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A ~ S ~ ~ U C Z -  The advent of packet networks has motivated many 
researchers to study the performance of networks of queues 
in the last decade or two. However, most of the previous 
work assumes the availability of infinite queue-size. Instead, 
in this paper, we study the maximal achievable throughput 
in a flow-controlled lossless network with finite-queue size, In 
such networks, throughput depends on the packet scheduling 
policy utilized. As the main of this paper, we obtain a dynamic 
scheduling policy that achieves the maximal throughput (equal 
to the maximal throughput in the presence of infinite queue- 
size) with a minimal finite queue-size at the internal nodes of 
the network. Though the performance of the policy is ideal, it is 
quite complex and hence difficult to implement. This leads us to 
a design of simpler and possibly implementable policy. We obtain 
a natural trade-off between throughput and queue-size for this 
policy. 

We apply our results to the packet switches with buffered 
crossbar architecture. We propose a simple, implementable, 
distributed scheduling policy which provides high throughput in 
the presence of minimal internal buffer. We also obtain a natural 
trade-off between throughput, internal speedup and buffer-size 
providing a switch designer with a gamut of designs. 

To the hest of authors’ knowledge, this is one of the first 
attempts to study the throughput for general networks with finite 
queue-size. We believe that our methods are  general and can be 
useful in other contexts. 

I. ~NTRODUCTION 

Flow-controlled lossless network architectures (like ATM 
networks 1121, 1191 or wormhole routed networks [4], [17], 
[26] )  have failed in the context of Internet. However, such 
network architectures are still widely prevalent in several other 
contexts such as storage area networks [341, interconnection 
networks for parallel computing [13J, etc. In this paper, we 
study the throughput performance of such flow-controlled 
lossless networks. 

The seminal work of Tassiulas and Ephremides [31] pio- 
neered the research for studying the maximal throughput of 
controlled networks (also called constrained queueing systems 
in [31J) with infinite queue-size. For example, the methods 
of [31] have been utilized in the context of switching [l], 
[61, [151, [ZOI, [331, satellite and wireless networks [24]. [25], 
etc. Although these results are quite general, they assume 
the availability of infinite queue-size at all the nodes of the 
network. In actual applications, queue-sizes are aIways finite. 
This is a major limitation of the results of [31] as well as 
results known in the network theory in general. 

CSEE Department 
Stanford University. USA 

In this paper, motivated to analyze performance of networks 
in the absence of the assumption of infinite queue-size. we 
study the maximal achievable throughput in flow-controlled 
lossless networks with finite queue-sizes at the internal nodes 
of the network. Only the ingress nodes have infinite-size 
queues fo allow us to define the achievable throughput. Our 
work can be seen as an extension of the results of [31] in the 
sense that it gets rid of the assumption of infinite queue-size 
inside the network. 

As an application of our results, we evaluate the maximal 
achievable throughput in the packet switch architecture built 
around a crossbar with buffered crosspoints. Such packet 
switches have been of a huge recent interest due to the 
recent advances in  the technology 1351, We propose a novel 
distributed scheduling policy, called DMWF, which is shown 
to be stable under admissible i.i.d. Bernoulli traffic i f  ei- 
ther enough internal buffer is present and/or enough internal 
speedup is available at the crossbar. In particular, we evaluate 
the natural tradeoff between throughput, speedup and buffer- 
size, 

We would like to note that though the contribution of this 
paper is mainly theoretical, we believe that the results obtained 
in this paper will be useful in the design of network, in sizing 
buffers and in the design of scheduling policies. 

A. Organization 

In Section 11, we introduce the notation and the main 
assumptions of the paper. Then, we present the known results 
about the maximal throughput for the network of infinite 
queue-size in Section 11-B. In Section III, we present our 
main results, Finally, in Section IV, we introduce the buffered 
crossbar switch architecture and apply our results to obtain 
distributed scheduling policy for buffered crossbar. The proofs 
of the theorems are presented in the appendix of the paper. 

11. SYSTEM MODEL A N D  NOTATION 

We consider a network of discrete-time physical queues (or 
stations), handling J customer flows. Customers belonging to 
flow j ,  1 5 j 5 J ,  enter the network at a station, receive 
service at each station along an acyclic path and leave the 
network. The number of stations (hops) traversed by customers 
of flow j is h.j. We assume that the routing of each flow is 
deterministic. Figure 1 depicts an example of such network. 
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Fig. 1. Example of flow controlled network with 5 servcrs and 6 flows 

