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Abstract— We consider the problem of aggregating data at a
mobile fusion center (fusor) (eg. a PDA or a cellular phone)
moving within a spatial region over which a wireless sensor
network (eg., fixed motes) has been deployed. Each sensor node
generates packets destined to the fusor, and our objective is to
develop strategies that can route the packets to the mobile fusor.

For an arbitrary (possibly random) fusor mobility pattern
over any connected subset of the sensor deployment area, we
first derive upper bounds on the aggregation data rate (i.e., the
uniform rate region from each sensor node to the mobile fusor),
where we allow all sensor nodes to have complete knowledge of
the mobility pattern of the fusor.

We then consider aggregation data rates that can be achieved
when the mobility pattern of the fusor is unknown to the sensor
nodes. Surprisingly, we show that for a class of mobility patterns
(random mobility over connected-compositions of convex sets of
the deployment region, e.g. random walks over piece-wise linear
sets), we can construct “universal” mobility-oblivious routing
strategies that achieve aggregation data rates that are of the
same order as the (mobility-aware) upper bound.

I. INTRODUCTION

Networks of sensor devices, which have the capabilities of
collecting, (wirelessly) forwarding and aggregating (fusing)
data are of increasing importance in a wide range of appli-
cations. In this paper, we consider the problem of aggregating
data at a mobile fusor device, such as a handheld PDA which
can communicate with nearby sensor nodes located over some
geographic region.

Applications involving such mobile fusors over a sensor
field are many-fold. For example, a foreman moving around
on a civil construction site can use a hand-held device to
determine the location/completion status of various objects and
construction material (e.g., piping spools or structural steel
components) which are sensor-node tagged [1]. Such just-in-
time (JIT) management – which asks for small waiting or
inspection times – on job sites can help to raise productivity
levels [2]. In this scenario, from the networking standpoint,
“status” data needs to be routed from sensor nodes to the
foreman’s handheld. However, the critical problem here is that
sensor nodes do not a-priori know the location of the foreman.
In a military context, a mobile soldier would need sensor-data
from fixed (say, randomly air-dropped) sensor devices over the
battlefield. Again, as in the construction example, the location
of the soldier may not be necessarily known to the sensor
nodes.

A naive approach to addressing the problem of communi-
cating with an “unknown” sink (the mobile fusor) is through
flooding. While flooding ensures that the mobile fusor receives
the information regardless of its position, the data rate that can
be supported is very poor. To see this, consider the following
“back-of-the-envelope” calculation.

Example 1 Consider a wireless sensor network with n nodes
randomly placed over a unit area, with each node having a
wireless radio of range r(n) (i.e., the node can communicate
with all neighbors that are within a distance of r(n)).

Now, it immediately follows that there can be no more than
1/(πr2(n)) simultaneous transmissions at any time (because
each radio transmission “covers” an area of πr2(n)). On
the other hand, to flood a single packet from a fixed node
to all other nodes in the network, there needs to be at-least
1/(πr2(n)) transmissions (this is because the packet has to
“cover” the entire area in order to reach all the nodes). These
two observations imply that for all n nodes to support a data
rate of λ(n) each, we need to satisfy λ(n) ≤ 1

n .
Observe that this data rate is extremely low – for instance,

with point-to-point routing with known source and destination
locations, we know from [3] that λ(n) = Ω(1/

√
n) is

achievable, which is a much larger rate.

A. Main Contributions

The above discussion motivates the main questions we
address in this paper:
(a) What is the “best” we can do if all sensor nodes possibly

know the location and mobility pattern of the fusor?
(b) More importantly, can we construct oblivious routing

schemes that do not have any knowledge of the location
of the fusor, and still manage to achieve data rates that
are “close” to the upper bounds? For instance, flooding
is an oblivious scheme – however, the data rate with this
strategy is very poor.

The results that we present in this paper are listed below.
(i) We first develop an upper bound in this paper for arbitrary

mobility patterns. This uses cut-set ideas (i.e., the amount
of data “flux” that can enter any set S in the network) to
construct the bound.

(ii) For fusors with good mobility patterns (which include
mobility along lines, over convex sets, and connected-
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Fig. 1. Two stage oblivious routing. A mobile fusor node moves over a
restricted set S to which packets have to be obliviously routed. The paths
of different packets are chosen independently. Note that having two stages is
critical to ensure that the second hop is uniformly random.

compositions of convex sets, and is formally defined in
Section II-B, see also Figures 3 and 4), we construct an
oblivious routing strategy that achieves aggregation data
rates which are of the same order as the (mobility-aware)
upper bound.
The main idea in our routing strategy is for each packet
from a sensor node (source) to be “spread” only over
some restricted part the network, such that this set “cuts”
the mobile fusor’s path. This is done by routing along
lines to a randomly chosen destination – but along two
random stages (see Figure 1). Two stage routing ensures
that the second stage is “random enough” over the
network (note that the first stage path is correlated for all
outgoing packets from the sensor source). Our scheme
ensures that a “sufficient” number of second-stage lines
cross any good mobility pattern (and hence, the unknown
path of the fusor). Thus, by using appropriate coding at
the sensor source, we ensure that the fusor can recover
the packets from all nodes.

