
Network scheduling and message-passing

Devavrat Shah

Abstract Algorithms are operational building-blocks of a network. An important
class of network algorithms deal with the scheduling of common resources among
various entities such as packets or flows. In a generic setup, such algorithms operate
under stringent hardware, time, power or energy constraints. Therefore, algorithms
have to be extremely simple, lightweight in data-structure and distributed. There-
fore, a network algorithm designer is usually faced with the task of resolving an
acute tension between performance and implementability of the algorithm. In this
chapter, we survey recent results on novel design and analysis methods for sim-
ple, distributed aka message-passing scheduling algorithms. We describe how the
asymptotic analysis methods like fluid model and heavy traffic naturally come to-
gether with algorithm design methods such as randomization and belief-propagation
(message-passing heuristic) in the context of network scheduling.

1 Introduction

We consider a queuing network in which there are constraints on which queues may
be served simultaneously. Specifically, consider a collection of queues operating in
discrete time. In each timeslot, queues are offered service according to a service
schedule chosen from a specified set. For example, in a three-queue system, the set
of allowed schedules might consist of “Serve 3 units of work each from queues A &
B” and “Serve 1 unit of work each from queues A & C, and 2 units from queue B”.
New work may arrive in each timeslot; let each queue have a dedicated exogenous
arrival process, with specified mean arrival rates. Once the work is served, it leaves
the network.

This general model has been used to describe a wireless network in which ra-
dio interference limits the amount of service that can be given to each host. It has

Devavrat Shah
Massachusetts Institute of Technology, Cambridge MA 02139, e-mail: devavrat@mit.edu

1

2 Devavrat Shah

been used to describe an input-queued switch, the device at the heart of high-end In-
ternet routers, whose underlying silicon architecture imposes constraints on which
traffic streams can be transmitted simultaneously. It has been used to describe the
overall operation of congestion control in the Internet, whereby TCP assigns trans-
mission rates to flows, subject to network constraints about the capacity on shared
links. It can even describe road junctions, where the schedule of which lanes can
move is controlled by traffic lights. Our general model is described in more detail
in Section 2. We will use examples of switch scheduling and wireless scheduling
throughout. We select these two examples, because (1) switch is the simplest non-
trivial example of general scheduling problem and of great practical importance, (2)
wireless network with scheduling constraints characterized by independent set on
interference graph encapsulates a large class of scheduling problems.

We give the name scheduling algorithm to the procedure whereby a schedule
is chosen for each timeslot. In such a setup, the basic question is about the char-
acterization of an optimal scheduling algorithm. But before that, we need to un-
derstand the notion of optimality. In order to define optimality, we consider two
important network performance metrics: throughput and delay or backlog (queue-
size) on average1. Roughly speaking, throughput optimality corresponds to utilizing
the network capacity to the fullest. Equivalently, an algorithm is called throughput
optimal if whenever the network is underloaded the backlog in the network remains
finite. The delay optimality of an algorithm is usually defined as the minimization
of various norms of delay or queue-size. We will focus on minimization of the net
queue-size in this chapter.

First, we will address the question of characterizing throughput and delay (queue-
size) optimal algorithm. It should be noted that answering this question is quite
non-trivial. The primary reason is that the algorithm has to be online (i.e. use only
network-state information like queue-size or age of packet). However, the perfor-
mance metrics like throughput and average queue-size are determined by the be-
havior of the network system over the entire time horizon (in principle infinite)
it is operating. We will start with the description of the popular maximum-weight
scheduling, called MW, introduced by Tassiulas and Ephremides [31]. It assigns a
weight to each schedule, from summing the lengths of the queues that schedule pro-
poses to serve, and choses the schedule with the largest weight. It was shown that
the MW algorithm is throughput optimal for the general network model considered
in this chapter (see Section 2). The MW algorithm is also known to induce reason-
able (polynomial in network size) average queue-size for this model. But, it is not
necessarily optimal in terms of average queue-size.

To understand the optimal algorithm both in terms of throughput and average
queue-size, Keslassy and McKeown [14] considered a class of MW algorithms,
called MW-α for α > 0. Like MW algorithm, MW-α algorithm also uses the sched-
ule with maximum weight. However, MW-α uses the queue-size to power α as
weight instead of plain queue-size. Clearly, the MW algorithm is MW-α algorithm
when α = 1. The MW-α algorithm is throughput optimal for all α > 0. The natural

1 Due to general result like Little’s law for stable system, we will use delay and queue-size or
backlog interchangeably throughout.

Network scheduling and message-passing 3

question is: how does queue-size change with value of α? In [14], through an ex-
tensive empirical study in the context of input-queued switch, it was found that the
average queue-size decreases monotonically as α → 0+. This led them to conjecture
that MW-0+ is optimal in the class of MW-α algorithms, α > 0. In Section 3, we
will provide partial justification to this claim using the critical fluid model of the net-
work. Specifically, an algorithm is called queue-size optimal if it induces minimal
queue-size in its critical fluid model. The justification provided in this chapter shows
that the MW-0+ algorithm (i.e. limit of MW-α algorithm as α → 0+) is queue-size
optimal among all the scheduling algorithm, not just in the class of MW-α algo-
rithm, in this critical fluid model. This justification holds for the general network
model of this chapter, not just for input-queued switch. This result was recently
established by Shah and Wischik [26].

