by a system of linear equations
representing the topological interference among services at
virtual queues (blocking canstrainrs):

S(n)K 5 T (4)

Matrix K and vector T describe the blocking constraints in
the services, For example, simple topological constraints are
those expressing the fact that the sum of services provided in
each time slot to all the virtual queues residing at the same
physical queue is limited by the server capacity. However we
do not exclude additional constraints which relate $e behavior
of virtual queues residing at different stations. Let D the set of
non-negative S(n) which satisfy the blocking constraints. We
notice that 5 defines-a polyhedral convex region. Let D the
set of a11 vertices of V. For simplicity of notation, we assume
that vectors in D are integer valued. In order to avoid trivial
cases, we assume that all vectors ylq), with 1 5 q 5 Q, whose
elezents are all null except the q-th. whichfs unitary. belongs
to V, i.e, y(p) = [O ,O,O, . . . 1: O , O ? 0] E 23; in other words,
every virtual queue in the network can potentially get service
without vioIating the topological constraints. We remind that
S(n) must be chosen in such a way that the service constraints
defined for B(n) in (I) a e not violated.

If the scheduling policy is atoneic, i.e. packets are uansmit-
ted by servers in an ‘atomic’ fashion, without interleaving their
transmission with packets residing in other virtual queues, then
S(n) is integer valued, and D (n) = S(n) for any n. In this
case, S (n) is a DTMC (Discrete %me Markov Chain). In the
more general case, (X(n) ,A (n)) is a discrete time Markov
process defined on a general state space [211. In the latter case,
let us define the workload vector:

Y(n) X(n) - A(n)(I - R)

We notice that (X (n)) A (n)) + Y(n) is a one to one
correspondence. Furthermore, it is easy to verify that Y(n)
satisfies the following system evolution equation, derived by

(5)

Note that is the scheduling policy is atomic, then X(n,) =
Y (n) for any n and (5) coincides with (3).

Finally, let us introduce the following useful positive convex
functional:

Dejnition I : Given a vector Z E 1Ry; 2 = (z(l i) , 1 5
I; 5 Q), the positive convex functional)I211 is defined as:

(3) :
Y (n + 1) == Y(,) + A(n) - S(n)(I - R)

We notice that in the remainder of this paper we will
refer to it with the improper term of “norm”; furthermore,
the previous functional is coincident with- the well-known
Minkowski convex functional associated to Z?. Under the IlZil
definition immediately follows that, for any S(n.) E 3, then
IIS(n)il 5 1. I f the policy is atomic, it chooses S(n) =
D (n) E 21. To better understand the meaning of such norm? we
evaluate flow 11II[l? where 1 is the vector with unitary elements,
in a simple case. Consider a set of independent servers, each
of them able to provide one unit of service per time slot, i.e.
T(q), 1 5 q 5 Q, is vertex of 5. ~f at most i virtual queues
are located at each server, then IlIIll = i. Indeed, the service
vector S = II/i belongs to the boundary of 6.
A. Traffic and System Stability Definitions

Defnirion 2: A stationary uaffic pattern is admissible if

Let p = IlA(1 - R)-’Il. For the simplest case in which
virtual queues residing at different servers are not topologically
interacting. traffic is admissible iff no servers are overloaded;
in addition, p represents the load of the heaviest loaded server
in the network.

llA(I - R)-’11 < 1.

Defnirion 3; The system of queues is sruble if:

l imsupE(IIX(n)ll) < cc

or equivalently:
limsupE(lll’(n)ll) < 00

n-o3

n-OO

i.e., the system is positive recurrent.
Note that the admissibility of traffic pattern is a necessary

condition for the system of queue to be stable as shown in 1311.
We say that the system is stable at point A if it is stable

under every stationary memoryless external arrival processes
A(n) with average A.

Definition 4: We define as stability region the set of points
A in correspondence of which the system of queues is stable.

Definition 5: We say thar a system of queues is 1-efficient
(or equivalently achieves 100% throughput), if it is stable
under any admissible traffic pattern.

Definition 5: For any 0 < p < 1, we say that the system
of queues is p-efficient if it is stable under any traffic pattern
such that llA(I - R)-’Il 5 p .

B. Previous work
The problem of the definition of the stability region in com-

plex systems of interacting queues under dynamic scheduling
policies, has attracted significant attention in the last decade
from the research community since the pioneering work [31].

