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Abstract— The advent of packet networks has motivated many
researchers to study the performance of networks of queues
in the last decade or two. However, most of the previous
work assumes the availability of infinite queue-size. Instead,
in this paper, we study the maximal achievable throughput
in a flow-controlled lossless network with finite-queue size. In
such networks, throughput depends on the packet scheduling
policy utilized. As the main of this paper, we obtain a dynamic
scheduling policy that achieves the maximal throughput (equal
to the maximal throughput in the presence of infinite queue-
size) with a minimal finite queue-size at the internal nodes of
the network. Though the performance of the policy is ideal, it is
quite complex and hence difficult to implement. This leads us to
a design of sirnpler and possibly implementable policy. We obtain
a natural trade-off between throughput and queue-size for this
policy.

We apply our results to the packet switches with buffered
crosshar architecture. We propose a simple, implementabie,
distributed scheduling policy which provides high throughput in
the presence of minimal internal huffer. We also obtain a natural
trade-off between throughput, internal speedup and buffer-size
providing a switch designer with a gamut of designs,

To the hest of authors’ knowledge, this is one of the first
attempts to study the throughput for general networks with finite
queue-size. We believe that our methods are general and can be
useful in other contexts.

I. INTRODUCTION

Flow-controlled lossless network architectures (like ATM
networks [12], {19] or wormhole routed networks [4], [17],
[26]) have failed in the context of Internet. However, such
neiwork architectures are still widely prevalent in several other
contexts such as storage area networks [34], interconnection
networks for parallel computing [13], etc. In this paper, we
study the throughput performance of such flow-controlled
lossless networks.

The seminal work of Tassiulas and Ephremides [31] pio-
neered the research for studying the maximal throughput of
controlied networks (also called constrained queueing systems
in [31]) with infinite queue-size. For example, the methods
of [31] have been utilized in the context of switching [1],
[6], [15], [20], [33], satellite and wireless networks [24]. [25],
etc. Although these results are quite general, they assume
the availability of infinite quene-size at all the nodes of the
network. In actual applications, quene-sizes are always finite.
This i3 a major limijtation of the results of [31] as well as
results known in the neiwork theory in general.
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In this paper, motivated (o analyze performance of networks
in the absence of the assumption of infinite queue-size, we
study the maximal achievable throughput in flow-controlied
lossless networks with finite queue-sizes at the internal nodes
of the network. Only the ingress nodes have infinite-size
queues to allow us to define the achievable throughput. Our
work can be seen as an extension of the results of [31] in the
sense that it gets rid of the assumption of infinite queue-size
inside the network.

As an application of our results, we evaluate the maximal
achievable throughput in the packet switch architecture built
around a crossbar with buffered crosspoinis. Such packet
switches have been of a huge recent interest due to the
recent advances in the technology [35]. We propoese a novel
distributed scheduling policy, called DMWE, which is shown
(0 be stable under admissible i1.d. Bernoulli traffic if ei-
ther enough internal buffer is present and/or enough internal
speedup i$ available at the crossbar. In particular, we evaluate
the natural tradeoff between throughput, speedup and buffer-
size,

We would like to note that though the contribution of this
paper is mainly theoretical, we believe that the results obtained
in this paper will be useful in the design of network, in sizing
buffers and in the design of scheduling policies.

A. Organization

In Section 1I, we iniroduce the notation and the main
assumptions of the paper. Then, we present the known results
about the maximal throughput for the network of infinite
queue-size in Section LI-B. In Section II, we present our
main results, Finally, in Section IV, we introduce the buffered
crossbar switch architecture and apply our results to obtain
distributed scheduling policy for buffered crosshar, The proofs
of the theorems are presented in the appendix of the paper.

II. SYSTEM MODEL AND NOTATION

We consider a network of discrete-time physical queues (or
stations), handling J customer flows. Customers belonging to
flow j, 1 < 7 < J, enter the network at a station, receive
service at each station along an acyclic path and leave the
network. The number of stations (hops) traversed by customers
of flow j is h;. We assume that the routing of each flow is
deterministic, Figure 1 depicts an example of such network.
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Fig. 1. Example of flow controlled network with 5 servers and 6 flows.

Customers belonging to the same flow, and stored at the
same physical queue, form a virtual guene. The number of
virtual queues in a network is denoted by ). We denote with
vg the g-th virtual queue in the network. Let ¢(j, k), with
h =1,... h;. be the index of the queue traversed by flow
4 at the h-th hop. Virtual queue vy(s1) s also called “ingress
queue” for flow j. The set of all the flow ingress virtual gueues
{vgj,1): 1 <4 < J}is denoted with ®;, whose cardinality is
J since each ingress queue is associated with a flow. The set
of all the remaining virtual queues, called “internal queues”,
is denoted with ®,;. Note that $,, includes also “cgress
queues”, i.c. queunes traversed by customers just before leaving
the network. We now introduce some mapping functions. f(g)
maps queue index g to the index of it$ corresponding ingress
queue (first quene); f(q(7, k) = ¢(4.1); note that f(g) = q if
g € ®;. Function u(q) returns the index of the queue upsiream
to queue v, and it is defined for all the queues except for
the ingress queues: w{g(j, h)) = ¢(,h — 1), 2 € h < hy.
Function p(g) returns the index of queue downstream to queue
vg and it is defined for every queue except the egress queues:
plg(7, b)) = q(3.h+1), 1 <h < h;—1. Function §(g) returns
the index of the flow traversing queue vy,