The characterization of MW-0+ as an optimal algorithm suggests that finding
a good schedule requires solving a certain global (network-wide) combinatorial
optimization problem every time. In order to be implementable, this necessitates
the design of simple and distributed algorithms for such combinatorial optimiza-
tion problems. In the second part of this chapter, we describe an extremely simple,
randomized message-passing scheduling algorithm that is shown to be throughput
optimal essentially for all known examples. This algorithm uses clever distributed
summation algorithm along with a simple random sampler. The algorithm will be
explained in detail through examples of switch scheduling and wireless scheduling
in Section 4.

This randomized algorithm, though simple and throughput optimal, can induce
very large (exponential in size of the network) average queue-size. Now, when
scheduling constraints have simple structure (e.g. matching in switches), the algo-
rithm performs very well even in terms of queue-size. However, when scheduling
constraints have complex structure (e.g. independent set in wireless network), the
algorithm induces exponentially (in network size) large queue-size. More generally,
impossibility of any simple (polynomial time) centralized or distributed algorithm,
that is throughput optimal and has low (polynomial size) delay, is established when
scheduling constraints are complex enough (e.g. independent set) (see recent result
by Shah, Tse and Tsitsiklis [24]).

Therefore, a pragmatic approach is to design simple, distributed algorithm that
provides terrific performance when the underlying problem structure is simple and
works as a reasonable heuristic when problem structure is hard. In the last part of
this chapter in Section 5, we describe such an algorithm design method based on
belief propagation (BP). The BP has recently emerged as a very successful heuristic
for hard combinatorial problems. We present BP based scheduling algorithm for
switches (matching) and wireless networks (independent set). These algorithms are
exact when underlying problem have certain LP relaxation tight; and work as a
reasonable heuristic otherwise.

We take note of the limitation of this chapter in that there is a lot of exciting work
done in the past decade or two on the topic of network scheduling (e.g.[2, 11, 29, 20,
27]) and it is not discussed here for natural reasons. An interested reader is strongly
encouraged to explore these results.

4 Devavrat Shah

2 Model

This section describes an abstract model of the queuing network that we will con-
sider. Though the model described here corresponds to single-hop network for con-
venience, most of the analytic and algorithmic results stated here should apply for
general multi-hop network with appropriate changes. The examples of switch and
wireless scheduling, which are special cases of the model, are described in detail
and will be useful throughout the chapter.

2.1 Abstract formulation

Consider a collection of N queues. Let time be discrete, indexed by τ ∈ {0,1, . . .}.
Let Qn(τ) be the size of queue n at the beginning of timeslot τ , and write Q(τ) for
the vector [Qn(τ)]1≤n≤N . Let Q(0) be the prespecified vector of initial queue sizes.

In each timeslot, each queue is offered service subject to a scheduling constraint
described below. If the amount of service offered to a queue is larger than the queue
size, then we say that the queue has idled, otherwise it does not idle. Once work is
served it leaves the network. New work may arrive in each timeslot; let each of the
N queues have a dedicated exogenous arrival process.

The scheduling constraint is described by a finite set of feasible schedules S ⊂
R

N
+. In every timeslot a schedule π ∈ S is chosen; queue n is offered an amount of

service πn in that timeslot. For example, in the case of input-queued switch, S is
the set of all matchings between input ports and output ports; in the case of wireless
network, S is the set of independent sets in the interference graph. For simplicity,
we will restrict ourselves to S such that S ⊂{0,1}N; that is, for any π ∈S , πn = 1
(queue n has received unit amount of service) or 0 (queue n receives no service). We
will also assume that S is monotone: if π ∈S then for any σ ≤ π component-wise,
i.e. σn ≤ πn for all n, σ ∈ S .

Let Sπ(τ) ∈ R+ be the total length of time up to the end of timeslot τ in which
schedule π has been chosen, and let Sπ(0) = 0. Let Zn(τ) be the total amount of
idling at queue n up to the end of timeslot τ , and let Zn(0) = 0. Let An(τ) be the
total amount of work arriving to queue n up to the end of timeslot τ , and A n(0) = 0.
We will take A(·) to be a random process. Define the arrival rate vector λ by

λn = lim
τ→∞

1
τ

An(τ) (1)

and assume that this limit exists almost surely for each queue. For simplicity, we will
assume the following about the arrival process: An(τ + 1)−An(τ) are independent
across τ and n, identically distributed for a given n but different τ , have support on
integer values only and are bounded. A simplest example of the above is A n(·) being
Bernoulli i. i. d. process with parameter λn.

Network scheduling and message-passing 5

We will use the convention that Q(τ) is the vector of queue sizes at the beginning
of timeslot τ , and then the schedule for timeslot τ is chosen and service happens,
and then arrivals for timeslot τ happen. Define the cumulative offered service vector
Σ(τ) = [Σn(τ)] as Σ (τ) = ∑π∈S πSπ(τ). Then,

Qn(τ) = Qn(0)+An(τ)−Σn(τ)+Zn(τ) (2)

Zn(τ)−Zn(τ −1) = max
(

0,Σn(τ)−Σn(τ −1)−Qn(τ −1)
)

(3)

2.1.1 Notation

Finally, some notation. We will reserve bold letters for vectors in R
N . Let 0 be the

vector of all 0s, and 1 be the vector of all 1s. Let 1{·} be the indicator function, 1true =
1 and 1false = 0. Let x∧y = min(x,y) and x∨y = max(x,y) and [x]+ = x∨0. When x
is a vector, the maximum is taken componentwise. Use the norm |x| = max i |xi| for
vectors x. For vectors u and v and functions f : R → R, let

u·v =
N

∑
n=1

unvn, and f (u) =
[
f (un)

]
1≤n≤N

Let N be the set of natural numbers {1,2, . . .}, let Z+ = {0,1,2, . . .}, let R be the
set of real numbers, and let R+ = {x ∈ R : x ≥ 0}.