In 13 11, applying the Lyapunov function methodology, it
has been shown that a system of interacting queues whose
size is infinite achieve 100% throughput, i f atomic max-scalar
scheduling policy P,WS is applied at each node of the network.
According to T‘M~, at each time slot n the departure vector
is selected as follows:

D (n) = S(n) = argmaxZ(1- R) X (T L) ~ (6)
ZED

973

The result in [31] has been generalized and adapted to different
application contexts in the last years. As matter of example
we just briefly recall some of the related works.

In the switching context, several studies have been aimed
at the definition of the stability region in Input-Queued (IQ)
swilching architectures built around a bufferless crossbar:
papers [l], [15]. 1201, [30], [33] have proposed different
extensions of PAfS, which have been shown to be 1-efficient;
stability properties for simpler scheduling policies have been
also studied in [65, [14]; in [2], [3], [151, finally, the problem of
h e definition of the stability region in networks o f IQ switches
has been considered.

In the context of the satellite and wireless networks, gener-
alizations of PAIS have been recently proposed and shown to
be 1-efficient in 1241. 1251, [321.

All the previous works, however, have considered system
of infinite-size queues. In this paper, for the first time, to the
best of our knowledge? we extend the investigation about the
stability region in systems and networks of queues of finite size
subject to some form of flow control which prevents packet
losses.

C. Stability criteria
The stochastic Lyapunov function is a powerful tool to prove

stability (i.e., positive recurrency) of Markovian systems. In
this subsection we briefly report one of the main results related
to the Lyapunov function methodology, which will be used in
the remainder of this paper: we refer the interested reader
to [111, and [21], [25] for more details on the extension to
general state space Markovian processes.

7Beoreni I: Let Z (n) be an irreducible Q-dimensional
Markov chain (or, general space Markov process), whose
elements .zl(n)> 1 = 1 , 2 , . . . , Q are non-negative, i.e., Z (n) E
IN? (or, ~ (n) E w:). I€ bere exists a non-negative valued
function (C : lRy 4 R+} such that:

E[L(Z(n. + 1)) - L (Z (n)) I Z(n)] < 00 (7)

and

for some E > 0, then Z (n) is positive recurrent, and

limsupE[IIZ(n)ll] < 03

Inequality (7) requires that the increments of the Lyapunov
function L (2) are finite on average. The second inequality (8)
requires that, for large values of llZll, the average increment in
the Lyapunov hnction from time n to time n + 1 is negative.
The intuition behind this result is that the system must be
such that a negative feedback exists, which is able to pull the
system toward the empty state, thus making it ergodic. For
these reasons. inequality (8) is often referred as the Lyapunov
function drift condition.

In our case, Z (n) represents the number of packets in
the network of queue X (n) or the workload Y(n) , whose
evolution is given by (3) or (5). It is immediate to verify that

n-ux

constraint (7) can he always met when all the moments of
A (n) are finite; in particular, restricting to quadratic Lyapunov
functions, it is sufficient that the second momeni of A (n) is
finite.

111. PERFORMANCE OF NETWORK OF FINITE QUEUES

Here we present our main results. In Section 111-A we show
that 100% throughput can be obtained in any network of finite,
flow controlled interacting queues, for I j 2 1. To this end, we
define the optimal dynamic scheduling policy Pl. Since policy
Pl (i) is not atomic. i.e. servers provide fractional services to
packets stored at head of the virtual queues. (ii) requires the
servers to coordinate their decisions al each time slot, then
its implementability results problematic in several application
con texts.

In Section III-B we propose the atomic dynamic scheduling
policy F2 whose complexity is similar to 'P,I~.s defined for
infinite queue networks. 74: similarly to Pbfs: requires a
continuous exchange of state information among network
servers, but i t can allow servers to take local decisions in
an uncoordinated fashion, when considering simple network
configurations. thus resulting significantly less complex than
PI. We show that P2 is p-efficient when enough buffer inside
the network is provided, thus estimating the trade-off between
network buffers and achievable throughput.