B. Related Work

There has been much interest in the throughput-capacity
and delay of large wireless networks. Gupta and Kumar [3]
introduced (random) large-scale wireless network models for
studying throughput scaling in a static setting. They considered
n randomly placed nodes over a region of unit area, each with

a wireless communication radius that scaled1 as Θ(
√

log(n)
n ),

and, each node has an associated randomly chosen destination
(i.e., random source-destination pairs). They showed that for
large values of n, each source destination pair can support a
data rate (through a multi-hop relaying strategy) that scales

1We use the following notation in this paper: (i) f(n) = O(g(n)) means
that there exists a constant c and integer N such that f(n) ≤ cg(n) for
n > N . (ii) f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. (iii)
f(n) = Ω(g(n)) means that g(n) = O(f(n)), (iv) f(n) = ω(g(n))
means that g(n) = o(f(n)). (v) f(n) = Θ(g(n)) means that f(n) =
O(g(n)); g(n) = O(f(n)).

as Θ(1/
√

n log n). Other related work in the context of static
networks with different channel models and routing strategies
include [4]–[8].

In the context of mobile nodes, [9], [10] have shown that
a throughput capacity of Θ(1) can be supported, by using
mobility of nodes intelligently to minimize interference due
to packet transmissions, however, at the cost of a large delay.

The results in [3] and [9] have motivated a large body of
work that has studied the trade-off between throughput and
delay, both in the context of static and mobile networks [11]–
[18]. However, to the best of our knowledge, we are not aware
of throughput or delay results (either bounds or constructive
strategies) that address routing toward a single mobile node
that moves only over a restricted region of the domain in a
large wireless network.

In the following sections, we provide the needed definitions
and summarize our main results. In Section II, we formally
describe the models, and define the problem. We then present
the main results in Section II-D. Next, in Section III, we
present an upper bound on the aggregation data rate at the
fusor. Then, we proceed to present an algorithm (Section IV-A)
in Section IV, and show that the algorithm is (order) optimal.
We finally conclude in Section VI.

II. SETUP AND PROBLEM STATEMENT

A. Network topology

We are given n sensor nodes randomly placed over an unit
area. For concreteness we assume that the unit area is a torus,
i.e. a unit square with pair of opposite sides identified. The
x-axis of the unit torus constitutes one edge of the square,
and the y-axis of the unit torus corresponds to the orthogonal
direction (see Figure 3).

Each sensor node is capable of wireless transmission. We
assume that a node can communicate with any other node
within its transmission range r(n). The following is a well-
known property for such network, which follows from an
application of Chernoff’s bound and Union bound.

Property 1 Given n nodes thrown uniformly at random on the
unit torus, we partition the unit torus by a grid of equal sized
square tiles, with each square partition (henceforth referred
to as a cell) having area 4 log(n)/n. Then, each cell in the
torus has at least one node with high probability2. Further,
each cell contains no more than 10 log(n) node w.h.p.

Given the Property 1, it can be shown that the network is
connected w.h.p. if r(n) = 5

√
log(n)/n. Further each node

is not connected to more than 100 log(n) nodes w.h.p. The
results of this paper will qualitatively remain the same as long
as Property 1 (and hence its implication) are satisfied.

However, for ease of explanation, in the rest of this paper,
we will restrict our analysis to the random uniform node
placement on the torus with r(n) = 5

√
log(n)/n. Let G =

(V,E) denote the graph formed by these n sensor nodes, with
V representing vertices and E representing edges.

2In this paper, with high probability (w.h.p.) refers to a probability at least
1 − 1/n2, unless specified otherwise.
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Fig. 2. A mobile fusor node moves over a restricted set S of the fixed sensor
nodes V .

B. Model for Traffic, Communication and Mobile Fusor

Traffic Model: All sensor nodes generate new data at rate
λ(n). The data is generated according to an independent
exogenous process, which is assumed to be Poisson (however,
it can be any ’friendly’ arrival process such as a renewal
process with finite second moment).

The data generated by nodes is to be collected by a mobile
fusor. Data that is collected or absorbed by the mobile fusor
disappears from the network (i.e. departure of data in the
standard queueing terminology).

Mobility Model: We consider a discrete-time setup (i.e., time
is partitioned into time-slots). At each time-slot, the mobile
fusor can communicate with exactly one sensor node. Thus,
we denote the position of the mobile fusor by the index of
the sensor node it can communicate with. We assume that
the mobility pattern of the mobile fusion center (fusor) is
described by a random walk (RW) over a subset of V , denoted
by S (see Figure 2). We will assume that S is a connected
subset (where two nodes are connected with they are within
distance Θ(

√
log n/n).