Customers belonging to the same flow. and stored at the 
same physical queue, form a virtual queue. The number of 
virtual queues in a network is denoted by Q. We denote wilh 
uq the q-th virtual queue in the network. Let q ( j ,  h) ,  with 
h = 1: . . . ~ hj. be the index of the queue traversed by flow 
j at the h-th hop. Virtual queue vq(j:l) is also called “ingress 
queue” for flow j. The set of all the flow ingress virtual queues 
{ v q ( j , l ) ?  1 5 j 5 J} is denoted with +I$ whose cardinality is 
J since each ingress queue is associated with a flow. The set 
of all the remaining virtual queues, called “internal queues”, 
is denoted with $.hi. Note that includes also “egress 
queues”, i.e. queues traversed by customers just before leaving 
the network. We now introduce some mapping functions. f ( q )  
maps queue index q to the index of its corresponding ingress 
queue (first queue): f ( q ( j ,  h ) )  = q ( j :  1); noie that f(q) = q if 
q E 4’1. Function u(q) returns the index of the queue upstream 
to queue q, and it is defined for a11 the queues except for 
the ingress queues: u(q( j?  h,)) = q ( j , h  - 11, 2 5 h 5 hi.  
Function p ( q )  returns the index of queue downstream to queue 
eUg and it is defined for every queue except the egress queues: 
p ( q ( j ,  k ) )  = q( j :  h + l ) ,  1 5 h 5 hj -  1. Function j ( q )  returns 
the index of the flow traversing queue w q .  

Servers are associated with physical queues. A server pro- 
vides service to customers queued at the logical queues (virtual 
queues) located at its physical queue according to a service 
policy. Packets are assumed of fixed length normalized to a 
time slot. All the servers in the network are synchronized. 
They start service at the beginning of a time slot. 

All vectors are, by default, row vectors. Let X ( n )  = 
[ ~ ~ ( n . ) ] : ! ~  = [ z l (n )  sa(n). . . z ~ ( n ) ] ,  be the vector whose 
q-th component zp(n) represents the number of customers 
present in w, (Le.? its queue length1) at the beginning of time n, 
with 31 E N+. For the sake of easier notation, let q > k ( n . )  equal 
to z q ( j , h j ( n ) .  We suppose the size of all the ingress virtual 
queues (belonging to !PI) to be infinite, whereas we assume 
all the other virtual queues along the flow paths (belonging to 
@ M )  to be of Bnire size. AI1 the virtual queues traversed by 
flow j can store up to Zj customers. A flow control mechanism 
inhibits the transmission of packets toward queues which are 
full, thus preventing buffer overflows. 

The evolution of the number of customers at vp is described 

‘Note that “length” denotes (he time-variable queue-occupancy. whereas 
“size” denotes the fixed maximum allowed queue-occupancy. 

by .,(a + 1)  = zg(iz) + e,(.) - dq(,u), where e,(n) repre- 
sents the number of customers that entered vq (and thus its 
corresponding physical queue) in time interval (n.: n.+ I ] ,  and 
d q ( n )  represents the number of customers departed from 
in time interval (71:n + 11. E ( n )  = [eq(n)]:=l is the vector 

is 
the vector of departures from virtual queues; let dj, ,>(n.)  be 
defined equal to dq(j ,h)  (77,). Given the network stare, A’( v), 
the following service constraints on D ( n )  express h e  fact that 
no services can be provided to empty queues and no queue 
overflows are allowed (thanks to the flow control mechanism): 

of entrances in virtual queues, and D ( n )  = [dq( i i ) ]q , l  Q 

D ( n )  5 S ( n )  and D(n)R 5 L -X(n.) (1) 

being L = [lq]$l the vector with all the queue sizes 
(assuming 1, = CO for q E $1). This is equivalent to say: 
if queue q is empty ( z , (n)  = 0) or the downstream queue to 
q is full ( ~ ~ ( ~ ) ( n )  = li(q)), then no service can be provided 
to queue q ( d q ( n )  = 0). 

With this notation, the system evolution equation can be 
written as: 

(2) 
The entrance vector E(n)  is sum of two terms: vector 

A(n)  = [a,(7~)]7=~, representing the customers arrived at the 
system from outside the network of queues (we also call them 
external arrivals), and vector of recirculating customers, who 
are advancing along their paths inside the network, in  time 
interval (n, n -t 11. 

Since we assume deterministic routing, let the Q x Q matrix 
R be the roufing matrix, with binary elements RqIg2 = 1 iff 
p ( q l )  = qz and Rqlg2 = 0 otherwise. The evolution of virtual 
queues can be rewritten as: 

X ( n  + 1) = X ( n )  + E(n)  - D(n.) 

X ( T I  + 1) = X(n) + A(TI)  - D(n)(I - R) (3) 
where I denotes the identity matrix. 

We suppose that the external arrival process {A(n.) : n E 
N+} is a stationary memoryless process, i.e. A ( n )  are i i d .  
random vectors with average G ( A ( n ) )  = A = Note 
that, since external arrivals are directed only to ingress queues, 
A, = O  if q E  GM. 

At time slot n the scheduling policy selects the service vec- 
tor S’(n), whose element sq (n)  represents the amount of work 
provided to up during time slot n; let s j , h ( n )  = q j , h ) ( n ) .  