A. Optimal policy

Ply in vectorial format:
I) Policy definition: Consider the following policy, called

(9)

where M(n) is a Q x Q matrix, non-null only on its diagonal
where, for q = 1:. . . I Q :

We now express the policy in scalar format (for the sake
of easier notation, we omit (n) when not necessary). Observe
that:

and multiplying by M:

974

queue. the first adder in (9) becomes:

fl(s) = S(I - R)MP =

whereas the second adder in (g) :

f?(S) = S(1- R)M[S(I - R)IT =

J J

I I hi-1

h j - 1

2 S j . h S j , h + l) (11)
h = l

By combining (10) and (1 I), policy Pl becomes:

s = argn1aX f (2)
ZED

with f (2) = Zfi(Z) - f*(Z).
Observe that according to policy PI, by construction, ser-

vice is never provided to empty virtual queues, thus satisfying
one of the service constraints. This can be easily seen by
observing that PI can be equivalently defined as:

{ S(n) = arg min
ZED

[Ir(n) - Z(n)(I - R)]M(n)[I'(n.) - Z (n) (I - R)IT}

and observing that the minimum is always achieved when all
the elements of [Y(n> - Z(n)(T - R)] are non negative.

The second service constraint, which avoids buffer over-
flows, is not always precisely met by ?I, However it is easy
to realize that according to ?I, Y (n) 5 L + d, for all a,
being c the maximum amount of service that any server in the
network can provide in a time slot. As a conclusion, to avoid
buffer overflow is sufficient to provide any virtual queue with
an extra amount of memory (called slack-buffer) equal to c.

2) Policy performance: Now we state our main theorem,
whose proof is reported in Appendix I.

71zeorem 2: Under admissible Bernoulli traffic, policy PI
achieves 100% throughput when the buffer size l j (not count-
ing the slack buffer) of any internal queue q traversed by flow
j satisfies the following relation:

l j 2 1 f o r j = 2 : . . . , J
3) Implementation issue: Since is not atomic, it selects

the best service vector S in the set D and this does not guar-
antee that S is a integer departure vector; in simpler words,
sq E [O: I] . As a consequence, the direct implementation of
policy Pl requires servers to provide fractional services to
packets stored at head of the virtual queues according to a
weighted processor sharing policy.

Moreover, according to policy P I , packets are transferred
through queues in a "cut-through" fashion, since servers may
start the transmission of non completely received packets. We
notice that non-atomic scheduling policies exploiting "cut-
through" switching have been proposed and implemented in
the contexts of wormhole networks [71, [lo], [26].

At last, PI must be implemented in a centralized fashion by
a scheduler which has the complete view of the queues state
of the network. The high implementation complexity of this
policy has motivated our investigation on the performance of
the following policy.

B. Low complexity policy

I) Policy definition: Consider the following policy, called
732

In other words, policy Pz maximizes the scalar product of the
service vector 2 and the weight vector W = (I - R)MYT.
Due to the linearity of the scalar product, F'z guarantees the
vector 5' to be a vertex of 5, i.e. S(n) E D. Hence, 732 is an
atomic poiicy and X (n ,) = Y(n) . Formally, we can say that
Fz can be expressed as: . .

D = arg max Z(I - R)MXT
ZED

Following the same reasoning to obtain (lo), a generic
queue q is associated with the following weight wq:

then policy can be rewritten as:
Q

q=l
D = arg my! zqwq

ZED

We define the policy such that d, = 0 when wwq = 0; note
also that d, = 0 when wq < 0. Hence, policy 7% satisfies the
service constraints: if z4 = 0 or zp(q) = lj(p) then wq 5 0
and then d, = 0 as expected.

975

2) Policy performance: We claim the main result about
74, whose proof is reported in Appendix 11.

7Reorera 3: Under admissible Bernoulli traffic. policy 7'2

is p-efficient when the buffer size l j of any internal queue
y traversed by Row 4, with h , hops, satisfies the following
relation:

recalling that p = llA(I - R)-lll? and 1 is the vector with
unitary elements.

A special case applies for networks with at most two hops,
like the switches built around buffered crossbars and discussed
in Section IV. We can claim the following:

Corollav 1: Under admissible Bernoulli traffic, for a net-
work with hj I 2 for all j, policy 7% achieves 100%
throughput, when p < 0.5 for any l j 2 1, being p the
maximum offered load for a single queue in the network.

The proof is reported in Appendix 111. From this corollary,
it results that any choice of 1, the network is 0.5-efficient,
under the condition that no packet routes are longer than two

3) Implementition issue: Policy F'? is an atomic policy
equivalent to F M S of (6), but with different weights assigned
to the internal queues. Indeed, F'z and PMS solve the same
optimization problem since they both share the same linear
structure of the cost function and the same space D of feasible
departure vectors.