The RW is arbitrary over the set S and assumed to have a
stationary distribution given by π = (π(i))i∈S on S. The fusor
changes its location along the edges of G according to the RW
at discrete time (in this paper, time will be measured in units
of the steps of this RW). Let p(S) denote the perimeter3 of
set S.

Communication Model: The mobile fusor can upload data
from the sensor node (i.e., extract data) at its current location
at a rate R(n). Throughout the paper, we assume that R(n) =
ω(1), that is it scales so that R(n) → ∞. The precise scaling
of R(n) will affect λ(n) as we shall see later in the paper.
The rate required for fusor-to-sensor communication is higher
than that of sensor-to-sensor communication, as the fusor has
to collect (at each time-slot) all the packets from a large

3Precisely, the perimeter of set S is the length of the shortest connected
piece-wise linear closed curve (i.e. loop) that is made of line-segments joining
vertices of S and geographically enclosing all the points of S.

collection of sensor nodes that have aggregated at a sensor
node.

Usually, S is a small subset of V (this is the case when
it is more realistic and question becomes interesting). Hence
sensor nodes need to route their data to S so as to be collected
by the fusor. For routing data, nodes need to transmit data
to its neighbor so as to spread it via multi-hopping. The
transmission is done over a common wireless channel. For
successful transmission, we consider the following well-known
disk model or Protocol model introduced by Gupta and Kumar
[3].

Definition 1 (Protocol model) A transmission from node i to
node j is successful if and only if the following conditions are
satisfied: (1) distance between i and j is no more than r(n),
and (2) any other simultaneously transmitting node k is at
least distance 2r(n) away from node j. When transmission is
successful, i can transmit unit amount of data to node j.

In this paper, we will use r(n) = Θ(
√

log n/n), which is
the radius of connectivity when nodes are thrown at random.
An immediate implication of this model is that each node can
transmit or receive data from other sensor nodes4 at most at
the unit rate. A useful definition about the capacity of S is
given below.

Definition 2 (Cut capacity) Given a set of nodes S ⊂ V ,
define the cut-capacity of S as the maximal sum rate at which
nodes in S can exchange (transmit or receive) data with nodes
in Sc (i.e. nodes not in S). Denote this by ρ(S).

We state the following result that relates the cut-capacity of S
with its perimeter.

Lemma 1 Consider set S with perimeter p(S). Then, under
the Protocol model with r(n) = Θ(

√
log n/n), we have

ρ(S) = O

(
p(S)

√
n

log n

)
.

Proof: We need to use the following two facts that are
direct implication of Protocol model: (1) two nodes that are
farther than 3r(n) cannot communicate with each other, (2)
among nodes within distance r(n), transmission can happen
at rate O(1).

Now to prove the above claim, lay down a square grid Grid-
1 of side 2r(n). Now, make a copy of this grid, call it Grid-
2, shift this grid by r(n) to the left and r(n) downwards.
Now, any set with perimeter p(S) cuts at most O(p(S)/r(n))
squares of Grid-1 as well as these many squares of Grid-
2 for the following simple geometric reason: to cut more
than 9 square cells of side 2r(n) by any connected curve,
the length of the curve must be at least r(n). It is not hard
to see that number of nodes that are in S and Sc that can
communicate under Protocol model with radius r(n) must
belong to the square cells of Grid-1 and Grid-2 which are
intersected by perimeter of S. Thus, the total area in which

4However, recall that the sensor node can communicate with the mobile
fusor at a higher rate of R(n).
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Fig. 3. Example of a good pickup set. The ratio of the perimeter to the
larger projection max{"x(T )(n), "y(T )(n)} for a good pickup set is a Θ(1)
quantity.

the nodes that can exchange data between S and Sc belong
is at most O(p(S)r(n)). By the Protocol model, the data rate
per area Θ(r2(n)) is unit. That is, the total rate at which data
transfer can happen between S and Sc is bounded above by
O(p(S)/r(n)). For r(n) = Θ(

√
log n/n) as selected earlier,

we have this as O(p(S)
√

n/ log n). This completes the proof
of Lemma 1.

Finally, we define a notion of equivalence of sets in terms
of capacity.

Definition 3 (Good pickup set) A set S of nodes visited by
mobile fusor is called good pickup set if there exists a collec-
tion of cells, say T = {T1, T2, . . .}, such that the following
conditions are satisfied:
(i) Connectedness condition: The cells of T form a single

connected component. Here, we call cells Ti and Tj

connected if they are neighbors of each other.
(ii) Inclusion condition: Sensor node v ∈ S if v ∈ Ti, for

some Ti ∈ T ,
(iii) Projection condition: Let %x(T ) be the length of the

projection of T on the x axis, and %y(T ) be the length
of the projection of T on the y axis. Define %(T ) =
max{%x(T ), %y(T )}. Then, %(T ) = Θ(p(S)).