The departure vector D ( n )  is related to S(n)  according to the 
following equation: 

In other words, the number of packets served from a queue 
is given by the amount (approximated to the integer part) 
of cumulative service provided to the queue. We define the 
difference between the two quantilies by: 

n n 

A(n.)  = Sj t )  - E D ( t )  
~ 

t=O t= 0 
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whose q-th element d,(n) E [O: 1) represents the amount of 
work provided by the scheduling policy to the head-of-the- 
line packets of cq at the end of time slot n. In this paper we 
restrict our investigation to the class of dynamic scheduling 
policies, i.e. those scheduling policies which select S(n)  on 
the only basis of the instantanous network state information 
without requiring any knowledge on the uaffic pattern. 

In general we assume that the set of possible service 
vectors S(n)  is constrained by a system of linear equations 
representing the topological interference among services at 
virtual queues (blocking canstrainrs): 

S(n)K 5 T (4) 

Matrix K and vector T describe the blocking constraints in 
the services, For example, simple topological constraints are 
those expressing the fact that the sum of services provided in 
each time slot to all the virtual queues residing at the same 
physical queue is limited by the server capacity. However we 
do not exclude additional constraints which relate $e behavior 
of virtual queues residing at different stations. Let D the set of 
non-negative S(n)  which satisfy the blocking constraints. We 
notice that 5 defines-a polyhedral convex region. Let D the 
set of a11 vertices of V. For simplicity of notation, we assume 
that vectors in D are integer valued. In order to avoid trivial 
cases, we assume that all vectors ylq), with 1 5 q 5 Q, whose 
elezents are all null except the q-th. whichfs unitary. belongs 
to V, i.e, y(p) = [O ,O,O,  . . .  1: O , O ?  0] E 23; in other words, 
every virtual queue in the network can potentially get service 
without vioIating the topological constraints. We remind that 
S(n )  must be chosen in such a way that the service constraints 
defined for B(n) in ( I )  a e  not violated. 

If the scheduling policy is atoneic, i.e. packets are uansmit- 
ted by servers in an ‘atomic’ fashion, without interleaving their 
transmission with packets residing in other virtual queues, then 
S(n )  is integer valued, and D ( n )  = S(n )  for any n. In this 
case, S ( n )  is a DTMC (Discrete %me Markov Chain). In the 
more general case, (X(n ) ,A (n ) )  is a discrete time Markov 
process defined on a general state space [211. In the latter case, 
let us define the workload vector: 

Y(n)  X(n) - A(n)(I - R) 

We notice that ( X ( n ) ) A ( n ) )  + Y(n)  is a one to one 
correspondence. Furthermore, it is easy to verify that Y(n)  
satisfies the following system evolution equation, derived by 

( 5 )  

Note that is the scheduling policy is  atomic, then X(n, )  = 
Y ( n )  for any n and (5 )  coincides with (3). 

Finally, let us introduce the following useful positive convex 
functional: 

Dejnition I :  Given a vector Z E 1Ry; 2 = (z( l i ) ,  1 5 
I; 5 Q), the positive convex functional )I211 is defined as: 

( 3 ) :  
Y ( n  + 1) == Y(,) + A(n)  - S(n)(I - R) 

We notice that in the remainder of this paper we will 
refer to it with the improper term of “norm”; furthermore, 
the previous functional is coincident with- the well-known 
Minkowski convex functional associated to Z?. Under the IlZil 
definition immediately follows that, for any S(n.) E 3, then 
IIS(n)il 5 1. I f  the policy is atomic, it chooses S(n)  = 
D ( n )  E 21. To better understand the meaning of such norm? we 
evaluate flow 11II[l? where 1 is the vector with unitary elements, 
in a simple case. Consider a set of independent servers, each 
of them able to provide one unit of service per time slot, i.e. 
T(q), 1 5 q 5 Q, is vertex of 5. ~f at most i virtual queues 
are located at each server, then IlIIll = i. Indeed, the service 
vector S = II/i belongs to the boundary of 6. 
A. Traffic and System Stability Definitions 

Defnirion 2: A stationary uaffic pattern is admissible if 

Let p = IlA(1 - R)-’Il. For the simplest case in which 
virtual queues residing at different servers are not topologically 
interacting. traffic is admissible iff no servers are overloaded; 
in addition, p represents the load of the heaviest loaded server 
in the network. 

llA(I - R)-’11 < 1. 

Defnirion 3; The system of queues is sruble if: 

l imsupE(IIX(n)ll)  < cc 

or equivalently: 
limsupE(lll’(n)ll) < 00 

n-o3 

n-OO 

i.e., the system is positive recurrent. 
Note that the admissibility of traffic pattern is a necessary 

condition for the system of queue to be stable as shown in 1311. 
We say that the system is stable at point A if it is stable 

under every stationary memoryless external arrival processes 
A(n) with average A.  

Definition 4: We define as stability region the set of points 
A in correspondence of which the system of queues is stable. 

Definition 5: We say thar a system of queues is 1-efficient 
(or equivalently achieves 100% throughput), if it is stable 
under any admissible traffic pattern. 

Definition 5: For any 0 < p < 1, we say that the system 
of queues is p-efficient if it is  stable under any traffic pattern 
such that llA(I - R)-’Il 5 p .  