Servers are associated with physical queues. A server pro-
vides service to customers queued at the logical queues (virtual
gueues) located at its physical queue according to a service
policy. Packets are assumed of fixed length normalized to a
time slot. All the servers in the network are synchromized.
They start service at the beginning of a time slot,

All vectors are, by default, row vectors. Let X(n) =
[xq(n)]qQ:l = [z1(n) za{n)...zg(n)|, be the vector whose
g-th component z,(n) represents the number of customers
present in v, (i.e., its queue length') at the beginning of time n,
with n € IN,.. For the sake of easier notation, let z; () equal
10 Tg(j,ny(n). We suppose the size of all the ingress virtual
queues (belonging to @) to be infinite, whereas we assume
all the other virtual queues along the flow paths (belonging to
Par) to be of finite size. All the virtual queues traversed by
flow j can store up to I; customers. A flow control mechanism
inhibits the transmission of packets toward queues which are
full, thus preventing buffer overflows.

The evolution of the number of customers at v, is described

INote that “length” denotes the time-variable queue-occupancy, whereas
“size” denotes the fixed maximum allowed queue-occupancy.

by zy(n+ 1) = z4{n) + eq(n) — dy(n), where e4(n) repre-
sents the number of customers thal entered v, (and thus its
corresponding physical queue) in time interval (r, n+ 1], and
dy(n) represents the number of customers departed from v,
in time interval (n.n + 1]. E(r) = [eq('n.)]ff:1 is the vector
of entrances in virtual queues, and (n) = [dq(n)]ff':1 is
the vector of departures from virtual queues; let d; ) (n) be
defined equal o dgg; (). Given the network state, X(n),
the following service constraints on D{n) express the fact that
no services can be provided to empty queues and no queune
overflows are allowed (thanks to the flow control mechanism):

D(n) < X(n) and DR < L — X(n) (1)

being L = [lq}qQ:1 the vector with all the queue sizes
(assuming [, = oo for ¢ € ®y). This is equivalent to say:
if queue g is empty (x,{n) = 0) or the downstream queue to
g is full (zpq)(n) = Lj(g). then no service can be provided
to queve g (dy(n) = 0).

With this notation, the system evolution equation can be
written as:

X(n+1)=X(n)+ E(n) — D(n) 2)

The entrance vector E(n} is sum of two terms; vector
Aln) = [aq(n)];‘?:l, representing the customers arrived at the
system from outside the network of queues (we also call them
external arrivals), and vector of recirculating customers, who
are advancing along their paths inside the network, in time
interval (n, 7+ 1.

Since we assume deterministic routing, let the Q x ¢ matrix
R be the routing matrix, with binary elements Rg 4, = 1 iff
p{g1) = g2 and R, ,, = 0 otherwise. The evolution of viral
queues can be rewritten as:

X({n+1)=X(n)+An)-Dn)I-R) 3)

where I denotes the identity matrix.

We suppose that the external arrival process {A(n) : n €
N, } is a stationary memoryless process, i.e. A(n) are iid.
random vectors with average E(A(n)) = A = [Aqlle. Note
that, since external arrivals are directed only to ingress queues,
A =0ifge D

At time slot = the scheduling policy selects the service vec-
tor S(n), whose element sq(r) represents the amount of work
provided to v, during time slot n; let s;,4(n) = s4(5,n)(n).
The departure vector D(n) is related to S(n) according to the
following equation:

> Dty = lzng = D(n) = [ZS(:&)J -iD(t)
t=0 =0 t=0

=0

In other words, the number of packets served from a queue
is given by the amount (approximated to the integer part)
of cumulative service provided to the queue. We define the
difference between the two quantities by;

Alr)=>_8(t) - _ D)
t=0

t=0
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whose g-th element d;(n) € [0,1) represents the amount of
work provided by the scheduling policy to the head-of-the-
line packets of v, at the end of time slot r, In this paper we
resirict our investigation to the class of dynamic scheduling
policies, i.e. those scheduling policies which select S(n) on
the only basis of the instantanous network state information
without requiring any knowledge on the traffic patern.