The inclusion condition simply states that the set T consists
of cells which constitute the nodes in S.

The projection condition states that the perimeter of the set
S is of the same order as the longer projection of the set T on
the coordinate axes. For instance, a collection of nodes along
a line segment, a “smooth curve,” a “thin” and “long” set or
a convex set such as a circle or ellipse are good pickup sets
(see Figures 3 and 4). A set such as a comb (see Figure 5),
which has a large perimeter compared to its projection is not
a good pickup set.

C. Problem Statement

Each sensor node generates new data at rate λ(n). The
data is generated according to an independent exogenous
process, which is assumed to be Poisson (however, can be
any ’friendly’ arrival process). The data that is absorbed by

T

x

l  (T)(n)y

y 
ax

is

x axis

l  (T)(n)

Fig. 4. Example of a good pickup set. The ratio of the perimeter to the
larger projection max{"x(T )(n), "y(T )(n)} for a good pickup set is a Θ(1)
quantity.
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Fig. 5. Example of a bad pickup set. Consider the “top” line of length
Θ(1) (equivalently, Θ(

√
n/ log(n)) cells). Then, we can have

√
n/ log(n)

downward “teeth” to the comb, each of Θ(1) length. This implies that the
projection on each of the axes is a Θ(1) quantity. However, the length of
the perimeter of the set is Θ(

√
n/ log(n)). We disallow such shapes in our

analysis.

mobile fusor disappears from the network (i.e. departure of
data in the standard queueing terminology).

The primary goal in this paper is to identify the maximal
supportable rate λ(n) (for all sensors) that can be supported
by the network infrastructure and the mobile fusor so that net
unabsorbed (or undeparted) data in the network remains finite
with probability 1. We henceforth refer to this as the stability
condition.

D. Main Results

The main result of the paper is about characterization of
the maximal rate λ(n) at which data can be transmitted to S
in an oblivious manner, i.e. when sensor nodes do not know
the location/values of S,π. Specifically, our interest is in a
routing strategy that is oblivious. The precise definition is as
follows.

Definition 4 (Oblivious routing) A routing scheme is said to
be oblivious if sensor nodes that lie in the set Sc do not
have any knowledge of the location (either current position
or statistical distribution) of the fusor.
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The precise results are stated below.

Upper bound. The following is a straight forward upper
bound on λ(n).

Theorem 2 For any set S such that |S| ≤ n/2,

λ(n) = O

(
ρ(S)

n

)
.

To support rate λ(n) while keeping system stable, we need

R(n) = Ω(nλ(n)).

Further, there exists set S supporting the maximal rate λ(n) =
Θ(ρ(S)/n), for which it is required that

R(n) = Ω(ρ(S)) = Ω(|S|/ log n)

for rendering the system stable.

We note that the upper bound places no restriction on the fusor
location knowledge at sensor nodes. In other words, all sensor
nodes can know the location/values of S,π of the fusor.

Lower bound. The more surprising result is the following
matching (in order) lower bound via a simple oblivious routing
scheme. Thus, our scheme is order optimal both in terms
of maximal supportable λ(n) and R(n) requirement in an
oblivious manner.

Theorem 3 There exists a (randomized) oblivious routing and
fusor pick-up scheme so that

λ(n) = Ω
(
ρ(S)

n

)
,

and
R(n) = O (|S|/ log n) ,

if S is a good pickup set with π such that πi = Θ
(

1
|S|

)
. More

generally, R(n) = O
(

1
log n(mini πi)

)
is sufficient.

III. UPPER BOUND: PROOF OF THEOREM 2

The proof of upper bound follows using simple arguments:
For data generated by nodes outside S, it must enter set S
from Sc. Now the number of nodes outside S, i.e. |Sc| is at
least n/2. Hence, the data rate that needs enter S from outside
is Θ(nλ(n)) for any supportable λ(n).

By definition, the maximal rate at which data can enter S
is ρ(S). Hence, the above discussion immediately imply that

nλ(n) = O(ρ(S)).

Equivalently, maximal supportable λ(n) = O(ρ(S)/n).
Further, it immediately follows that we require R(n) =

Ω(nλ(n)). This is because in each time-slot, the sensor nodes
generate data (on average) at a total rate of Θ(nλ(n)). On the
other-hand, the fusor can pick up data at each time-slot at a
rate of (at most) R(n).

We next show that there exists set S (with |S| ≤ n/2) such
that for supporting this maximal rate λ(n), we require

R(n) = Ω(ρ(S))

for rendering the system stable.
Now, consider a set S consisting of a collection of say some

M square cells (each cell has side
√

n/ log(n)) on a horizontal
line. Then the number of nodes in S is Θ(M log n). Then,
ρ(S) = Θ(M). The scheme of Theorem 3 will imply that we
can support rate

λ(n) = Θ
(
ρ(S)

n

)
= Θ

(
M

n

)
.