B. Previous work 
The problem of the definition of the stability region in com- 

plex systems of interacting queues under dynamic scheduling 
policies, has attracted significant attention in the last decade 
from the research community since the pioneering work [31]. 

In 13 11, applying the Lyapunov function methodology, it 
has been shown that a system of interacting queues whose 
size is infinite achieve 100% throughput, i f  atomic max-scalar 
scheduling policy P,WS is applied at each node of the network. 
According to T‘M~,  at each time slot n the departure vector 
is selected as follows: 

D ( n )  = S(n) = argmaxZ(1- R ) X ( T L ) ~  (6 )  
ZED 
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The result in [31] has been generalized and adapted to different 
application contexts in the last years. As matter of example 
we just briefly recall some of the related works. 

In the switching context, several studies have been aimed 
at the definition of the stability region in Input-Queued (IQ) 
swilching architectures built around a bufferless crossbar: 
papers [l], [15]. 1201, [30], [33] have proposed different 
extensions of PAfS, which have been shown to be 1-efficient; 
stability properties for simpler scheduling policies have been 
also studied in [65, [14]; in [2], [3], [ 151, finally, the problem of 
h e  definition of the stability region in networks o f  IQ switches 
has been considered. 

In the context of the satellite and wireless networks, gener- 
alizations of PAIS have been recently proposed and shown to 
be 1-efficient in 1241. 1251, [321. 

All the previous works, however, have considered system 
of infinite-size queues. In this paper, for the first time, to the 
best of our knowledge? we extend the investigation about the 
stability region in systems and networks of queues of finite size 
subject to some form of flow control which prevents packet 
losses. 

C. Stability criteria 
The stochastic Lyapunov function is a powerful tool to prove 

stability (i.e., positive recurrency) of Markovian systems. In 
this subsection we briefly report one of the main results related 
to the Lyapunov function methodology, which will be used in 
the remainder of this paper: we refer the interested reader 
to [111, and [21], [25] for more details on the extension to 
general state space Markovian processes. 

7Beoreni I: Let Z ( n )  be an irreducible Q-dimensional 
Markov chain (or, general space Markov process), whose 
elements .zl(n)> 1 = 1 , 2 , .  . . , Q are non-negative, i.e., Z ( n )  E 
IN? (or, ~ ( n )  E w:). I€ bere  exists a non-negative valued 
function (C : lRy 4 R+} such that: 

E[L(Z(n. + 1)) - L ( Z ( n ) )  I Z(n)] < 00 (7) 

and 

for some E > 0, then Z ( n )  is positive recurrent, and 

limsupE[IIZ(n)ll] < 03 

Inequality (7) requires that the increments of the Lyapunov 
function L ( 2 )  are finite on average. The second inequality (8) 
requires that, for large values of llZll, the average increment in 
the Lyapunov hnction from time n to time n + 1 is negative. 
The intuition behind this result is that the system must be 
such that a negative feedback exists, which is able to pull the 
system toward the empty state, thus making it ergodic. For 
these reasons. inequality (8) is often referred as the Lyapunov 
function drift condition. 

In our case, Z ( n )  represents the number of packets in 
the network of queue X ( n )  or the workload Y(n) ,  whose 
evolution is given by (3) or (5). It is immediate to verify that 

n-ux 

constraint (7) can he always met when all the moments of 
A ( n )  are finite; in particular, restricting to quadratic Lyapunov 
functions, it is sufficient that the second momeni of A ( n )  is 
finite. 

111. PERFORMANCE OF NETWORK OF FINITE QUEUES 

Here we present our main results. In Section 111-A we show 
that 100% throughput can be obtained in any network of finite, 
flow controlled interacting queues, for I j  2 1. To this end, we 
define the optimal dynamic scheduling policy Pl. Since policy 
Pl (i) is not atomic. i.e. servers provide fractional services to 
packets stored at head of the virtual queues. (ii) requires the 
servers to coordinate their decisions al each time slot, then 
its implementability results problematic in several application 
con texts. 

In Section III-B we propose the atomic dynamic scheduling 
policy F2 whose complexity is similar to 'P,I~.s defined for 
infinite queue networks. 74: similarly to Pbfs: requires a 
continuous exchange of state information among network 
servers, but i t  can allow servers to take local decisions in 
an uncoordinated fashion, when considering simple network 
configurations. thus resulting significantly less complex than 
PI. We show that P2 is p-efficient when enough buffer inside 
the network is provided, thus estimating the trade-off between 
network buffers and achievable throughput. 