In general we assume that the set of possible service
veclors S{n) is constrained by a system of linear equations
representing the topological interference among services at
virtual quenes (blocking constraints);

SmK<T (@)

Matrix K and vector T describe the blocking constraints in
the services. For example, simple topological constrainis are
those expressing the fact that the sum of services provided in
each time slot to all the virtnal queues residing at the same
physical queue is limited by the server capacity. However we
do not exclude additional constraints which refate the behavior
of virtual queues residing at different stations. Let D the set of
flon-negative S(n) which satisfy the blocking constraints. We
notice that T defines a polyhedral convex region. Let D the
set of all vertices of D. For simplicity of notation, we assume
that vectors in D are integer valued. In order to avoid trivial
cases, we assume that all vectors v(2, with 1 < ¢ < @, whose
elements are all null except the ¢-th, which js unitary. belongs
to D, ie, 4@ = [0,0,0,---1,0,0,0] € D; in other words,
every virtual queue in the network can potentially get service
without violating the topological constraints. We remind that
S{n) must be chosen in such a way that the service constraints
defined for D(n) in (1) are not violated.

if ihe scheduling policy is atomic, i.e. packets ar¢ transmit-
ted by servers in an ‘atomic’ fashion, without interleaving their
transmission with packets residing in other virtual queues, then
S5(n) is integer valued, and D(n) = S(n) for any n. In this
case, X (n) is a DTMC (Discrete Time Markov Chain), In the
more general case, (X (n), A(n)) is a discrete time Markov
process defined on a general state space [21]. In the latter case,
let us define the workload vector:

Y(n) = X(n) - A(n){I - R)

We notice that (X(n},A(n)) = ¥Y(n) is a one to one
correspondence. Furthermore, it is easy to verify that ¥(n)
satisfies the following system evolution equation, derived by

3

Y(n+1)=Y(n)+ Aln) — (5)

Note that is the scheduling policy is atomic, then X(n) =
Y (n) for any n and (3) coincides with (3).

Finally, let us introduce the following useful positive convex
functional:

Definition 1: Given a vector Z € ]Rf., Z= (W 1<
k < @), the positive convex functional || Z]| is defined as:

S(n)(I-R)

I1Z]] :inf{ae]R+ : éZET’j}

We notice that in the remainder of this paper we will
refer to it with the improper term of “norm”; furthermore,
the previous functional is coincident with the well-known
Minkowski convex functional associated to D. Under the || Zf|
definition immediately follows that, for any S(n) € D, then
[IS{n)]| < 1. If the policy is atomic, it chooses S(n) =
D(n) € . To beuer understand the meaning of such norm, we
evaluate now ||I||, where I is the vector with unitary elements,
in a simple case. Consider a set of independent servers, each
of them able to provide one unit of service per time slot, Le.
91 < ¢ < Q, is vertex of D. If at most i virtual queues
are located at each server, then [|I]| = <. Indeed, the service
vector 5 = I/i beiongs to the boundary of D.

A. Traffic and System Stability Definitions

Definition 2: A stationary traffic pattern is admissible if
IMT-R) | < L.

Let p = ||A(I — R)™!|l. For the simplest case in which
virtual queues residing at different servers are not topologically
interacting. traffic is admissible iff no servers are overloaded;
in addition, p represents the load of the heaviest loaded server
in the network.

Definition 3: The system of queues is stable if:

limsup E(j| X (n)]]) < o

or equivalently:
limsup E{||Y(n)|]) < oo

ie., the system is positive recurrent.

Note that the admissibility of traffic pattern is a necessary
condition for the system of queue to be stable as shown in [31].

We say that the system is stable at point A if it is stable
under every stationary memoryless external arrival processes
A(n) with average A.

Definition 4: We define as stabzllty region the set of points
A in correspondence of which the system of queues is stable.

Definition 5: We say that a systemn of queues is 1-efficient
{or equivalently achieves 100% throughput), if it is stable
under any admissible traffic pattern.

Definition 6: For any 0 < p < 1, we say that the system
of queues is p-efficient if it is stable under any traffic pattern
such that [A(I-R)™!| < p.

B. Previous work

The problem of the definition of the stability region in com-
plex systems of interacting queues under dynamic scheduling
policies, has attracted significant attention in the last decade
from the research community since the pioneering work [31].

In [31], applying the Lyapunov function methodology, it
has been shown that a system of interacting queues whose
size is infinite achieve 100% throughput, if atomic max-scalar
scheduling policy Pass is applied at each node of the network.
According 10 Parg, at each time slot »n the departure vecior
is selecied as follows:

D(r)=S(n) = arg%lga% ZI-R)X(n)" (6)
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The result in [31] has been generalized and adapted to different
application contexts in the last years. As matter of example
we just briefly recall some of the related works.

In the switching comtext, several studies have been aimed
at the definition of the stability region in Input-Queued (IQ)
switching architectures built around a bufferless crossbar:
papers [11, [15]. 120]. [30], [33] have proposed different
extensions of Pass, which have been shown to be |-efficient;
stability properties for simpler scheduling policies have been
also studied in {6), [14]: in [2], [3], [15], finally, the problem of
the definition of the stability region in networks of IQ) switches
has been considered.

In the context of the satellite and wireless networks, gener-
alizations of Purg have been recently proposed and shown to
be l-efficient in [24]. 125], [32].

All the previous works, however, have considered system
of infinite-size queues. In this paper, for the first time, to the
best of our knowledge, we extend the investigation about the
stability region in systems and networks of queues of {inite size
subject to some form of flow control which prevents packet
losses.