Hence, we require that

R(n) = Ω(nλ(n)) = Ω(ρ(S)) = Ω(M) = Ω(|S|/ log n).

This completes the proof of Theorem 2.

IV. LOWER BOUND: PROOF OF THEOREM 3

To establish the proof of Theorem 3, we first present an
algorithm which we show will achieve the rate λ(n) claimed
in Theorem 3.

A. Algorithm

The algorithm has the following parts: (1) Routing of data
by nodes, (2) Scheduling of transmission, and (3) Pick up of
data by mobile fusor. These parts are described separately as
follows.

Routing. Each node generates data at rate µr(n) =
Θ

(
1/
√

n log n
)

according to a Poisson process. Let the node
be in cell, say C0. The node sends packet as follows: first
it picks two cells C1 and C2 independently and uniformly
at random from all possible Θ(n/ log(n)) cells. Then, the
packet is first sent from C0 to C1 along the straight line
joining C0 and C1 via hopping along the cells joining them.
After reaching cell C1, route the packet from C1 to C2 in the
same manner along the straight line5 (see Figure 1). During
routing, if a packet passes through a cell which contains a
node v ∈ S, then node v stores a copy of this packet in its
FCFS queue. When packet reaches the cell C2, the packet is
destroyed (however its copy is stored in nodes v ∈ S that were
on the packet’s path).

Scheduling. A non-trivial task involved along with routing
packets in the network is that of scheduling packet trans-
missions at cells while observing the Protocol model. There
are many ways in which this is usually dealt with [3], [13].
We consider the following well-known TDMA protocol. Since
transmission of a node from a cell interferes with nodes in
Θ(1) cells, transmission of cells can be scheduled so that each
cell gets Θ(1) fraction of the time to transmit. Further, the
time allocated to a cell is uniformly divided among all of its
nodes. Thus, each node gets Θ(1/ log(n)) fraction of the time
to transmit.

The above description of scheduling is sufficient for estab-
lishing the rate feasibility. However, when packets are of fixed
size and we wish to have constant delay on average per hop

5Strictly speaking, we route to nodes in the network, not cells. However,
for ease of notation and discussion, we will say that we route to a cell C1 if
we are route a packet to any node v ∈ C1.
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for packets, a sophisticated scheduling is required for packet
transmissions at the nodes. Such a scheme was used in [14].
An analogous scheme can be used in our context as well. We
refer reader to Section V and Appendix for further details.

Pick up. The mobile fusor, when present at node i ∈ S, picks
up the head-of-line R(n) packets from the FCFS queue at node
i. The fusor makes sure that it does not pick up the same
packet multiple times. We assume a simple (low-overhead)
mechanism in place to ensure this, which can be done in many
ways (for example, a handshaking mechanism at the begining
of each time-slot where list of packet IDs can be sent by
the sensor node to the fusor, based on which packets can be
selected for upload to the fusor).

B. Analysis

Our objective is to show that the effective rate achieved
by the above scheme is Ω

(
ρ(S)

n

)
. We note that under the

above described scheme, the generation rate µr(n) of each
node remains the same irrespective of the S. However, the
effective rate (i.e. number of packets reaching successfully)
depends on the properties of S.

Determining this effective rate is sufficient to show that our
scheme achieves the desired data rate. This is because sources
can do appropriate coding in the following sense. Suppose
sources find that only a fraction p of their packets reach the
mobile fusor successfully. As we shall soon see, the probability
of each packet reaching is identical and independent under
our scheme. Hence, the network can be seen as an erasure
channel between each source and the mobile fusor with the
probability of erasure being 1−p. Using appropriate codes for
an erasure channel such as MDS codes [19] or low-complexity
LDPC [20] codes can yield that the source can effectively
transmit data at rate p. We refer reader to Section V for some
additional related discussion. Hence, in what follows we will
be interested in determining effective rate at which packet
reach from source to destination.

Effective rate computation. The computation of effective rate
is divided into three parts.
(i) First, we establish that the routing scheme is feasible, i.e.,

the network load induced by the routing scheme can be
supported by the Θ(1) bandwidth that is available at each
cell.

(ii) Second, we compute the effective rate at which data en-
ters the set S which satisfies the hypothesis of Theorem 3
under the above described scheme.

(iii) Third, we show that under the hypothesis of Theorem 3,
the fusor can be pick up data at sufficient rate to render
the system stable.

(i) Feasibility of Routing: Under the routing scheme described
above, each node generates data at rate Θ(µr(n)). Thus, each
cell generates data at rate Θ(µr(n) log n) given Property 1.
As described in Section IV-A, each packet is routed in two
stages. The first stage consists of the selection of a random
cell C1 uniformly from all Θ(n/ log(n)) cells and routing

packet from C0 to C1. In a similar fashion, the second stage
involves selection of another randomly chosen cell C2, and
routing the packet from cell C1 to C2.