2.2 Scheduling algorithms

For our purposes, one scheduling algorithm is particularly interesting: the Maxi-
mum Weight (MW) scheduling algorithm, which works as follows. Let Q(τ) be the
vector of queue sizes at the beginning of timeslot τ . Define the weight of a schedule
π ∈ S to be π ·Q(τ). The algorithm then chooses for timeslot τ a scheduling with
the greatest weight (breaking ties arbitrarily). This algorithm can be generalized to
choose a schedule which maximizes π·Q(τ)α , where the exponent is taken compo-
nentwise for some α > 0; call this the MW-α algorithm. In this paper, we will study
the MW-α algorithm in detail. More generally, one could choose a schedule π such
that

π· f (Q(τ)) = max
ρ∈S

ρ· f (Q(τ)) (4)

for some function f : R+ → R+; call this the MW- f algorithm. We will assume the
following about f .

Assumption 1 Assume f is differentiable and strictly increasing with f (0) = 0.
Assume also that for any q ∈ R

N
+ and π ∈ S , with m(q) = maxρ∈S ρ· f (q),

π· f (q) = m(q) =⇒ π· f (κq) = m(κq) for all κ ∈ R+.

6 Devavrat Shah

The MW- f algorithm is myopic, i.e. it chooses a schedule based only on the current
queue sizes and doesn’t need to try to learn traffic parameters etc. An important
reason for the popularity of the MW algorithm is that MW- f is the only class of
myopic scheduling algorithms known to have the largest possible stability region,
for a large class of constrained scheduling problems. The MW algorithm was first
proposed by Tassiulas and Ephremides [31]. Later, it was proposed by McKeown,
Ananthram and Walrand in the context of switches [16]. The MW- f algorithm has
been studied in detail by various researchers, including [22, 14, 1].

2.3 Input-queued switch

Here we describe input-queue switch as a special instance of the abstract network
model. An Internet router has several input ports and output ports. A data trans-
mission cable is attached to each of these ports. Packets arrive at the input ports.
The function of the router is to work out which output port each packet should go
to, and to transfer packets to the correct output ports. This last function is called
switching. There are a number of possible switch architectures; we will consider the
commercially popular input-queued switch architecture.

Figure 1 illustrates an input-queued switch with three input ports and three output
ports. Packets arriving at input i destined for output j are stored at input port i, in
queue Qi, j. The switch operates in discrete time. In each timeslot, the switch fabric
can transmit a number of packets from input ports to output ports, subject to the two
constraints that each input can transmit at most one packet and that each output can
receive at most one packet. In other words, at each timeslot the switch can choose
a matching from inputs to outputs. Figure 1 shows two possible matchings. In the
left hand figure, the matching allows a packet to be transmitted from input port 3 to
output port 2, but since Q3,2 is empty no packet is actually transmitted. The specific
matching of inputs to outputs in each timeslot is chosen by the scheduling algorithm.

Input
ports

Output ports

input 1

input 2

input 3

output 1 output 2 output 3

Fig. 1 An input-queued switch, and two example matching of inputs to outputs.

To connect back to the abstract formulation, note that an N-port switch has n =
N2 queues; in the context of switch, we will always use notation of Qi j instead of

Network scheduling and message-passing 7

notation of Qn so as to be clear in referencing the corresponding input and output
for a queue. The set of all feasible schedules S correspond to the set of all complete
matchings in an N×N complete bipartite graph. Formally,

S =

{
π = [π i j] ∈ {0,1}N×N :

N

∑
k=1

π ik = 1,1 ≤ i ≤ N;
N

∑
k=1

πk j = 1,1 ≤ j ≤ N

}
.

The MW (or MW-1) scheduling algorithm, therefore chooses a matching as the
schedule that is one of the possibly many solutions of the following combinatorial
optimization problem: let Q(τ) = [Qi j(τ)] be queue-sizes at timeslot τ , then the
schedule π(τ) at timeslot τ solves:

maximize
N

∑
i, j=1

πi jQi j(τ) over π i j ∈ {0,1},1 ≤ i, j ≤ N (5)

subject to
N

∑
k=1

π ik = 1, 1 ≤ i ≤ N;
N

∑
k=1

πk j = 1, 1 ≤ j ≤ N.

The above optimization problem is the well-known Maximum Weight Match-
ing(MWM) problem. Therefore, designing MW scheduling algorithm will involve
solving this optimization problem every timeslot.

Some notes on the input-queued switch architecture. (1) We have illustrated a
switch with as many inputs as outputs. It may be that some of these do not actu-
ally carry any traffic; thus there is no loss of generality in assuming as many inputs
as outputs. (2) In the Internet, packets may have different sizes. Before the packet
reaches the switch fabric, it will be fragmented into a collection of smaller packets
(called cells) of fixed size. (3) There will typically be a block of memory at each
input port for the queues, and one packet’s worth of memory at each output port to
hold the packet as it is serialized onto the outgoing cable. Memory access speeds are
a limiting factor, and indeed the time it takes to read or write a packet from memory
is what determines the length of a timeslot. There are switches which perform sev-
eral matchings per timeslot—but then the timeslots need to last several times longer,
to give time for the extra reads and writes.