Both policies require a continuous exchange of information
between neighbor servers, but in addition 'Pz requires locally
at each server the information about the length of the ingress
queue of the corresponding flows. Note that this length should
be propagated downstream from the ingress queue to all the
internal queues, along the flow path: this fact can be exploited
to ease the implementation.

In general, given the state of all the queues, F2 is executed
by a central scheduler, as also observed by (311. However,
in particular (but also interesting) cases, the policy can be
computed in a distributed fashion, locally on each set of queues
and servers which are coupled by the blocking constraints.
This fact is indeed exploited in the following section to
devise a computationally efficient scheduling policy for packet
switches.

hops.

Iv . APPLICATION TO PACKET SWITCHES BASED ON
BUFFERED CROSSBARS

Recently. switches built around crosspoint buffered cross-
bars have been shown to he very promising solutions for the
design of fast and scalable switching architectures. A basic
model for a switch with internal buffered crossbar is depicted
in Fig. 2. To avoid the negative effects of the head-of-the-
line blocking phenomenon, inputs cards adopts Virtual Output
Queue (VOQ) scheme, according to which packets are stored
at inputs in per-destination virtual queues.

Each crosspoint of the crossbar is provided with an internal
buffer of size L: internal buffers are in one-to-one corre-
spondence with input VOQs. We refer to this architecture as

OUT 1 OUT 2 OUT N

Fig. 2. The N x N ClCQ architecture with VOQ and buffered crosspoints

Combined Input and Crossbar Queued (CICQ) switch. A flow
control mechanism from each crosspoint to the corresponding
VOQ avoids to overflow the internal buffer.

Assume time to be slotted, and packets to be of fixed size.
With respect to pure input queued switches. the scheduling
policies in CICQ switches can be simpler. The scheduling
decision, indeed, can be taken in a local uncoordinated fashion
by an arbiter at each input, selecting a non-full internal buffer
to which transferring a packet, and by an arbiter at each
output. selecting an internal buffer from which transferring
a packet. We refer in the following to this class of schedulers
as "uncoordinated schedulers".

Uncoordinated schedulers can be efficiently distributed,
parallelized, and pipelined. Mainly for this reason, CICQ
switches are widely considered scalable and timely. Note
that, in uncoordinated schedulers, we admit that inputs and
outputs can exchange some information about the state of the
queues, but we assume the scheduling decision to be local.
Furthermore, uncoordinated schedulers cannot be implemented
in pure IQ switches, since coordination is required at inputs
to avoid multiple transmissions toward the same output.

Here, we restrict our discussion to uncoordinated sched-
ulers.

An overview of the evolution of CICQ switches has been
recently proposed in [351, but also 1281 provides a wide
introduction to CICQ switches. We refer to both cited papers
for the main algorithms proposed so far to control the CICQ
architecture, aimed at providing high throughput, or supporting
QoS or variable size packets 191. The two main families of
input arbiters and output arbiters proposed and studied SO far
have been the fallowing:

round-robin based: the queue is selected according to a
round robin (RR) mechanism [271, [281, [291, or to a
weighted round robin (WRR) IS], or to a weighted fair
queueing scheme (WFQ) [51;
queue-state based: the queue with largest length
(LQF) [SI, or the largest waiting time of the HoL cell
(OCF) [SI, [23], or the largestlshortest internai queue
length [ZZ], is selected.

Note that the input arbiters can select a VOQ queue among the

976

VOQs which ate not inhibited by the flow control mechanism.
Unfortunately, so f a general theoretical results have been

missing about the stability of CICQ for speedup SP < 2. Many
papers have addressed the case S p = 1 but proving stability
properties only under some ideal traffic scenarios, for example
when the arrival rates for each input output port are known
(e.g., in the case of uniform traffic). The simplest scheme
of CICQ is based on RR-RR (notation is:“input arbiter”-
“output arbiter”) [271 and L = 1; this scheme has been
proved to be stable only for uniform traffic, indeed it has
been shown 10 be unstable when the traffic is non-uniform ([SI
and [35]). For the KR-RR scheme it has been shown [28]
by simulation that small buffers (L = O (N)) cannot be
sufficient to provide 100% throughput, unless some moderate
speedup is introduced. When adopting LQF-RR and L = 1,
the CICQ has been proved to achieve the 100% throughput
just when input/outpul pair loading is 5 l/IV [8]. Many other
variants have been proposed (like in [5] . [221, [29], [35]),
achieving high throughput under non-uniform scenarios, but
their performance has been shown only by simulation.