Property 2 Under the two stage routing for each packet, the
straight route length joining centers of C0, C1 and C1, C2 is
Θ(1) with probability at least 0.9. Since each route length is
at most

√
2, we have that a packet travels Θ(1) distance on

average during the two-stage routing.

The Property 2 implies that packet makes Θ(
√

n/ log n)
hops on average during the routing in two stages since each
hop makes the packet travel a distance r(n) = Θ(

√
log n/n).

Now each node generates packets at rate µr(n) =
Θ(1/

√
n log n). Since each packet makes Θ(

√
n/ log n) hops

on average and there are n nodes, we require that in unit-
time the total number of hops (over all flows) made is
Θ(nµr(n)

√
n/ log n), which is Θ(n/ log n). By Property 1,

each cell has Θ(log n) nodes. Subsequently, the symmetry
of the routing strategy implies that the hops are distributed
uniformly (in order). There are total Θ(n/ log n) cells. Hence,
we have a requirement of Θ(1) hops on average per cell.
By selection of an appropriate Θ(1) scaling constant, this
means that we can support the routing algorithm for a rate of
µr(n) = Θ(1/

√
n log n). This proves the feasibility of routing

scheme.

(ii) Effective Rate to S: Given the feasibility of routing, we
next compute the effective rate at which data enters the set S.
Recall that in our scheme, if a packet traverses through set S,
the data is picked up by (one or more) nodes in set S.

Lemma 4 For a good set S, under the two stage routing, a
packet enters a node in S with probability at least Ω(p(S)).

Proof: From Definition 3 of a good pickup set S, there
exists a collection of cells6 T such that these cells (and their
nodes) are inside S; %(T ) = Θ(p(S)). %x(T ) ≤ 1/6 and
%x(T ) ≥ %y(T ). That is, the whole set T can be covered
in a square of side 1/6.

Given T , we can now draw a connected curve C that passes
through cells of T and its projection on x axis, %x(C) =
Θ(p(S)) and %y(C) ≤ %y(T ). Let Cs and Ce denote the
start point and the end point of C respectively (see Figure 6).
Now, cover the curve within a square box, Bx of side at most
Θ(p(S)), which has side smaller than 1/6 by above discussion.
Since torus does not have edge effects, we can shift (translation
of origin) the coordinates such that the center of Bx is the
same as center of torus.

Now consider two thin horizontal strip Stu, Std each of
height 1/12 and width of unit length: Stu at vertical distance
1/12 from the top of Bx above it and Std at vertical distance
1/12 from bottom of Bx below it. Now for any point P ∈ Stu,
connect it with the end points of C, i.e. Cs and Ce and

6In this proof, for ease of discussion (and without loss of generality),
we assume that "(T ) ≤ 1/6, and that "x(T )(n) ≥ "y(T )(n). For, if
"(T )(n) > 1/6, we can always work with a connected subset of T which
has a projection that is ≤ 1/6.
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Fig. 6. Illustration of the construction of the region STud(P ) used in
Lemma 4.

extend these lines till they cross the strip Std completely.
Call the region in Std between these two lines’ intersection as
Stud(P ). From geometry, it is not hard to see that the area of
Stud(P ) = Θ(p(S)) for any point P . Next, we will use this
to determine the probability of packet entering S as Θ(p(S)).

To this end, note that selecting C1 and C2 for second stage
is same as choosing two points, P,Q uniformly at random in
the torus and then selecting the cells C1 and C2, where P,Q
belong to C1 and C2 respectively. Going with this probabilistic
interpretation, if we choose P in Stu and Q in Stud(P ), then
the line joining them will intersect the curve C since under
our routing scheme, we are routing along the shortest path
joining C1 and C2; by construction the shortest path must
cross the C. If the line cuts C, then it must cut a cell of
T . That is, the packet traveling along that line must enter S.
Thus, the probability of entering S is at least the probability
that first point P is in Stu and Q is in Stud(P ). This is Θ(1)
times Θ(p(S)), which is Θ(p(S)). This completes the proof
of Lemma.

Given Lemma 4, clearly the probability of each packet
reaching S is at least Θ(p(S)). Since each node generates
data at rate µr(n), we have effective rate given as

λeff = Θ(µr(n)p(S)) = Θ
(

p(S)√
n log n

)
.

By Lemma 1, we know that ρ(S) = O(p(S)
√

log n/n). From
this and above equality, we have

λeff = Ω(ρ(S)/n). (1)

Now, by Theorem 2, we know that λeff can not be larger than
O(ρ(S)/n). Thus, we have

λeff = Θ(ρ(S)/n). (2)

(iii) Pickup Rate of Fusor: The above two steps establish that
the data can be pushed in the set S at desired effective rate.