2.4 Wireless networks

Consider several wifi networks close to each other and sharing the same frequency.
If two devices close to each other transmit at the same time, then there is interference
and the data may be lost; whereas two devices far from each other may successfully
transmit at the same time. A popular way to model this sort of interference is to
draw a graph with a node for each device and an edge between two nodes if they
can interfere with each other; in other words a transmission from a node is successful

8 Devavrat Shah

only if none of its neighbors in the network graph is transmitting at the same time.
(This is called the independent set model for interference.)

Figure 2 illustrates a wireless network of three nodes operating under interference
constraints. Here, like switch packets arriving at node i and destined for node j are
stored at node i in queue Qi, j. For example, the queue Q2,3 shown in the Figure 2
stores packet destined for node 3 arrived at node 2. The independent set constraint
on scheduling, in our example, implies that at a given timeslot at most one of the
three node can transmit. Figure 2 shows that node 3 is selected for transmission
while other two nodes remain silent; and node 3 transmits packet to node 2.

Independent set
node 2

node 1

node 3

Q23

Fig. 2 A wireless network operating under interference constraint, and an example independent
set (node 3) schedule for transmission from 3 to 2.

In a general wireless network, the interference network graph is represented as
G = (V,E) with vertices corresponding to nodes, V = {1, . . . ,N} and edges corre-
sponding to interference, that is

E = {(i, j) : i and j interfere with each other}.

An implicit assumption here is that any node i ∈ V can transmit packets to node j
only if (i, j) ∈ E. We will consider a single-hop wireless network, that is each packet
arrives at one node, gets transmitted to one of its neighbors and then departs the
network. In such setup, if a node i transmits (to any of its neighbors), then all of
i’s neighbors must be silent. Therefore, the real constraint lies in deciding whether i
transmits or not; but not in which node it transmits. Therefore, for simplicity we will
ignore the finer classification of queue-sizes as Qi j but instead consider Qi = ∑ j Qi j

here for the purpose of scheduling. In this setup, the set of schedules is the set of
independent sets in G. Formally,

S =
{

σ = [σi] ∈ {0,1}N : σi + σ j ≤ 1, for all (i, j) ∈ E
}

.

Network scheduling and message-passing 9

The MW (or MW-1) scheduling algorithm, therefore chooses an independent set as
the schedule that is one of the possibly many solutions of the following combinato-
rial optimization problem: let Q(τ) = [Qi(τ)] be queue-sizes at timeslot τ , then the
schedule σ(τ) at timeslot τ solves:

maximize
N

∑
i

σiQi(τ) over σi ∈ {0,1},1 ≤ i ≤ N, (6)

subject to σi + σ j ≤ 1, for all (i, j) ∈ E.

The above optimization problem is the well-known Maximum Weight Independent
Set(MWIS) problem. Therefore, designing MW scheduling algorithm will involve
solving this optimization problem every timeslot.

Some notes on the described wireless network. (1) In the multi-hop network, the
MW scheduling corresponds to solving MWIS problem with somewhat different
weights (e.g. Back-pressure algorithm [31]). Therefore, for the purpose of schedul-
ing algorithm design, the above model captures the essence. (2) The above describe
model of interference is general in the following sense. Many of the combinatorial
interference models such as 2-hop matching model (secondary interference model)
can be represented as an independent set model by representing transmission edges
as nodes; and such transformations are computationally equivalent (formally, they
are reductions). (3) We note that there are other models of interference (e.g. SINR
model) that can not be captures by hard constraints of the type of independent set
model.

3 Characterization of optimal algorithm

This section presents characterization of optimal scheduling algorithms first in terms
of throughput and then in terms of queue-size. The algorithms considered here are
part of the maximum weight (MW) family. Interestingly enough, as explained in this
section, considering this class of algorithm is sufficient for the purpose of finding
throughput and queue-size optimal algorithm. This section will utilize fluid-model
technique. The contents of this section can be found in a recent paper by Shah
and Wischik [26]. We note that fluid model for MW scheduling algorithm was first
introduced in the context of switch by Dai and Prabhakar [9] and later used by
Andrews et. al. [1].

3.1 Throughput optimality

Here, we will establish that all the MW- f algorithms are throughput optimal as long
as f satisfies Assumption 1. First, some necessary definitions.

10 Devavrat Shah

Admissible arrival rates. At each timeslot, a schedule π ∈ S must be chosen. Let
Θ be the convex hull of S ,

Θ =
{

∑
π∈S

απ π : ∑
π∈S

απ = 1, and απ ≥ 0 for all π
}

. (7)

We say that an arrival rate vector λ is admissible if λ ∈ Λ where

Λ =
{

λ ∈ R
N
+ : λ ≤ σ componentwise, for some σ ∈Θ

}
. (8)

Intuitively, this means that there is some combination of feasible schedules which
permits all incoming work to be served. Also define

Λ◦ =
{

λ ∈ Λ : λ ≤ ∑
π∈S

απ π , where ∑
π∈S

απ < 1 and απ ≥ 0 for all π
}

∂Λ = Λ \Λ◦.

Say that λ is strictly admissible if λ ∈ Λ ◦, and that λ is critical if λ ∈ ∂Λ .