C. Stability criteria

The stochastic Lyapunov function is a powerful tool to prove
stability (i.e., positive recurrency) of Markovian systems. In
this subsection we briefly report one of the main results related
to the Lyapunov function methodology, which will be used in
the remainder of this paper; we refer the interested reader
to [11], and [21], [25] for more details on the exiension to
general state space Markovian processes,

Theorem I; Let Z(n) be an irreducible (-dimensional
Markov chain (or, general space Markov process), whose
elements z(n),l =1,2,...,0 are non-negative, ie., Z(n) &
]Nf (or, Z(n) € ]Rf). If there exists a non-negative valued
function {£ : RY — R} such that:

ElL(Z(n+ 1)) - LZ(m) | Zn)] <00 (D)
and
| BIL{Z(n + 1)) ~ L(Z(n) | Z(n)]
) 1ZG] == @

for some € > 0, then Z(n) is positive recurrent, and

limsup E[|| Z(n)||] < oo

Inequality (7) req?liré’g that the increments of the Lyapunov
function £(Z) are finite on average. The second inequality (8)
requires that, for large values of ||Z|}, the average increment in
the Lyapunov function from time » to time » + 1 is negative,
The intuition behind this result is that the system must be
such that a negative feedback exists, which is able to pull the
system toward the empty state, thus making it ergodic. For
these reasons, inequality (8) is often referred as the Lyapunov
function drift condition.

In our case, Z(n) represents the nmumber of packets in
the metwork of queve X (n) or the workload Y (n), whose
evolution is given by (3) or (5). It is immediate to verify that

consiraint (7) can be always met when all the moments of
A(n) are finite; in particular, restricling to quadratic Lyapunov
functions, it is sufficient that the second moment of A{n) is
finite.

ITI. PERFORMANCE OF NETWORK OF FINITE QUEUES

Here we present our main results, In Section II-A we show
that 100% throughput can be obtained in any network of finite,
flow controlled interacting queues, for I; = 1. To this end, we
define the optimal dynamic scheduling policy P;. Since policy
P (i) is not atomic, i.e, servers provide fractional services 1o
packets stored at head of the virtual queues, (i) requires the
servers to coordinate their decisions at each time slot, then
its implementability results problematic in several application
conlexis,

In Section III-B we propose the atomic dynamic scheduling
policy P, whose complexity is similar to Pars defined for
infinite queue networks., Pa, similarly to Ppyg, requires a
continnous exchange of state information among network
servers, but it can allow servers to take local decisions in
an uncoordinated fashion, when considering simple network
configurations, thus resulting significantly less complex than
P4. We show that Pa is p-efficient when enough buffer inside
the nerwork is provided, thus estimating the trade-off between
network buffers and achievable throughput.

A, Optimal policy

1} Policy definition: Consider the following policy, called
P;. in vectorial format:

S(n) = argmax Z(I - R)M(n) (2Y(n) - Z(I- R)}"
zZeD ©)

where M(n) is a Q) »x ¢} matrix, non-null only on its diagonal
where, for g =1,...,Q:

1 if q€ iy
Yr(pln)

{

M =
aa(n) if g By
i{q)

We now express the policy in scalar format (for the sake
of easier notation, we omit () when not necessary). Observe
that:

' $ ifged
[ST-R)}, = { : if @I
Sq = Su(q) i g€ Py
and multiplying by M:
5q if q < @[

[S(T—R)M]y = Yie)

(8 — Surey) itge®p
! @ Lita)

Hence, if we define that y,(4)/lqy = 0 if queue g is an egress
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queue, the first adder in (9) becomes:

Sy =sT-RMYT =
yf )
D st Y (50 = su) o2 =
qEP; qE® 6 J(Q)

Yp(a) Yq = Yp(e)
quyq(l———fq)ﬁ—zsqyﬂq)( 1. q)_
9 d; 3(q) ac%n #q)

I hj
Ui

| &G —w2)+ D sinlyzn —ysas)|  (10)

h=2

whereas the second adder in (9):

f(8)=SI-RM|ST-R)|T =
2 1Y)
DEES N
qé‘h q€<I>M (g}
z Yy
1 v
ZS S Z == Z St Sy — 28 a85n-1) =
=1 d=1 J h=2
J J - h,-
ES 1+ Z T J‘.h + Sg.h_1 — 285 p85n—1) =
j=1 i=1 h=2
J J y hj—1
Y51
LRI IS IR
i=1 j=1 h=2
hi—1

2 Z Sj.hsj,h—]—l) (11)
h=1
By combining (10) and (11), policy 7; becomes:

S = argmax f(Z) (12)
ZeD

with f(Z) = 21(Z) - f2(Z).
Observe that according to policy Py, by construction, ser-
vice 18 never provided (o empty virtual queues, thus satisfying

one of the service constraints, This can be easily seen by
observing that P; can be equivalently defined as:

S(n) = arg mig {
A

[Y(n) — Z(n)I - R)M(n)[Y (n) - Z(n)(I - R)]T}
and observing that the minimum is always achieved when all
the elemenis of [Y(n} — Z(n)(I ~ R)] are non negative.