A. Optimal policy 

Ply in vectorial format: 
I )  Policy definition: Consider the following policy, called 

(9) 

where M(n) is a Q x Q matrix, non-null only on its diagonal 
where, for q = 1:. . . I Q :  

We now express the policy in scalar format (for the sake 
of easier notation, we omit (n )  when not necessary). Observe 
that: 

and multiplying by M: 
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queue. the first adder in (9) becomes: 

fl(s) = S(I - R)MP = 

whereas the second adder in ( g ) :  

f?(S) = S(1- R)M[S(I - R)IT = 

J J 

I I hi-1 

h j - 1  

2 S j . h S j , h + l )  (11) 
h = l  

By combining (10) and (1 I), policy Pl becomes: 

s = argn1aX f ( 2 )  
ZED 

with f ( 2 )  = Zfi(Z) - f*(Z). 
Observe that according to policy PI, by construction, ser- 

vice is never provided to empty virtual queues, thus satisfying 
one of the service constraints. This can be easily seen by 
observing that PI can be equivalently defined as: 

{ S( n) = arg min 
ZED 

[Ir(n) - Z(n)(I  - R)]M(n)[I'(n.) - Z ( n ) ( I  - R)IT} 

and observing that the minimum is always achieved when all 
the elements of [Y(n> - Z(n)(T - R)] are non negative. 

The second service constraint, which avoids buffer over- 
flows, is not always precisely met by ?I, However it is easy 
to realize that according to ?I, Y ( n )  5 L + d, for all a, 
being c the maximum amount of service that any server in the 
network can provide in a time slot. As a conclusion, to avoid 
buffer overflow is sufficient to provide any virtual queue with 
an extra amount of memory (called slack-buffer) equal to c. 

2 )  Policy performance: Now we state our main theorem, 
whose proof is reported in Appendix I. 

71zeorem 2: Under admissible Bernoulli traffic, policy PI 
achieves 100% throughput when the buffer size l j  (not count- 
ing the slack buffer) of any internal queue q traversed by flow 
j satisfies the following relation: 

l j  2 1 f o r j = 2 :  . . .  , J  
3) Implementation issue: Since is not atomic, it selects 

the best service vector S in the set D and this does not guar- 
antee that S is a integer departure vector; in simpler words, 
sq E [O: I] .  As a consequence, the direct implementation of 
policy Pl requires servers to provide fractional services to 
packets stored at head of the virtual queues according to a 
weighted processor sharing policy. 

Moreover, according to policy P I ,  packets are transferred 
through queues in a "cut-through" fashion, since servers may 
start the transmission of non completely received packets. We 
notice that non-atomic scheduling policies exploiting "cut- 
through" switching have been proposed and implemented in 
the contexts of wormhole networks [71, [lo], [26]. 

At last, PI must be implemented in  a centralized fashion by 
a scheduler which has the complete view of the queues state 
of the network. The high implementation complexity of this 
policy has motivated our investigation on the performance of 
the following policy. 

B. Low complexity policy 

I )  Policy definition: Consider the following policy, called 
732 

In other words, policy Pz maximizes the scalar product of the 
service vector 2 and the weight vector W = (I - R)MYT. 
Due to the linearity of the scalar product, F'z guarantees the 
vector 5' to be a vertex of 5, i.e. S(n) E D. Hence, 732 is an 
atomic poiicy and X ( n , )  = Y(n) .  Formally, we can say that 
Fz can be expressed as: . .  

D = arg max Z(I - R)MXT 
ZED 

Following the same reasoning to obtain (lo), a generic 
queue q is associated with the following weight wq: 

then policy can be rewritten as: 
Q 

q=l  
D = arg my! zqwq 

ZED 

We define the policy such that d, = 0 when wwq = 0; note 
also that d, = 0 when wq < 0. Hence, policy 7% satisfies the 
service constraints: if z4 = 0 or zp(q) = lj(p) then wq 5 0 
and then d, = 0 as expected. 
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2) Policy performance: We claim the main result about 
74, whose proof is reported in Appendix 11. 

7Reorera 3: Under admissible Bernoulli traffic. policy 7'2 

is p-efficient when the buffer size l j  of any internal queue 
y traversed by Row 4, with h ,  hops, satisfies the following 
relation: 

recalling that p = llA(I - R)-lll? and 1 is the vector with 
unitary elements. 

A special case applies for networks with at most two hops, 
like the switches built around buffered crossbars and discussed 
in Section IV. We can claim the following: 

Corollav 1: Under admissible Bernoulli traffic, for a net- 
work with hj I 2 for all j, policy 7% achieves 100% 
throughput, when p < 0.5 for any l j  2 1, being p the 
maximum offered load for a single queue in the network. 

The proof is reported in Appendix 111. From this corollary, 
it results that any choice of 1, the network is 0.5-efficient, 
under the condition that no packet routes are longer than two 

3) Implementition issue: Policy F'? is an atomic policy 
equivalent to F M S  of (6), but with different weights assigned 
to the internal queues. Indeed, F'z and PMS solve the same 
optimization problem since they both share the same linear 
structure of the cost function and the same space D of feasible 
departure vectors. 

Both policies require a continuous exchange of information 
between neighbor servers, but in addition 'Pz requires locally 
at each server the information about the length of the ingress 
queue of the corresponding flows. Note that this length should 
be propagated downstream from the ingress queue to all the 
internal queues, along the flow path: this fact can be exploited 
to ease the implementation. 