Fluid model. The fluid model is essentially the first-order deterministic descrip-
tion of the network. To obtain this formally, we need to consider the fluid scal-
ing of the original system. Next, we describe a scaling procedure to obtain a se-
quence of (network) systems from the given system, indexed by r ∈ N. Write
Xr(τ) = (Qr(τ),Ar(τ),Zr(τ),Sr(τ)), τ ∈ Z+, for the rth system. Define the scaled
system xr(t) = (qr(t),ar(t),zr(t),sr(t)) for t ∈ R+ by

qr(t) = Qr(rt)/r ar(t) = Ar(rt)/r

zr(t) = Zr(rt)/r sr
π(t) = Sr

π(r′t)/r′

after extending the domain of X r(·) to R+ by linear interpolation in each interval
(τ − 1,τ). We describe fluid model equations, which are essentially satisfied by
limiting system Xr(·) as r → ∞. We say that the process x(·) = (q(·),a(·),z(·),s(·))
satisfies the fluid model for the MW- f scheduling algorithm if

a(t) = λ t (9)

q(t) = q(0)+a(t)−∑
π

sπ(t)π + z(t) (10)

∑
π∈S

sπ(t) = t (11)

each sπ(·) and zn(·) is increasing (not necessarily strictly increasing) (12)

all the components of x(·) are absolutely continuous (13)

for almost all t, all n, żn(t) = 0 if qn(t) > 0 (14)

for almost all t, all π ∈ S , ṡπ(t) = 0 if π· f (q(t)) < max
ρ∈S

ρ· f (q(t)) (15)

Network scheduling and message-passing 11

Our goal is to establish that the dynamics of xr(t), for t in a fixed interval [0,T],
as r → ∞ satisfies the above stated fluid model equations. We make the following
necessary assumption in addition to the setup described so far: the initial size is
non-random and that it converges,

qr(0) → q0 for some q0 ∈ R
N
+. (16)

Theorem 1 (Theorem 5.1[26]). Make assumption (16). Let FMS 2 be the set of all
processes x(t) over t ∈ [0,T] which satisfy the appropriate fluid model equations,
namely

• equations (9)–(14), for any scheduling algorithm,
• equation (15) in addition if the network is running MW- f and Condition 1 holds,
• q(0) = q0 in addition, if (16) holds.

Let FMSε be the ε-fattening

FMSε =
{

x : sup
t∈[0,T]

|x(t)− y(t)|< ε for some y ∈ FMS
}

.

Then for any ε > 0, P(xr(·) ∈ FMSε) = 1−o(R(r)), where R(r) → 0 as r → ∞.

Fluid stability and throughput optimality. A fluid model is said to be stable if there
is some draining time H ∈ R+ such that every fluid model with bounded initial
queue size |q(0)| ≤ 1 ends up with q(t) = 0 for all t ≥ H. It is said to be weakly
stable if every fluid model with empty initial queues q(0) = 0 remains at q(t) = 0 for
all t ≥ 0. In lecture notes by Dai[8], Section 2.6 describes the relationship between
stability of the fluid model and stability of the original (unscaled) stochastic process.
Theorem 1 stated above suggests the spirit of the relationship. In our setup, the
weakly stable fluid model implies that the system is rate stable. That is, let D(τ) =
[Dn(τ)] denote the vector of cumulative number of packets that has departed from
from queues till timeslot τ . Then, weakly stable fluid model implies

lim
τ→∞

D(τ) = λ , with probability 1.

Here, we will seek weak stability only and we will call an algorithm throughput
optimal if it is weakly stable. However, it should be noted that under our assumptions
on arrival process, the strong stability3 holds (and can be established either using the
fluid model or discrete Foster-Lyapunov criteria). We will obtain weak stability for
networks by considering the Lyapunov function

L(q) = F(q)·1 where F(x) =
∫ x

0
f (y)dy. (17)

2 The abbreviation FMS is used for ”fluid model solution”.
3 We call a network strongly stable if it is positive recurrent.

12 Devavrat Shah

The first claim of Lemma 1, together with the fact that L(q) = 0 ⇐⇒ q = 0, implies
that the fluid model for MW- f is weakly stable for λ ∈ Λ . Further, it can be shown
that the fluid model is stable for λ ∈ Λ ◦; this can be proved by writing an explicit
bound for L̇(q(t)) in terms of maxπ π·q(t), then using the technique of [28].

Lemma 1. For λ ∈ Λ , every fluid model solution satisfies dL(q(t))
dt ≤ 0. For λ ∈ Λ ◦,

every fluid model solution satisfies dL(q(t))
dt < 0. Furthermore,

dL(q(t))
dt

= λ · f (q(t))−max
π∈S

π· f (q(t))

and

λ · f (q)−max
π∈S

π· f (q) ≤ 0 for all q ∈ R
N
+.

Proof.

d
dt

L(q(t)) =
dq(t)

dt
· f (q(t))

=
(

λ − ∑
π∈S

ṡπ(t)π + ż(t)
)
· f (q(t)) by differentiating (10)

=
(

λ −∑
π

ṡπ(t)π
)
· f (q(t)) by (14), using f (0) = 0

= λ · f (q(t))−max
ρ∈S

ρ· f (q(t)) by (15).

When λ ∈ Λ , we can write λ ≤ σ componentwise for some σ = ∑π απ π with
απ ≥ 0 and ∑απ = 1. This yields dL(q(t))

dt ≤ 0. When λ ∈Λ ◦, the same holds except

with ∑απ < 1, which yields dL(q(t))
dt < 0. �

When we use this result, we almost always implicitly pair it with a standard fact
which is worth stating here: if f : R+ →R is an absolutely continuous function, and
ḟ (t) ≤ 0 at almost all t, then f (t) ≤ f (0) for all t ≥ 0.

3.2 Queue-size optimality

The above results suggest that there is a large class of algorithms that are throughput
optimal. Here, we will search for an algorithm that produces optimal performance in
terms of queue-size as well. Clearly, identifying such an algorithm 4 in an absolute
sense is a challenging question and is an open problem worth pursuing.