The second service constraint, which avoids buffer over-
flows, is not always precisely met by P;. However it is easy
to realize that according to Py, Y (n) < L + L, for all n,
being ¢ the maximum amount of service that any server in the
network can provide in a time slot. As a conclusion, to avoid
buffer overflow is sufficient to provide any virtual queue with
an extra amount of memory (called slack-buffer) equal to c.

2) Policy performance: Now we state our main theorem,
whose proof is reported in Appendix L

Theorem 2: Under admissible Bernoulli traffic, policy Py
achieves 100% throughput when the buffer size [; (not count-
ing the slack buffer) of any internal queue ¢ traversed by flow
7 satisfies the following relation:

l; =1 fory=1,....,J

3) lmplementatmn issue: Since ’P1 is not atornic, it selects
the best service vector S in the set D and this does not guar-
antee that S is a integer departure vector; in simpler words,
55 € [0,1]. As a consequence, the direct implementation of
policy P, requires servers to provide fractional services to
packets stored at head of the virtnal queues according 1o a
weighted processor sharing policy.

Moreover, according to policy P, packets are transferred
through queues in & “cut-through” fashion, sinice servers may
start the transmission of non completely received packets. We
notice that non-atomic scheduling policies exploiting “cut-
through™ switching have been proposed and implemented in
the contexts of wormhole networks [71, [10], [26].

At last, P; must be implemented in a centralized fashion by
a scheduler which has the complete view of the queues state
of the network. The high implementation complexity of this
policy has motivated our investigation on the performance of
the following policy.

B. Low complexity policy

1) Policy definition: Consider the following policy, called
’Pg:

S = argmax Z(I - RYMYT
zZeD

In other words, policy P, maximizes the scalar product of the
service vector Z and the weight vector W = (I - RYMY7T.
Due to the linearity of the scalar product, P» guarantees the
vector S to be a vertex of D, i.e. S(n) € D. Hence, P> is an
atomic policy and X(n) = Y(n). Formally, we can say that
P2 can be expressed as:

D=argmax Z(I - RIMX7T
ZeD

Following the same reasoning to obtain (10), a generic
queue q is associated with the following weight w,:

_ e (1 - %) i 7€ e a»
W = . I_q;mﬂ if g€ &y
ilq)
then policy P» can be rewritten as:
2
D=arg e Z ZqtWq (14)

¢=1

We define the policy such that d; = 0 when w, = 0; note
also that dy = 0 when w, < 0. Hence, policy Pz satisfies the
service constraints: if z, = 0 or zpq) = L) then wy < 0
and then d, = 0 as expected.
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2) Policy performance: We claim the main result about
P, whose proof is reported in Appendix II

Theorem 3: Under admissible Bernoulli traffic, policy 7
is p-efficient when the buffer size I; of any internal queue
g wraversed by flow j, with h; hops, satisfies the following
refation:

(hy — L)
2(1 - p)
recalling that p = |JA(T — R)7!||, and ¥ is the vector with

unitary elements.

A special case applies for networks with at most two hops,
like the switches built around buffered crossbars and discussed
in Section IV, We can claim the following:

Corollary 1: Under admissible Bernoulii traffic, for a net-
work with h; < 2 for all j, policy P2 achieves 100%
throughput, when p < 0.5 for any I; > 1, being p the
maximum offered load for a single queue in the network.

The proof is reported in Appendix II From this corollary,
it results that any choice of I; the network is 0.5-efficient,
under the condition that no packet routes are longer than two
hops.

3) Implementation issue: Policy P- is an atomic policy
equivalent to Pasg of (6), but with different weights assigned
to the internal queues. Indeed, P> and Parrs solve the same
optimization problem since they both share the same linear
structure of the cost function and the same space D of feasible
departure vectors.

Both policies require a continuous exchange of information
between neighbor servers, but in addition P; requires locally
at each server the information about the length of the ingress
queue of the corresponding flows, Note that this length should
be propagated downstream from the ingress queue to all the
internal queues, along the flow path: this fact can be exploited
to ease the implementation.

In general, given the state of all the queues, P, is executed
by a central scheduler, as also observed by [31]. However,
in particular (but also interesting) cases, the policy can be
computed in a distributed fashion, locally on each set of queues
and servers which are coupled by the blocking constraints.
This fact is indeed exploited in the following section to
devise a computationally efficient scheduling policy for packet
switches.

L > forj=1,...,J

IV. APPLICATION TO PACKET SWITCHES BASED ON
BUFFERED CROSSBARS

Recently, switches built around crosspoint buffered cross-
bars have been shown to be very promising solutions for the
design of fast and scalable switching architectures. A basic
model for a switch with internal buffered crossbar is depicted
in Fig. 2. To avoid the negative effects of the head-of-the-
line blocking phenomenon, inputs cards adopts Virtual Output
Queue (VOQ) scheme, according to which packets are stored
at inputs in per-destination virtual queues.