How to dimension L has been discussed by many papers,
which have related L only to the round trip time delay dRTT
of the flow control mechanism from the internal crosspoint to
the input arbiters. In order to sustain a line rate T , L should
be set larger coarsely than the product dRTT x T .

For Sp = 2, perfect emulation of an output queued switch
(both FZFO and non-FIFO) [l8] can be performed. In other
words. S p = 2 is sufficient to achieve 100% throughput. work-
conservation and perfect delay control under any admissible
traffic. The requirement for L is minimal, since it is aimed
just at compensating for dRTT.

To our best knowledge, no theoretical results are known,
which prove that CICQs with 5 p < 2, exploiting uncoor-
dinated schedulers, can achieve 100% throughput under any
admissible traffic pattern.

Now observe that a CICQ switch can be modeled as a flow
controlled network. with one server for each input (corre-
sponding to the input arbiter) and with one server for each
output (corresponding to the output arbiter). The flow control
is from the internal buffers to the corresponding input arbiters.
Hence, we can particularize to this context the general results
obtained in the previous section. We restrict our investigation
to policy PZ which can be easily implemented in a CICQ as
an uncoordinated scheduler,

A. Scheduling algorithms for CICQ

Let xij be the length of VOQ from input i to output2 j.
Let bij be the length of the corresponding internal buffer;
0 I bij 5 L, and when bi3 = L the flow control mecha-
nism inhibits the services from the corresponding VOQ: we
assume that the Bow control is immediate. Departure vector
D comprises the services provided by the input arbiters and
the output arbiters: d; describes the departure hom the VOQ

*With abuse of notation. here j stands either for a Aow identifier or an
output.

corresponding to zig? whereas d$ describes the departure From
the internal buffer corresponding to bij. The set 23 of all
possible departing vectors is given by J1 D such that

j = 1 I= 1

which describe the blocking constraints of (4) in the context
of a ClCQ switch.

We particularize the policy ’P2 by showing that It can
be easily implemented in an uncoordinated fashion. Indeed.
revisiting [14), PZ selects the departing vector according to:

N2

h‘ N

Let MWF be the “maximum weight first” policy, which
serves the queue with the maximum srricrly positive weight.
D satisfying (15) can be obtained by:

maximizing, for each input i, the product d!- x q (L -
b i j) among all possible j ; this is MWF policy;
maximizing, for each output j, the product d$ x xijbij
among all possible i; this is again MWF policy.

As a consequence policy ’P2 operating a CICQs can be
redefined as DMWF (Dual Maximum Weight First) according
to the following algorithmic description:

at each time slot, associate to each VOQ a weight =

select at each input the non inhibited VOQ which maxi-
mizes wfj over all j = 1, . . . , N ;

4 at each time slot, associate to each internal buffer a weight

select at each output the non-empty internal buffer which

Thanks to corollary 1, DMWF is p-efficient if p < 0.5
for any L 2 1. Note that in the case L = 1, then DMWF
degenerates into LQF-LQF scheduler.

If we now apply Theorem 3, in a CICQ switch llnll = IV
since N are the queues conflicting in the same inpudoutput
arbiter. Hence, in general L should be set such that L >
Ar/(1 - p) / 2 . To summarize, we can claim the following:

Corollary 2: Under admissible admissible Bernoulli traffic,
in a CICQ switch policy DMWF is p-efficient for L 2 Lmin
with

?

~ i j (L - b i j) ;

= x. .b. : $3 a3 U ’

maximizes wg over all i = 1, . . . , hr.

if p < 0.5

where p is the maximum offered load to an input and output
port of the switch.

977

The result of corollary 2 can be restated also as follows: the
sustainable load is at least:

for 1 5 L 5 N

1-- for L > N
1L

or equivalently:
Corollui-\. 3: Under admissible admissible Bernoulli traffic.

the minimum speedup to guarantee 100% throughput in a
CICQ switch adopting DMWF policy, is

for l < L < N
s p = [for L > AT

2 L - N
This proves the existence of a tradeoff between throughput

(or speedup needed) and L under DMWF

V. CONCLUSIONS
We have considered a networklsystem of interacting queues

with internal queues of finite size. A flow control mechanism
from each queue prevents losses to occur.