In this chapter, we will rely on fluid model characterization to seek an asymptotic
answer to this question. We will restrict our search to special subclass of MW- f al-

4 This algorithm should be online, i.e. utilize only the history of the network.

Network scheduling and message-passing 13

gorithms, the MW-α algorithms for α ∈ R+. Recall that the MW-α algorithm uses
f (x) = xα as the weight function. The reason for this restriction is two fold. First, the
average queue-size performance of MW-α scheduling algorithms was extensively
studied (empirically) in the context of input-queued switch by Keslassy and McK-
eown [14]. They had observed that as α → 0+, the average queue-size descreases.
This led them to conjecture that MW-0+ algorithm is an optimal (in the class of
MW-α) algorithm with respect to its performance in terms of average queue-size.
Second, the MW-α are a large class of algorithms and lend themselves to analytic
tractability. Therefore, an optimist would take the conjecture of [14] one step ahead
by hoping that MW-0+ algorithm is optimal among all possible scheduling algo-
rithms.

As we shall see, an optimist’s perspective is indeed true; not only for switch,
but for the general setup of network considered in this chapter. We again take note
of the following limitation of the details provided in the remainder of this section.
The justification of the optimality of MW-0+ is partial, because the optimality is
established for the fluid scaled queue-size. However, it is non-trivially important for
two reasons. First, if MW-0+ is optimal in terms of, say average (not fluid scaled)
queue-size then it ought to be optimal with respect to fluid scaled queue-sizes as
well. Second, optimality with respect to fluid scaling does imply5 an approximate
optimality in terms of average queue-size at the original scaling.

The presention in this section follows [26] very closely. In what follows, we
will formally introduce critical fluid model and queue-size optimality. Then, we
will indulge into a minor digression by introducing various definitions in order to
be able to state the main result of this section formally. An impatient and curious
reader may skip this digression in the first read and jump directly to the Theorem 2.
Finally, we will discuss the implications of this result in terms of the structure of the
optimal algorithm.

Critical fluid model. Consider the network operating under MW-α scheduling al-
gorithm with arrival rate λ ∈ Λ . Let q(t) denote the fluid scaled queue-size vector.
That is, q(t) satisfies the fluid model equations (9)–(15) (with f (x) = xα) starting
with some finite initial queue-size vector q0 at t = 0. We are interested in the net
queue-size of the network, that is ∑n qn(t), which we will denote by 1·q(t). Now,
suppose λ ∈Λ ◦. Then Lemma 1 suggests that as t → ∞, the Lypanov function value
L(q(t)) → 0 under MW-α algorithm for any α > 0. Therefore, 1·q(t)→ 0 for MW-
α algorithm for any α > 0. Thus, using fluid model the performance of MW-α
algorithms, in terms of the net queue-size at all time t, can not be differentiated if
λ ∈ Λ◦. Therefore, in order to obtain any conclusive statement using fluid model,
we need to restrict our attention to λ ∈ ∂Λ . We will call such a system critically
loaded as λ is on the boundary of the capacity region of the system.

5 This is not immediate and an interested reader will have to dig through the proof of Theorem
1. In particular, the approximation error introduced by fluid models in approximating the original
system need to be quantified. Of course, it will lead to “probabilistically approximately correct”
characterization which will depend on distributional characterization of arrival process in our setup.

14 Devavrat Shah

The fluid model obtained for such a critically loaded system is called the criti-
cal fluid model. Apart from the use of critical fluid model for studying queue-size
scaling as in this chapter, the critical fluid model has been utilized as an important
technical tool to establish the so called state-space collapse property under heavy
traffic asymptotic. This turns out to be an important intermediate step to obtain the
heavy traffic characterization of networks (an interested reader is strongly recom-
mended to check an excellent sequel of papers by Bramson and Williams [7, 33] to
find out more about this).

Queue-size optimality: a formal definition. Now, we formally define the notion
of queue-size optimality for the purpose of this chapter. Consider a scheduling algo-
rithm A . By Theorem 1, there exists vector of queue-sizes qA (t) satisfying (9)–(14)
for any λ ∈ ∂Λ with some initial queue-size vector qA (0) = q0 ∈ R

N
+. We call the

algorithm A as a (1 + φ)-approximation algorithm, φ ≥ 0, if the following holds:
for any other scheduling algorithm B with the same initial condition and arrival
process, its (fluid scaled) queue-size vector qB(t) is such that for all t ≥ 0,

1·qA (t) ≤ (1+ φ)1·qB(t), (18)

for all choices of λ ∈ ∂Λ and all initial configuration q0 ∈ R
N
+.

We call an algorithm queue-size optimal, if it is 1-approximation algorithm. In
what follows, we will state that MW-α algorithm is N

α
1+α -approximation algorithm.

Therefore, it is (1+δ) approximation when α = ln(1+δ)/ lnN ≈ δ/ lnN for δ > 0.
Thus, as α → 0+ the MW-α algorithm becomes 1+-approximation algorithm and
hence essentially optimal.