In general, given the state of all the queues, F2 is executed 
by a central scheduler, as also observed by (311. However, 
in particular (but also interesting) cases, the policy can be 
computed in a distributed fashion, locally on each set of queues 
and servers which are coupled by the blocking constraints. 
This fact is indeed exploited in the following section to 
devise a computationally efficient scheduling policy for packet 
switches. 

hops. 

Iv .  APPLICATION TO PACKET SWITCHES BASED ON 
BUFFERED CROSSBARS 

Recently. switches built around crosspoint buffered cross- 
bars have been shown to he very promising solutions for the 
design of fast and scalable switching architectures. A basic 
model for a switch with internal buffered crossbar is depicted 
in Fig. 2. To avoid the negative effects of the head-of-the- 
line blocking phenomenon, inputs cards adopts Virtual Output 
Queue (VOQ) scheme, according to which packets are stored 
at inputs in per-destination virtual queues. 

Each crosspoint of the crossbar is provided with an internal 
buffer of size L: internal buffers are in one-to-one corre- 
spondence with input VOQs. We refer to this architecture as 

OUT 1 OUT 2 OUT N 

Fig. 2. The N x N ClCQ architecture with VOQ and buffered crosspoints 

Combined Input and Crossbar Queued (CICQ) switch. A flow 
control mechanism from each crosspoint to the corresponding 
VOQ avoids to overflow the internal buffer. 

Assume time to be slotted, and packets to be of fixed size. 
With respect to pure input queued switches. the scheduling 
policies in  CICQ switches can be simpler. The scheduling 
decision, indeed, can be taken in a local uncoordinated fashion 
by an arbiter at each input, selecting a non-full internal buffer 
to which transferring a packet, and by an arbiter at each 
output. selecting an internal buffer from which transferring 
a packet. We refer in the following to this class of schedulers 
as "uncoordinated schedulers". 

Uncoordinated schedulers can be efficiently distributed, 
parallelized, and pipelined. Mainly for this reason, CICQ 
switches are widely considered scalable and timely. Note 
that, in uncoordinated schedulers, we admit that inputs and 
outputs can exchange some information about the state of the 
queues, but we assume the scheduling decision to be local. 
Furthermore, uncoordinated schedulers cannot be implemented 
in pure IQ switches, since coordination is required at inputs 
to avoid multiple transmissions toward the same output. 

Here, we restrict our discussion to uncoordinated sched- 
ulers. 

An overview of the evolution of CICQ switches has been 
recently proposed in [351, but also 1281 provides a wide 
introduction to CICQ switches. We refer to both cited papers 
for the main algorithms proposed so far to control the CICQ 
architecture, aimed at providing high throughput, or supporting 
QoS or variable size packets 191. The two main families of 
input arbiters and output arbiters proposed and studied SO far 
have been the fallowing: 

round-robin based: the queue is selected according to a 
round robin (RR) mechanism [271, [281, [291, or to a 
weighted round robin (WRR) IS], or to a weighted fair 
queueing scheme (WFQ) [51; 
queue-state based: the queue with largest length 
(LQF) [SI, or the largest waiting time of the HoL cell 
(OCF) [SI, [23], or the largestlshortest internai queue 
length [ZZ], is selected. 

Note that the input arbiters can select a VOQ queue among the 
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VOQs which ate not inhibited by the flow control mechanism. 
Unfortunately, so f a  general theoretical results have been 

missing about the stability of CICQ for speedup SP < 2. Many 
papers have addressed the case S p  = 1 but proving stability 
properties only under some ideal traffic scenarios, for example 
when the arrival rates for each input output port are known 
(e.g., in the case of uniform traffic). The simplest scheme 
of CICQ is based on RR-RR (notation is:“input arbiter”- 
“output arbiter”) [271 and L = 1; this scheme has been 
proved to be stable only for uniform traffic, indeed it has 
been shown 10 be unstable when the traffic is non-uniform ([SI 
and [35]). For the KR-RR scheme it has been shown [28] 
by simulation that small buffers ( L  = O ( N ) )  cannot be 
sufficient to provide 100% throughput, unless some moderate 
speedup is introduced. When adopting LQF-RR and L = 1, 
the CICQ has been proved to achieve the 100% throughput 
just when input/outpul pair loading is 5 l/IV [8]. Many other 
variants have been proposed (like in [5 ] .  [221, [29], [35]), 
achieving high throughput under non-uniform scenarios, but 
their performance has been shown only by simulation. 

How to dimension L has been discussed by many papers, 
which have related L only to the round trip time delay dRTT 
of the flow control mechanism from the internal crosspoint to 
the input arbiters. In order to sustain a line rate T ,  L should 
be set larger coarsely than the product dRTT x T .  

For Sp = 2, perfect emulation of an output queued switch 
(both FZFO and non-FIFO) [l8] can be performed. In other 
words. S p  = 2 is sufficient to achieve 100% throughput. work- 
conservation and perfect delay control under any admissible 
traffic. The requirement for L is minimal, since it is aimed 
just at compensating for dRTT. 