We devised two stable policies, ’PI and 7‘2, the first
achieving 100% throughput and the second p-efficient, under
Bernoulli i.i.d. traffic. Policy PI requires to solve a quadratic-
form optimization problem on the state of workload given to
each queue. This policy can be very complex to implement,
but requires a minimal amount of one buffer location for each
queue. On the contrary, policy P2 is based on the solution of a
linear-form oplimization problem on the state of occupation of
the queues. This policy is very similar to the max-scalar policy
proposed in the past for interacting queues with infinite-size
buffer, and its computational complexity is lower than PI . But
the requirement on the amount of buffer is larger than Pz.

As example of application of our general theoretical results,
we have considered a N x N input queued switch built
around a buffered crossbar. In this case, P2 degenerates into
an uncoordinated scheduling policy, called DMWF, in which
each input and output arbiter can choose among N queues
on the basis of the highest weight assigned to each queue.
We have discussed the minimum buffer requirement for the
internal queues, and its tradeoff with the allowed speedup and
throughput in the crossbar.

REFERENCES

M. Ajmone Marsan, A. Bianco. P. Giaccone, E. Leonardi. E Ne-
n, “Packet-Mode Scheduling in Input-Queued Cell-Based Switch’,
IEEm4CM Trunsactionr on Networking, vol. 10, n. 5 . Oct. 2002,
pp. 666-678
M. Ajmone Marsan, P. Giaccone. E. Leonardi. F. Nen, “On the stability
of local scheduling policies in networks of packet switches with input
queues“, lEEE Journal on Selected Areas in Communications, vol. 21,
n. 4, May 2003. pp. 642-655
M. Andrews. L. Zhang, “Achieving Stability in Networks of Input-
Queued Switches”. IEEE INFOCOM ,7001, Anchorage. Alaska. USA,
Apr. 7001. pp. 1673-1679
N.J. Boden et a!.. “Myrinet: a gigabit-per-second local area network”,
IEEE Micra. vol. 15, n. I . Feb. 1995. pp. 29-36
N. Chrysos, M. Katevenis. “Weighted Fairness in Buffered Crossbar
Scheduling”. IEEE HPSR 2003, Torino. Italy. June 2003. pp. 17-21
J.G. Dai, B. ptabhakar, “The throughput of data switches with and
without speedup”, IEEE IhiFOCQM 2o00, Tei Aviv. Israel, Mar. 2000.
pp, 556-564