Some necessary definitions. Here, we state some necessary definitions in order to
state the main result about MW-α algorithms’s approximate performance formally.
Given λ ∈ Λ , first consider the optimization problem PRIMAL(λ):

minimize ∑
π∈S

απ

over απ ∈ R+ for all π ∈ S

such that λ ≤ ∑
π∈S

απ π componentwise

This problem asks whether it is possible to find a combination of schedules which
can serve arrival rates λ ; clearly λ is admissible if and only if the solution to the
primal is ≤ 1. Now consider its dual problem DUAL(λ):

maximize ξ ·λ
over ξ ∈ R

N
+

such that max
π∈S

ξ ·π ≤ 1

Network scheduling and message-passing 15

The solution is clearly attained when the constraint is tight. Given a queue size
vector Q and any dual-feasible ξ satisfying the constraint with equality, call ξ ·Q the
workload at the virtual resource ξ . The virtual resource specifies a combination of
several actual resources (namely the queues themselves). The long-run rate at which
work arrives at the virtual resource is ξ ·λ , and the maximum rate at which it can be
served is 1.

A concrete example. Consider a system with N = 2 queues, A and B. Suppose the set
S of possible schedules consists of “serve three packets from queue A” (schedule
1) and “serve one packet each from A and B” (schedule 2). Let λ A and λB be the
arrival rates at the two queues, measured in packets per second.
PRIMAL description. Schedule 2 is the only action which serves queue B, so we
need to perform schedule 2 at least λB times per second. There’s no point performing
schedule 2 any more than this. This allows for serving λ B packets per second from
queue A, so we additionally need to perform schedule 1 at a rate of [λ A − λB]+/3
times per second. If we’re only allowed to choose one schedule per second, we
require λB ≤ 1 and λA/3+ 2λB/3 ≤ 1.
DUAL description Define a virtual resource W as follows. Every time a packet ar-
rives to queue A put ζA ≥ 0 tokens into W ; every time a packet arrives to queue B put
ζB ≥ 0 tokens into W . The most tokens that schedule 1 can remove from W is 3ζ A,
and the most tokens that schedule 2 can remove from W is ζ A +ζB. We may as well
normalize (ζA,ζB) so that the largest of these is 1. The total rate at which tokens
arrive is λAζA +λBζB. If we’re only allowed to choose one schedule per second, we
need this to be ≤ 1.

Set ζA = 1/3 and ζB = 2/3, and we recover the PRIMAL constraint that λA/3+
2λB/3 ≤ 1. Set ζA = 0 and ζB = 1, and we recover the PRIMAL constraint that
λB ≤ 1.

Critical workloads. Both problems are soluble so, by strong duality, the solutions to
both problems are equal. Clearly the solutions to the optimization problems is ≤ 1
for any λ ∈ Λ . For λ ∈ Λ ◦ it is < 1, and for λ ∈ ∂Λ it is = 1. When this is so, we
call the solutions to the dual problem the critically-loaded virtual resources.

Let S ∗ = S ∗(λ) be the set of all critically loaded virtual resources that are ex-
treme points of the feasible region. Call these the principal critically-loaded virtual
resources. Note that the feasible region is a polytope, therefore S ∗ is finite; and that
the feasible region is convex, therefore any critically-loaded virtual resource ζ can
be written

ζ = ∑
ξ∈S ∗

xξ ξ with ∑xξ = 1 and all xξ ≥ 0. (19)

The critical workloads have a useful property. Suppose λ ∈ Λ , and λ ≤ σ for
some σ ∈ Σ , as per the definition of Λ . Then

ξn > 0 for some critically-loaded ξ =⇒ λn = σn (20)

In words, if queue n is critical, then it is not possible to reduce it without increasing
some other queue. To see this, pick some critically-loaded ξ with ξ n > 0. Then

16 Devavrat Shah

ξ ·σ ≥ ξ ·λ since σ ≥ λ . Also ξ ·λ = 1 since ξ is critical, and ξ ·σ ≤ 1 since ξ is
feasible for DUAL(σ), and PRIMAL(σ) ≤ 1. Therefore there is equality, therefore
λn = σn.

Example: input-queued switch. Consider a switch with N input ports and N output
ports. Let λi j be the arrival rate at the queue at input port i of packets destined for
output port j, λ ∈ R

N×N
+ . This means there are N2 queues in total, not N. This fits

with the notation used to describe the input-queued switch in the earlier section,
and it is more convenient than the notation for the general network from Section 2.
The set S is the set of all matching in N ×N complete bipartite graph or N ×N
permutation matrices. The Birkhoff–von-Neumann decomposition result says that
any doubly substochastic matrix is less than or equal to a convex combination of
permutation matrices, which gives us

Λ =

{
λ ∈ [0,1]N×N :

N

∑
j=1

λî, j ≤ 1 and
N

∑
i=1

λi, ĵ ≤ 1 for all î, ĵ

}
.

It is easy to check that

∂Λ =

{
λ ∈ Λ :

N

∑
j=1

λî, j = 1 or
N

∑
i=1

λi, ĵ = 1 for at least one î or ĵ

}

We propose the following set S ∗ of principal critically-loaded virtual resources.
This set is obtained from the row and column indicators r î and c ĵ, defined by
(rî)i, j = 1i=î and (c ĵ)i, j = 1 j= ĵ. We also need

N =
{

n ∈ {0,1}N×N : ni, j = 1 if λi, j > 0
}

Then

S ∗ =
{

rîn for n ∈ N and î such that ∑
j

λî, j = 1
}
∪

{
c ĵn for n ∈ N and ĵ such that ∑

i
λi, ĵ = 1

}

The virtual resource r1, for example, corresponds to the constraint that at most one
packet can be served from input port 1 in any timeslot, therefore the total arrival rate
at input port 1 must be ≤ 1. If say λ1,3 = 0 then the total arrival rate to the remaining
N − 1 queues at input port 1 must also be ≤ 1, and this corresponds to the virtual
resource r1n for ni, j = 1i>1 or j �=3.