To our best knowledge, no theoretical results are known, 
which prove that CICQs with 5 p  < 2, exploiting uncoor- 
dinated schedulers, can achieve 100% throughput under any 
admissible traffic pattern. 

Now observe that a CICQ switch can be modeled as a flow 
controlled network. with one server for each input (corre- 
sponding to the input arbiter) and with one server for each 
output (corresponding to the output arbiter). The flow control 
is from the internal buffers to the corresponding input arbiters. 
Hence, we can particularize to this context the general results 
obtained in the previous section. We restrict our investigation 
to policy PZ which can be easily implemented in a CICQ as 
an uncoordinated scheduler, 

A. Scheduling algorithms for CICQ 

Let xij be the length of VOQ from input i to output2 j. 
Let bij be the length of the corresponding internal buffer; 
0 I bij 5 L, and when bi3 = L the flow control mecha- 
nism inhibits the services from the corresponding VOQ: we 
assume that the Bow control is immediate. Departure vector 
D comprises the services provided by the input arbiters and 
the output arbiters: d; describes the departure hom the VOQ 

*With abuse of notation. here j stands either for a Aow identifier or an 
output. 

corresponding to zig? whereas d$ describes the departure From 
the internal buffer corresponding to bij. The set 23 of all 
possible departing vectors is given by J1 D such that 

j =  1 I= 1 

which describe the blocking constraints of (4) in the context 
of a ClCQ switch. 

We particularize the policy ’P2 by showing that It can 
be easily implemented in an uncoordinated fashion. Indeed. 
revisiting [ 14), PZ selects the departing vector according to: 

N2 

h‘ N 

Let MWF be the “maximum weight first” policy, which 
serves the queue with the maximum srricrly positive weight. 
D satisfying (15) can be obtained by: 

maximizing, for each input i, the product d!- x q ( L  - 
b i j )  among all possible j ;  this is MWF policy; 
maximizing, for each output j, the product d$ x xijbij 
among all possible i; this is again MWF policy. 

As a consequence policy ’P2 operating a CICQs can be 
redefined as DMWF (Dual Maximum Weight First) according 
to the following algorithmic description: 

at each time slot, associate to each VOQ a weight = 

select at each input the non inhibited VOQ which maxi- 
mizes wfj over all j = 1, . . . , N ;  

4 at each time slot, associate to each internal buffer a weight 

select at each output the non-empty internal buffer which 

Thanks to corollary 1, DMWF is p-efficient if p < 0.5 
for any L 2 1. Note that in the case L = 1, then DMWF 
degenerates into LQF-LQF scheduler. 

If we now apply Theorem 3, in a CICQ switch llnll = IV 
since N are the queues conflicting in the same inpudoutput 
arbiter. Hence, in general L should be set such that L > 
Ar/(  1 - p ) / 2 .  To summarize, we can claim the following: 

Corollary 2: Under admissible admissible Bernoulli traffic, 
in a CICQ switch policy DMWF is p-efficient for L 2 Lmin 
with 

? 

~ i j ( L  - b i j ) ;  

= x. .b. : $3 a3 U ’  

maximizes wg over all i = 1, . . . , hr. 

if p < 0.5 

where p is the maximum offered load to an input and output 
port of the switch. 
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The result of corollary 2 can be restated also as follows: the 
sustainable load is at least: 

for 1 5 L 5 N  

1--  for L > N 
1L 

or equivalently: 
Corollui-\. 3: Under admissible admissible Bernoulli traffic. 

the minimum speedup to guarantee 100% throughput in a 
CICQ switch adopting DMWF policy, is 

for l < L < N  
s p  = [ for L > AT 

2 L  - N 
This proves the existence of a tradeoff between throughput 

(or speedup needed) and L under DMWF 

V. CONCLUSIONS 
We have considered a networklsystem of interacting queues 

with internal queues of finite size. A flow control mechanism 
from each queue prevents losses to occur. 

We devised two stable policies, ’PI and 7‘2, the first 
achieving 100% throughput and the second p-efficient, under 
Bernoulli i.i.d. traffic. Policy PI  requires to solve a quadratic- 
form optimization problem on the state of workload given to 
each queue. This policy can be very complex to implement, 
but requires a minimal amount of one buffer location for each 
queue. On the contrary, policy P2 is based on the solution of a 
linear-form oplimization problem on the state of occupation of 
the queues. This policy is very similar to the max-scalar policy 
proposed in the past for interacting queues with infinite-size 
buffer, and its computational complexity is lower than PI .  But 
the requirement on the amount of buffer is larger than Pz. 