J. Duato. “A necessary and sufficient condition for deadlock-free adap-
live routing in wormhole networks”, IEEE Tram on Parallel and
DLFrribufed Systems. vol. 6. n. 10. Oct. 1995. pp. 1055-1067
T. lavadi. R. Masill. T. Hrabik. “A high throughput scheduling algorithm
for a buffered crossbar switch fabric”. IEEE ICC 2001. June 2001,
pp. 1581-1591
M. Katevenis. G. Passas. .D. Simos. 1. Papaefstathiou. N. Chrysos.
“Variable Packet Size Buffired Crossbar CCICQ, Switches”. IEEE ICC
2004. Paris. France, June 200-1
P. Kermani. L. Kleinrcck.‘ “Virtual Cut-through: A New Computer
Communication Switchng Technique”. Computer Networks. vol. 3, n. 3,
Sep. 1979. pp. 267-286
P.R. Kumar, S.P. Meyn. “Stability of Queueing Networks and Scheduling
Policies”, lEEE Trmrs. on Auronratic Conrrd. vol. 40. n. 2. Feb. 1995.
pp. 251-260
H.T. Kung. K. Chang “Receiver-oriented adaptive buffer allocation in
credit-based flow control for ATM networks” IEEE INFOCOM ’95,
Boston, MA, USA. Apr. 1995. pp. 239.252
ET. Leighton, Introduction to Puruliel Algor i thm and Archirecritres:
Arrays, Trees and Hpercubes. Morgan Kaufmann. 1991
E. Leonardi, M. Mellia. E Neri, M. Ajmone Marsan. “On the Stability
of Input-Queued Switches with Speedup”. IEEE/ACM Trms. on Net-
working, vol. 9. n. 1. Feb. 2001, pp, 104-118
E. Leonardi, M. Mellia. M. Ajmone Marsan. E Neri. “On the Through-
put Achievable by Isolated and Interconnected Input-Queueing Switches
under Multiclass Traffic”, IEEE INFOCOM ,7002. New York, NY. USA,
June 2002
E. Leonardi. M. Mellia. F. Neri. M. Ajmone Marsan. “Bounds on
Average Delays and Queue Length Averages and Variances in input
Queued and Combined InpuUOutput Queued Cell-Based Swi tchzs”.
Jounral Of the ACM. vol. 50. n. 4, July 2003
X. Lin. P.K. McKinley. L.M. Ni, “The message flow model for routing
in wormhole-routed networks”, IEEE Trans. on Parallel and DLrtnbured
Systems, vol. 6, n. 7, July 1995. pp. 755-760
R.B. Magill, C.E. Rohrs, R.L. Stevenson. “Output queued switch emu-
lation by fabncs with limited memory”. IEEE JoumaI on Selected Area
in Communicarim. vol. 11. n. 4. May 2003
S. Mascolo, D. Cavendish. M. Gerla, “ATM rate based congestion
control using a Smith predictor: an EPRCA implementation”, IEEE
INFOCOM ’96, San Francisco, CA. USA, Mar. 1996. pp. 569-576
N. McKeown, A. Mekkittikul. V. Anantharam. J. Walrand, “Achieving
100% throughput in an input-queued switch”, IEEE Trans. on Cummu-
nications. vol. 47. n. 8. Aug. 1999, pp. 1260-1272
S.P. Meyn. R. Tweedie, Murkm Chin andSrochric SfabiIiO, Spnnger-
Verlag. 1993
L. Mhamdi. M. Handi, “MCBF a high-performance scheduling algc-
rithm for buffered crossbar switches”, IEEE Commtications Letters,
vel- 7, n. 9, Sept. 2003, pp. 451-453
M. Nabeshima, “Performance evaluation of a combinzd input and
crosspoint queued switch”. IElCE Trrms. CO”, vol. E83-B, n. 3,
Mar. 2000
M.J. Neelp E. Modiano, C.E. Rohrs, “Dynamic power allocation and
routing for time varying wireless networks”, IEEE INFOCOM 2003,
vol. 1. Mar. 2003, pp. 745-755
M.L. Neely. E. M d a n o . C.E. Rohrs “Power Allqcation and Routing in
Multibeam Satellites with Time-Varying Channels”, IEEEACM Trans.
on Neworking. vol. 11, n. 1, Feb. 2003, pp. 138-152
L.M. Ni, P.K. McKinley, “A survey of wormhole routing techniques in
direct networks“ IEEE Computer, vol. 26, n. 2, Feb. 1993, pp. 62-76
R. Rojas Cessa, E. Oki. 2. Jing, H.J. Chao, “CIXB-I: combined input-
one-cell-crasspoint buffered switch”, IEEE HPSR 2001, Dallas. USA,

R. Rojas Cessa, E. ,Oh, H.J. Chao, “CKOB-k: combined input-
crosspoint-output buffered packet switch”, IEEE GLOEECOM 2001,
Nov. 2001, pp. 2654-60
R. Rojas-Cessq E. Ob, “Round robin selection with adaptable size
frame in a combined input-crosspoint buffered switch’, IEEE Cammu-
n i t d o n s Letren. vol. 7, n. 11. Nov. 2003
K. Ross. N. Bambos, “Local Search Scheduling Algorithms for Maximal
Throughput in Packet Switches”, IEEE INFOCOM 2004, Mar. 2004
L. Tassiulas, A. Ephremides, “Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multi-
hop radio networks”. IEEE Trans. on Aufamntic Control, vol. 37. n. 12,
Dec. 1991, pp. 19361948

,

pp. 324-329

978

(321 L. Tassiulas, “Scheduling and performance limits of network with con-
stantly changing topologf’. lEEE Trarzsacri#is on hlfamrion Theay,
vol. 43, n. 3, May 1997. pp. 1067-1073

[33] L. Tassiulas, “Linear complexity algorithm for maximum throughput
in radio networks and input queued switches“. IEEE INFOCOM 1998.
San Francisco. CA, USA. Apr. 1998

[34] R. Telikepalli. T. Drwiega. J. Yam “Storage area network extension
solutions and their performance assessment”. IEEE Communicafiom ,
M u g a i m . vol. 42. n. 4. April 2004. pp. 56-63

[35J K. Yoshigoz, K.J. Chnstensen. “An evolution to crossbar switches
with virtual output queueing and buffered crosspoint“. IEEE Network.
Sept. 2003. pp. 48-56