The remaining task is to show that it can be picked up by the
mobile fusor at an appropriate rate from the nodes in S.

To this end, we compute the effective rate at which data is
coming in a cell of S. Then we show that mobile fusor, under
the hypothesis of Theorem 3 can pick up data at rate higher
than this effective rate. This will complete the proof of the
desired claim.

Consider a cell that contains a node in S. Under the two
stage routing scheme, we now compute the effective rate at
which data is passing through this cell. From the computation
done to establish feasibility of the routing scheme, it can be
seen that the net data comes into a cell at rate O(1). Now,
under stationary distribution π such that πi = Θ(1/|S|), the
mobile fusor spends Θ(log n/|S|) fraction of time in each cell.
If we now choose R(n) = Ω(|S|/ log n), then the fusor will
pick up data from each cell at effective rate of

Reff = Ω
(

log n

|S| × |S|
log n

)
= Ω(1).

In this case, each cell is served at required rate and hence we
have a stable system. This completes the proof of Theorem 3.

V. DISCUSSION: CODING & SCHEDULING

Here we present some more details related to the coding
and scheduling schemes that were mention in the description
of oblivious scheme described in Section IV.

First, coding. As remarked earlier, coding is required be-
cause a packet sent by each source reaches S (and sub-
sequently is picked up by mobile fusor) with probability
p independently. Thus, the effective ’channel’ between the
source and mobile fusor can be seen as an erasure channel with
erasure probability 1− p (erasures happening independently).
Such a channel has been well-studied and many codes with
excellent performance are known. Specifically, it has been
shown that by using codes like appropriate LDPC codes
[20] (and it recent modifications like [21], [22]), with block
length of some large N , the source and mobile fusor can
communicate at rate p−εN , where εN < exp(−αN) for some
positive constant α. The coding and decoding is extremely
simple (roughly Θ(N log(N)) operations). For this reason, by
computing the value of p implies the rate as stated in Section
IV. We also refer to recent work by [23] on the use of coding
in the context of the throughput-delay trade-off for ad hoc
networks.

Now, scheduling. This essentially deals with the question
of which packet to transmit when a cell gets a transmission-
opportunity. The discussion in Section IV establishes that
there exists (such as Time-Division-Multiple-Access (TDMA))
scheduling schemes under which the routing scheme is sup-
portable. However, if one wishes to minimize (in order) the
average delay experienced by packets, we need more clever
schemes. Such schemes were designed in [14]. We describe
an adaptation of such a scheme in the Appendix.

VI. CONCLUSION

In this paper, we have studied the problem of aggregating
data at a mobile fusor moving within a restricted geographic
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region over which a wireless sensor network has been de-
ployed, and where each sensor node generates packets destined
to the fusor.

First, we have characterized the maximum data rate that
can supported from the sensor nodes to the fusor. For an
arbitrary fusor mobility pattern over any connected subset of
the sensor deployment area, we have derived an upper bound
on the aggregation data rate that can be supported at the fusor,
where we allow all sensor nodes to have complete knowledge
of the mobility pattern of the fusor.

Next, we have developed an oblivious routing strategy based
on multi-hop routing over two random segments. Using this
strategy, we have shown that for a class of mobility patterns,
we can achieve (order) optimal aggregation data rates.
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APPENDIX

SCHEDULING SCHEME

Now, we describe the schedule scheme that decides which
packets to transmit for a cell (this is a direct adaptation of
a scheme presented in [14]). To this end, we can view the
network of cells as made of Θ(n/ log n) nodes, one each
corresponding to a grid-cell in the original network. Call this
network ND of N = Θ(n/ log n) cell-nodes. An example
of such a network is given in Figure 7. Standard arguments
for Protocol model imply that each cell-node in ND gets to
transmit once in Θ(1) time-slots. For simplicity, we normalize
a time-slot so that each node gets to transmit twice in each
(normalized) time-slot: one for the “first stage” of routing,
which is used only to transmit packets that are being routed
in the first stage, and the other for “second” stage of routing
which is used only for transmission of packets which are in
the second stage of their routing.

In network ND, each node has its own queue and it is
connected to four of its neighbors. Under the routing scheme
of Section IV, packets travel from cell nodes corresponding to
C0 to C1 (resp. C1 to C2) via multi-hops through cell nodes
on the straight-line joining them in the first stage (resp. second
stage). In what follows, we describe scheduling decision for
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cell nodes for the transmissions corresponding to first stage
routing. The scheduling for second stage will follow in the
same fashion (with a little difference described at the end).