As example of application of our general theoretical results, 
we have considered a N x N input queued switch built 
around a buffered crossbar. In this case, P2 degenerates into 
an uncoordinated scheduling policy, called DMWF, in which 
each input and output arbiter can choose among N queues 
on the basis of the highest weight assigned to each queue. 
We have discussed the minimum buffer requirement for the 
internal queues, and its tradeoff with the allowed speedup and 
throughput in the crossbar. 
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APPENDIX I 
PROOF OF THEOREM 2 

Proof Consider the following Lyapunov? function: 
C(Y(n.))  = E’(n.)M(n)Y’(n). If A.C(n) = E [ L ( Y ( n  + 1))  - 
L ( Y ( n ) ) I Y ( n ) ] ,  the stability criteria of (8) becomes: 

q € * I  

which is o(llYII). Because of the two negligible terms, (19) 
becomes equal to f? (S) .  Now (18) becomes: 

A L  M 2AMYT - 3fi(5’) + f z ( S )  (20) 

If we now define r : A(I-R)-’, then AMYT can be written 
as f l(r) .  Since A is admissible it results: llrll = p < 1; we 
can now define such that r = pf’: 11f11 = 1 and r E V. 
Since jl is linear function, then jl(q = j i (p f )  = pj1(1?). 
NOW apf?(r) = 2p-1f2(r) = 2 p - 1 ~ ~ ~ T  is ~(lll~l]) and 
can be substracted from (20): 

AL FS 2fi(r) - f(S) = 3pfi(F) - f(S) z 

%fl ( f )  - ZPf2(f.) - f(S) = P f ( n  - f ( S )  

(16) Now, considering the definition of policy P I ,  f(S) 2 !(e) 
and we can say: 

AL(n) = 

E [2!A(n) - S(n,)(I - R ) ] M ( T z ) Y ~ ( ~ ) ]  + 
E [ A ( n , )  - S(n)(I  - R)JM(n) 

[A(n)  - S(n)(I - R)jT] = 

2E [[A - S(n)(I  - R)jM(n)YT(nj] + 
E[A(n)  - S(n)(I  - R)]M(n)[A(n) - S(n)(I  - R)IT (18) 

From now on? for the sake of readability, we will omit the 
. variable n from our notations, when not necessary, Now 

consider the second term in second adder in (18): 

E [A - S(I - R)JM(A - S(I - R)]’] = 

E[AMAT - 2AM[S(I - R)IT + 
[ 

S(I - R)M[S(I - R)]’] (19) 

Since AM = A: the first and second terms in (19) are 
negligible with respect to IIY/J -, 00. Indeed: 

hM[S[I - R)IT = A[S(I  - R)IT = S(I - RIAT 

and 

k o t e  that L(Y(n ) )  2 0 and f (Y0)  = 0 if 15 i s  the null vector, 

and this implies that, for any l j  2 I, 

APPENDIX I1 
PROOF OF THEOREM 3 

Proof; Consider again the Lyapunov function: L ( S )  = 
XMST.  Eq. (18) still holds: 

AL = .[A - D(I - R)]MXT + 
E [ A  - D(I - R)]M[A - D(I - R)IT (22) 

Now consider the specific policy F’z running. D(n) is 
selected, according to (14). on the set of all possible service 
vectors Z such that llZll 5 1. If we choose 2 as: Z = 
A(I - R)-’ i- (1 - p)V with any U such that llUll = 1, 
then llZll 1. 1, since: llZll = IIA(I - R)-l t (1 - p)Oll 5 
I IA(I -R) -~II+I t~ l -~ )~II  = p + ( l - p ) =  1.N0w: 

D(I - R ) M A - ~  2 
[R(I  - R)-l -t (1 - p)U](I - R)MXT = 

A M X T  + (1 - p ) U ( l -  R)MX“ (23) 
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Thanks to (23), we can bound the first adder in (22): which, substituting D to U:  becomes: 

[A - D(I - R)]MXT 5 AMXT - J 
AL 5 --3( 1 - p) 'j.l [d j , l  (E3 - xj.2) + 

j -1 b A M S ~  - (1 - p ) u ( ~  - R ) M X ~  = 

- (1 - p)UI.IIT (24) J 

The second term in (22) can be treated as the second term in 
(18). If we now evaluate (22). by combining (24) and (11 ) ,  j =  1 

J 
Now let V = Ii/llIIl\ E 'D; it results: XJ 1 D = argmax - p,,1 (lJ - q , 2 )  + 4 , 2 3 2 1  Q D E D ~ = ~  l j  

2 "Ih) 
"(') 

1 
I -2(1-P)-&+ (dq - & ( q ) )  - A sufficient condition which ensures for any the Lyapunov 

function drift to be nenative, is: 11111 q = l  q f @ M  

Indeed, djyj:l = 1 only when l j  - 2 3 , ~  2 1 and dj,2 = 1 only 
(26) when " c j ! 2  2 1. 1 J 

where we exploited the fact that, for any j .  thanks to the 
telescopic sum: 

( 5 h  - %+1) + S h j ]  = "j,l 

h=2 

h .  Furthermore, E,L2(d j ,h  - d j , h - ~ ) ~  5 hj - 1. 

punov function drift negative is: 
As a consequence, a sufficient condition to make the Lya- 

2(1-p)  hj - 1 

llIll 4 > O  

which implies: 

APPENDIX I11 
PROOF OF COROLLARY 1 

Proof: In this case from: 
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