Each crosspoint of the crossbar is provided with an internal
buffer of size L: internal buffers are in one-to-one corre-
spondence with input VOQs, We refer to this architecture as

A f
ouT 2 QUT N

0UT1

Fig. 2. The N x N CICQ architecture with VOQ and buffered crosspoiats

Combined Input and Crossbar Queued (CICQ) switch. A flow
control mechanism from each crosspoint to the corresponding
VOQ avoids to overflow the internal buffer.

Assume time to be slotied. and packets o be of fixed size.
With respect to pure input gueued switches, the scheduling
policies in CICQ switches can be simpler. The scheduling
decision, indeed, can be taken in a local uncoordinated fashion
by an arbiter at each input, selecting a non-full internal buffer
to which transferring a packet, and by an arbiter ai each
output, selecting an internal buffer from which transferring
a packet. We refer in the following to this class of schedulers
as “uncoordinated schedulers™.

Uncoordinated schedulers can be efficiently distributed,
parallelized, and pipelined. Mainly for this reason, CICQ
switches are widely considered scalable and timely. Note
that, in uncoordinated schedulers, we admit that inputs and
outputs can exchange some information about the state of the
queues, but we assume the scheduling decision to be local.
Furthermore, uncoordinated schedulers cannot be implemented
in pure IQ switches, since coordination is required at inputs
to avoid multiple transmissions toward the same output.

Here, we restrict our discussion to uncoordinated sched-
ulers.

An overview of the evolution of CICQ switches has been
recently proposed in {35], but also [28] provides a wide
introduction to CICQ switches. We refer to both cited papers
for the main algorithms proposed so far to control the CICQ
architecture, aimed at providing high throughput, or supporting
QoS or variable size packets [9]. The two main families of
input arbiters and output arbiters proposed and studied so far
have been the following:

o round-robin based: the queue is selected according to a
round robin (RR) mechanism {27], [28], [29], or t© a
weighted round robin (WRR) [5], or to a weighted fair
queueing scheme (WEFQ) [5];

e queue-state based: the queue with largest length
(LQF) [8], or the largest waiting time of the HoL cell
(OCF) (8], [23], or the largest/shortest internal queue
length [22], is selected,

Note that the input arbiters can select a VO queue among the
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VOQs which are not inhibited by the flow control mechanism,

Unfortunately, so far general theoretical results have been
missing about the stability of CICQ for speedup Sp < 2. Many
papers have addressed the case Sp = 1 but proving stability
properties only under some ideal traffic scenarios, for example
when the arrival rates for each input output port are known
(e.g., in the case of uniform waffic). The simplest scheme
of CICQ is based on RR-RR (notation is:“input arbiter’-
“output arbiter™ [27] and L = 1; this scheme has been
proved to be stable only for uniform traffic, indeed it has
been shown to be unstable when the traffic is non-uniform ([8]
and [35]). For the RR-RR scheme it has been shown [28]
by simulation that small buffers (L = ©(N)) cannot be
sufficient to provide 100% throughput, unless some moderate
speedup is introduced. When adopting LQF-RR and L = 1,
the CICQ has been proved to achieve the 100% throughput
Just when input/output pair loading is < 1/N [8]. Many other
variants have been proposed (like in [5]. [22], [29], [35D).
achieving high throughput under non-uniform scenarios, but
their performance has been shown only by simulation.

How to dimension L has been discussed by many papers,
which have related L only to the round trip time delay dppr
of the flow control mechanism from the internal crosspoint to
the input arbiters. In order to sustain a line rate », L should
be set larger coarsely than the product dppr X 7.

For Sp = 2, perfect emulation of an output queved switch
(both FIFO and non-FIFO) [18] can be performed. In other
words, Sp = 2 is sufficient to achieve 100% throughput, work-
conservation and perfect delay control under any admissible
traffic. The requirement for L is minimal, since it is aimed
just at compensating for dppr.

To our best knowledge, no theoretical results are known:

which preve that CICQs with 5p < 2, exploiting uncoor-
dinated schedulers, can achieve 100% throughput under any
admissible traffic pattern.

Now observe that a CIC(Q switch can be modeled as a flow
controlled network, with one server for each input (corre-
sponding to the input arbiter) and with one server for each
output (corresponding to the output arbiter). The flow control
is from the internal buffers to the corresponding input arbiters.
Hence, we can particularize to this context the general results
obtained in the previous section. We restrict our investigation
to policy P2 which can be easily implemented in a CICQ as
an uncoordinated scheduler.

A. Scheduling algorithms for CICQ

Let z;; be the length of VOQ from input i to output® j.
Let b;; be the length of the corresponding internal buffer;
0 < by; £ L, and when &; = L the flow control mecha-
nism inhibits the services from the corresponding VOQ: we
assume that the flow control is immediate. Departure vector
D comprises the services provided by the input arbiters and
the output arbiters: d{j describes the departure from the VOQ

2With abuse of notation, here j stands either for a flow identifier or an
output.

corresponding to m;;, whereas d?j describes the departure from
the internal buffer corresponding to &;;. The set D of all
possible departing vectors is given by all D such that

N N
dod<t vioand Y d7<1 9
j=1 i=1

which describe the blocking constraints of (4) in the context
of a CICQ switch.