APPENDIX I
PROOF OF THEOREM 2

Proof Consider the following Lyapunov? function:
C(Y(n.)) = E’(n.)M(n)Y’(n). If A.C(n) = E [L (Y (n + 1)) -
L (Y (n)) I Y (n)] , the stability criteria of (8) becomes:

q € * I

which is o(llYII). Because of the two negligible terms, (19)
becomes equal to f? (S) . Now (18) becomes:

A L M 2AMYT - 3fi(5’) + f z (S) (20)

If we now define r : A(I-R)-’, then AMYT can be written
as f l(r) . Since A is admissible it results: llrll = p < 1; we
can now define such that r = pf’: 11f11 = 1 and r E V.
Since jl is linear function, then jl(q = j i (p f) = pj1(1?).
NOW apf?(r) = 2p-1f2(r) = 2 p - 1 ~ ~ ~ T is ~(lll~l]) and
can be substracted from (20):

AL FS 2fi(r) - f(S) = 3pfi(F) - f(S) z

%fl (f) - ZPf2(f.) - f(S) = P f (n - f (S)

(16) Now, considering the definition of policy P I , f(S) 2 !(e)
and we can say:

AL(n) =

E [2!A(n) - S(n,)(I - R)] M (T z) Y ~ (~)] +
E [A (n ,) - S(n)(I - R)JM(n)

[A(n) - S(n)(I - R)jT] =

2E [[A - S(n)(I - R)jM(n)YT(nj] +
E[A(n) - S(n)(I - R)]M(n)[A(n) - S(n)(I - R)IT (18)

From now on? for the sake of readability, we will omit the
. variable n from our notations, when not necessary, Now

consider the second term in second adder in (18):

E [A - S(I - R)JM(A - S(I - R)]’] =

E[AMAT - 2AM[S(I - R)IT +
[

S(I - R)M[S(I - R)]’] (19)

Since AM = A: the first and second terms in (19) are
negligible with respect to IIY/J -, 00. Indeed:

hM[S[I - R)IT = A[S(I - R)IT = S(I - RIAT

and

k o t e that L(Y(n)) 2 0 and f (Y0) = 0 if 15 i s the null vector,

and this implies that, for any l j 2 I,

APPENDIX I1
PROOF OF THEOREM 3

Proof; Consider again the Lyapunov function: L (S) =
XMST. Eq. (18) still holds:

AL = .[A - D(I - R)]MXT +
E [A - D(I - R)]M[A - D(I - R)IT (22)

Now consider the specific policy F’z running. D(n) is
selected, according to (14). on the set of all possible service
vectors Z such that llZll 5 1. If we choose 2 as: Z =
A(I - R)-’ i- (1 - p)V with any U such that llUll = 1,
then llZll 1. 1, since: llZll = IIA(I - R)-l t (1 - p)Oll 5
I IA(I -R) -~II+I t~ l -~)~II = p + (l - p) = 1.N0w:

D(I - R) M A - ~ 2
[R(I - R)-l -t (1 - p)U](I - R)MXT =

A M X T + (1 - p) U (l - R)MX“ (23)

979

Thanks to (23), we can bound the first adder in (22): which, substituting D to U: becomes:

[A - D(I - R)]MXT 5 AMXT - J
AL 5 --3(1 - p) 'j.l [d j , l (E3 - xj.2) +

j -1 b A M S ~ - (1 - p) u (~ - R) M X ~ =

- (1 - p)UI.IIT (24) J

The second term in (22) can be treated as the second term in
(18). If we now evaluate (22). by combining (24) and (11) , j = 1

J
Now let V = Ii/llIIl\ E 'D; it results: XJ 1 D = argmax - p,,1 (lJ - q , 2) + 4 , 2 3 2 1 Q D E D ~ = ~ l j

2 "Ih)
"(')

1
I -2(1-P)-&+ (dq - & (q)) - A sufficient condition which ensures for any the Lyapunov

function drift to be nenative, is: 11111 q = l q f @ M

Indeed, djyj:l = 1 only when l j - 2 3 , ~ 2 1 and dj,2 = 1 only
(26) when " c j ! 2 2 1. 1 J

where we exploited the fact that, for any j . thanks to the
telescopic sum:

(5 h - %+1) + S h j] = "j,l

h=2

h . Furthermore, E,L2(d j ,h - d j , h - ~) ~ 5 hj - 1.

punov function drift negative is:
As a consequence, a sufficient condition to make the Lya-

2(1-p) hj - 1

llIll 4 > O

which implies:

APPENDIX I11
PROOF OF COROLLARY 1

Proof: In this case from:

980