In the first stage, each node generates data for all other N−1
cells with rate Θ(µr(n)/N). Also as each cell has precisely
Θ(log n) nodes, we have that between any two cells, data is
generated at rate Θ(log nµr(n)/N). Thus, we have effectively
N2 routes, with each having rate Θ(log nµr(n)/N). Since
the original process is Poisson and the cell C1 selection is
at random, we have that the arrival process for each route is
Poisson as well. As argued before, the network is stable, i.e.
each cell node can serve all arriving data (with appropriate
choice of constants in µr(n)). Now, if we had a continuous
time network and service discipline being Pre-emptive Last-
in-First-Out, denoted as LIFO (PL), then since each packet
has deterministic service time (unit normalized time-slot), the
queue-size distribution at each node would have been product
form7 with average queue-size being O(1) due to the stability
condition of the network. But this network is discrete and
hence we need a different policy which is described next. For
this, we need some definitions.
Queuing network NC: Consider a continuous-time open net-
work, with the same topology, routing policy, exogenous
arrival process and service requirement for packets, as that of
ND. The only difference is that NC operates in continuous
time unlike ND, in which though the arrival process is
continuous time, the service happens only at the discrete times.
We have Preemptive LIFO (PL) queue management at each
server in NC (see [24] for more details). As argued above,
this network has all the desirable properties: product form
distribution, O(1) average queue-size at each node and hence
O(1) average delay at each node for a packet and Poisson
departure process. Next, will use the simulation of such a
network to induce schedule for ND.
Packet Scheduling in ND using NC: We cannot use the PL
policy of NC directly in ND because of the following reasons:

1) Due to the discrete time nature of the network ND, a
packet that is generated at time t becomes eligible for
service (i.e. next hop transmission) only at time *t+.

2) A complete packet has to be transmitted in a time-slot,
i.e. fractions of the packets cannot be transmitted. This
means that a preemptive type of service like PL is not
allowed.

To address these problems for ND, we present a centralized
scheduling policy derived from emulating in parallel, the
continuous-time network NC with PL queue management at
each server. The exogenous arrivals in both NC and ND are
the same. Let a packet arrive in NC at some server at time aC

and in ND at the same server at time aD. Then it is served in
ND using a LIFO policy with the arrival time considered to
be *aC+ instead of aD.

Clearly such a scheduling policy can be implemented if and
only if each packet arrives before its scheduled departure time.

7This is due to results on product form solutions for quasi-reversible
queuing networks. See book by Kelly [24] for details.

According to our scheduling policy, the scheduled departure
time can be no earlier than *aC+, whereas the actual arrival
time is aD. Hence for this scheduling policy to be feasible, it
is sufficient to show that aD ≤ *aC+ for every packet at each
server. Let dC and dD be the departure times of a packet from
some server in NC and ND respectively. Since the departure
time at a server is the arrival time at the next server on the
packet’s route, it is sufficient to show that dD ≤ *dC+ for
each packet in every busy cycle of each server in NC . In
what follows, we show that for all packets in any busy cycle
of any server, the departures in ND occur at or before the
departures in NC .

Lemma 5 ( [14]) Let a packet depart in NC from some
server at time dC and in ND at time dD, then dD ≤ *dC+.

Proof: Fix a server and a particular busy cycle of NC .
Let it consist of packets numbered 1, . . . , k with arrivals at
times a1 ≤ . . . ≤ ak and departures at times d1, . . . , dk. Let
the arrival times of these packets in ND be A1, . . . , Ak and
departures be at times D1, . . . , Dk. By assuming that Ai ≤
*ai+ for i = 1, . . . , k, we need to show that Di ≤ *di+ for
i = 1, . . . , k.

Clearly this holds for k = 1 since D1 = *A1+ + 1 ≤
*ai+ + 1 = *d1+. Now suppose it holds for all busy cycles of
length k and consider any busy cycle of k + 1 packets.

If *a1+ < *a2+, then because of the LIFO policy in ND

based on times ai, we have D1 = *a1++ 1 ≤ *a1++ k + 1 =
*d1+. The last equality holds since in NC , the PL service
policy dictates that the first packet of the busy cycle is the last
to depart. Also, the remaining packets would have departure
times as if they are from a busy cycle of length k.

Otherwise if *a1+ = *a2+ then the LIFO policy in ND

based on arrival times ai results in D1 = *a1++k +1 = *d1+
and the packets numbered 2, . . . , k depart exactly as if they
belong to a busy cycle of length k. This completes the proof
by induction.
Lemma 5 and the already discussed property of NC establishes
that the average delay per hop for a packet is O(1). Each
packet travels at most O(

√
N) = O(

√
n/ log n) hops. Thus,

the average delay is O(
√

n/ log n).
Finally, scheduling for second stage routing at each node is

done in the same way but with the following difference. The
packets, after they reach their resp. cell C1, wait in a special
queue till they come out in the NC network corresponding
to the first stage routing. Then, they are injected back in the
network for second stage routing. This will make sure that the
arrival process for second stage routing is also Poisson and
hence same scheme will work.
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