We particularize the policy P by showing that it can
be easily implemented in an uncoordinated fashion. Indeed.
revisiting (14), P2 selects the departing vector according to:

N2
I_ii (dj1 (L~ 252) + djomy0) =
i=1

N N
! O
argrgg%zzmij(dij([’ - bij) +dz'jbﬁ.j) (15)

i=1 j=1

Let MWF be the “maximum weight first” policy, which
serves the queue with the maximum strictly positive weight,
D) satisfying (15) can be obtained by;

« maximizing, for each input ¢, the product df; x z4;{(L —
b;;) among all possible j; this is MWF policy,

« maximizing, for each output j, the product dg; x z;;by;
among all possible ¢; this is again MWF policy.

As a consequence policy P» operating a CICQs can be
redefined as DMWF (Dual Maximum Weight First) according
to the following algorithmic description:

o at each time slot, associate to each VOQ a weight w{j =
xig(L — bij)s
o select at each input the non inhibited VOQ which maxi-
mizes w{j overall j =1,... N;
« ateach time slot, associate to each internal buffer a weight
wS = 2i;bi5;
ij = TigQigs
o select at each output the non-empty internal buffer which

maximizes wf over all i =1,... ,N.

Thanks to corollary 1, DMWF is p-efficient if ¢ < 0.5
for any L > 1. Note that in the case L = 1, then DMWF
degenerates into LQF-LQF scheduler.

If we now apply Theorem 3, in a CICQ switch ||I|] = N
since N are the queues conflicting in the same input/output
arbiter. Hence, in general 1 should be set such that I, >
N/(1 = p)/2. To summarize, we can claim the following:

Corollary 2: Under admissible admissible Bernoulli traffic,
in a CICQ switch policy DMWF is p-efficient for L > Loy
with

1 if p<05

Lmin == ’V N -L .
—_— if G5<p<l
3(1—p) P

where p is the maximum offered load to an input and output
port of the switch,
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The result of corollary 2 can be restated also as tfollows; the
sustainable load is at least:

0.5

le

for1l <L <N
for L> N

2L
or ¢quivalently:

Corollary 3: Under admissible admissible Bernoulli traffic,
the minimum speedup to guarantee 100% throughput in a
CICQ switch adopting DMWEF policy, is
2 for 1< L <N

2L
——— for L>N

This proves the existence of a tradeoff between throughput
(or speedup needed) and L under DMWE.

Sp=

V. CONCLUSIONS

We have considered a network/system of interacting queues
with internal queues of finite size. A flow control mechanism
from each queue prevents losses to occur.

We devised two stable policies, P; and o, the first
achieving 100% throughput and the second p-efficient, under
Bernoulli i.i.d. raffic. Policy P; requires to solve a quadratic-
form optimization problem on the state of workload given to
each queue. This policy can be very complex to implement,
but requires a minimal amount of one buffer location for each
gueue. On the contrary, policy P2 is based on the solution of a
linear-form optimization problem on the state of occupation of
the queues. This policy is very similar to the max-scalar policy
proposed in the past for interacting queues with infinite-size
buffer, and its computational complexity is lower than 7. But
the requirement on the amount of buffer is larger than Pa.

As example of application of our general theoretical results,
we have considered a &V x N input queued switch built
around a buffered crossbar. In this case, P degenerates into
an uncoordinated scheduling policy, called DMWEF, in which
each input and output arbiter can choose among N queues
on the basis of the highest weight assigned to each queue.
We have discussed the minimum buffer requirement for the
internal queues, and its tradeoff with the allowed speedup and
throughput in the crossbar.
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APPENDIX [
PROOF OF THEOREM 2

Proof: Consider the following Lyapunov® function:
( “(n)) = Y()M(n)Y T (n). If AL(n) = E[L{Y (n+1)) -
L{¥ (n)})|Y (n)], the stability criteria of (8) becomes:

AL(n)

lim ot 16
1Y (dli—oo ||¥ {n)]| ot

where

AL{n) = E[Y(n+ 1)M(n+1)¥(n+1)T ~

Y(mIM(n)Y (n)"] = E[Y (n)M(n + DY ()T +
[A{n) Sr)I - R)M(n + DY (n) +
[A{n) — S(n)(I — R)IM(n + 1)[A(n) — S(n)(T - R)]" —

Y(n)M(n)Y(n)T:[ (17
Now observe the M({n + 1) = M(n) +o{||Y|}) when ||Y]| —
00, since |ypg(n + 1) — ypy(n)| < 1. Hence, we can
substitute M(n + 1) with M(n) and cbtain:
AL(n) =

E[2[A(n) — S(n)(I - R)IM(n)YT
[A(n) - ( )(I— R)iM(n)

[A(n) = R)"] =

28 [[A - S(n)a - R)}M( mY 7 (n)] +

E[A(n) = S(n)(I = R)IM(n)[A(n) = S(r)X-R)]" (18)
From now on, for the sake of readability, we will omit the

variable » from our notations, when not necessary, Now
consider the second term in second adder in (18):

(n)] +

B4 - s -R)MA - s(1-R)"] =
E[AMAT —2AM[S0 - R)|T +
ST-RMIST-RIT| (19

Since AM = A, the first and second terms in (19) are
negligible with respect to || Y| — oc. Indeed:

AM[SI-R)[T = A[ST - R)|T = 51 -R)AT
and
(L= R)AT], = M1~ @ = T2
0 if g€ @y

3Note that £(¥{n)) > 0 and £(Yy) = 0 if Y} is the null vector.

TEEE Communications .

= Z dygAg

qEd,

which is o||Y||). Because of the two negligible terms, (19)
becomes equal 10 f2(S). Now (18) becomes:

AL = 2AMY7T — 2£1(S) 4 fo S) (20)

If we now define I' = A{I-R)~, then AMY 7 can be written
as f1(T). Since A is admissible it resulis: ||T]| = p < 1; we
can now define I" such that I' = pl || = 1 and I € D.
Since f1 is a linear function, then f1(T'} = f1(pl") = pf1(T).
Now 2pf5(") = 2071 fo(I") = 207 'AMAT is o([|Y])) and
can be substracted from (20):

2f1(T) — £(S) = 2pf1(1) — £(S) ~
20f1(F) = 2pf2(L) — £(8) = pf(T) - £15)

Now, considering the definition of policy Py, f(S) > f(I)
and we can say:

AL < pf(l) — f(I) =

By neglecting terms o(||Y]):

AL =

—(1 - p)f(T) (21)

| §S]

F(O) =2 )"_fl

Z Ay 2 =

QE‘I’I

J
)\rn'm Z Ui
j=1

‘1‘;

where Apin, = n11nq5¢,{Aq Ag > 0}. Observe now that
IYq < ZJﬂ%l -+ ZJ L halys Wthh can be resiated as:
1Yl < 325w +olIY D). ). Hence, £(E') = 2Amnll¥ ||/ for
[¥]| — oc. (21) becomes:

AL < —ol

—p
Amin{| Y]
Jel

and this implies that, for any {; > 1,
T el SN
1Y l[—oo [|¥]] P
APPENDIX II
PROOF OF THEOREM 3

Proof: Consider again the Lyapunov function: £(X) =
XMXT, Eq. (18) stil holds:

AL=2A - DI-RIMXT +
E{A-DI-R)M[A - D{I-R) (22)

Now consider the specific policy P, running. D(n) is
selected, according to (14), on the set of all possibie service
vectors Z such that ||Z}| < 1. If we choose Z as; Z =
ATl - R)™ + (1 = p)U with any U such that ||U] = 1,
then [|Z]| < 1, since: [ Z]] = JA@T - R)™ + (1 - o) <

JAT=R)"H + {1 = p)U|| = p+ (1 — p) = 1. Now:
DI-RMX7 >
AI-R)™'+ (1 - pU]I-R)MXT =

AMXT 4 (1 - p)U(I-R)MX"T (23)
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Thanks to (23), we can bound the first adder in (22);

[A—DI-R)MXT < AMXT -
AMXT — (1 - pWW({I-R)M
= (1
The second term in (22) can be treated as the second term in

(18). 1f we now evaluate {22), by combining (24) and (11),
we can write:

2
=201~ p) Zqu‘? +
g=1
6 T
Z (dqr_ du(q)) [_f(ﬂ

Now let V = T/||I|| € P it results:

XT =
—pUWT  (24)

AL <

(25)

o
1 2T
GEDp 3(q)

T ||n|ip)2“+zlilz(d’ il
F=1
Z‘”“[ uun

where we exploited the fact that, for any j, thanks to the
telescopic sum:

§ :wa,h =

_ h,j—l] _-
l

(E --.'L‘Jg)-F

hi—1
Z (zh =~ Thy1) +2p;] =25,
h=2
Furthermore, EhAr,(d dip1)® <h;—1.
As a consequence, a sufﬁc1ent condition to make the Lya-
punov function drift negative is:
20 —p) h;—1

o

which implies:
(F; — )]

=gy

lj>

APPENDIX IIT
PROOF OF COROLLARY 1

Proof: In this case from:

AL<=21-p)] Y doze(1 -

gEPy

Y dezs) (mq

qeP m

Tpiq)
+
J(Q) )

{
T )P q})] n

3 (dg — dugy)’

qEd 4y #(q)

Zi(e)

(27)

—

which, substituting D to U, becomes:

I
.
djamia) + Z ;—jfl(dj,1 +djo—2d;1d;2)

in which from (14);

—arvmaxZ—[ 1

A sufficiemt condition which ensures for any the Lyapunov
function drift 0 be negative, is:

1
2(1 - p)
Indeed, d;, = 1 only when [; —z;, > 1 and d;2 = 1 only
when x5 > 1. [ ]

—252) +dj2%;5]

<1
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