It is easy to see that every ξ ∈ S ∗ is a critically-loaded virtual resource, and it
is not hard to check that they are all extreme as well. To show (19) requires some
more work.

First, we remark upon a dual to the Birkhoff–von-Neumann decomposition. Let

Network scheduling and message-passing 17

D =
{

rî for all î
}∪{c ĵ for all ĵ

}
.

Then, given any vector ζ ∈ R
N×N
+ for which maxπ∈S ζ ·π ≤ 1, we can find some ζ ′

which is a convex combination of elements of D such that ζ ≤ ζ ′ componentwise.
This is because DUAL(ζ) ≤ 1 when taken with respect to the schedule set D , by
the condition on ζ ; and ζ ′ is then obtained from PRIMAL(ζ).

Now suppose that ζ is any critically-loaded virtual resource for DUAL(λ). We
need to show that (19) holds. First, use the dual decomposition above to write

ζ = ∑̂
i

xîrî +∑̂
j

y ĵc ĵ − z.

Note that rî·λ ≤ 1 with equality only if r î ∈ S ∗, and similarly for c ĵ. Since ζ is
assumed to be critically loaded, ζ ·λ = 1; it must therefore be that the coefficients x î
and y ĵ are 0 unless the corresponding virtual resource is in S ∗, and also that zi, j > 0
only when λi, j = 0.

To recap, we have found
ζ = ∑

ξ∈S ∗
aξ ξ − z

where ∑aξ = 1 and aξ ≥ 0, and zi, j > 0 only when λi, j = 0. It remains to dispose

of z. Suppose zk,l > 0 for some k, l, and define nk,l by nk,l
i, j = 1i�=k or j �=l; note that

nk,l ∈ N by the condition on z. Also note that ζ ∈ R
N×N
+ , and so ∑aξ ξk,l ≥ zk,l .

Now we can rewrite

ζ =
zk,l

∑aξ ξk,l
∑aξ ξ +

(
1− zk,l

∑aξ ξk,l

)
∑aξ ξnk,l − znk,l.

Continuing in this way we can remove all non-zero elements of z, until we are left
with an expression of the form (19).

Main result: queue-size optimality of MW-0+. The following result establishes the
claim about queue-size optimality of MW-0+ (see Theorem 10.2, [26] for detailed
proof.)

Theorem 2. Let λ ∈ ∂Λ be such that there is a critically-loaded virtual resource
which assigns equal wait to each queue (i.e. 1/maxπ 1·π is a critical virtual re-
source). Then, MW-α algorithm is Nα/(1+α)-approximation algorithm.

Theorem 2 implies that for α = ln(1 + δ)/ lnN, the MW-α algorithm is (1 +
δ)-approximation for any δ > 0. Thus, as α → 0+ the MW-0+ becomes 1+-
approximation and hence optimal.

Remark. In the example of input-queued switch, an example of the requirement that
there be a critically-loaded virtual resource which assigns equal weight to all queues
is satisfied by the requirement that either there is some set of critically loaded input
ports (i.e. ∑k λik = 1 for some collection of i) and λ i, j = 0 for all input ports i which
are not critical; or that there is some set of critically loaded output ports and λ i, j = 0
for all output ports j which are not critical.

18 Devavrat Shah

Discussion: optimal algorithm. The above is an evidence based on critical fluid
model of the optimality of limiting algorithm MW-0+. There a second piece of
(intuitive) evidence based on the structure of effective state space of the algorithm
in the case of switch. It essentially suggests that as α → 0+, the effective state space
becomes largest possible and hence the algorithm does not idle unless essentially
required – thus, being least wasteful and hence optimal. Due to space constraint, we
do not discuss this in further detail. An interested reader is encourage to read [26]
for furter details.

Given these two pieces of evidence, it is tempting to speculate about a formal
limit of MW-α as α → 0. Since MW-α chooses a schedule π to maximize π ·qα ,
and since

xα ≈
{

1+ α logx if x > 0

0 if x = 0

we make the following conjecture:

Conjecture 1. Consider the MW-0+ scheduling algorithm, which at each timeslot
looks at all maximum-size schedules (i.e. those π ∈ S for which ∑n πn1qn>0 is
maximal), and among these picks one which has maximal log-weight (i.e. for which
∑n:qn>0 πn logqn is maximal), breaking ties arbitrarily. We conjecture that this algo-
rithm is stable for λ ∈ Λ ◦, and that it minimizes the total amount of idling in both
the fluid limit and the heavy traffic limit for λ ∈ ∂Λ .

Key message on optimal algorithm. In [16], McKeown et. al. showed that
maximum-size matching (without use of weights to break ties) is not stable
for certain λ ∈Λ ◦, for an input-queued switch. However, the above conjecture
(and MW-0+ algorithm) suggests that the maximum-size schedule with (log-
arithmic) weights used to break ties is optimal. This suggests that the role of
using weight information is in getting the throughput maximized while the role
of maximum-size is in minimizing delay. This property is implicitly achieved
by the MW-α algorithm for α → 0+.

4 Message-passing: throughput optimality

The previous section argued that a maximum weight scheduling rule, with weights
as an appropriate function of queue-size, leads to optimal performance both in terms
of throughput and delay. Therefore, such a scheduling algorithm is required to solve
a combinatorial optimization problem of finding a maximum weighted schedule, out
of all possible choices, every timeslot.

Though the problem of finding maximum weight scheduling is a solvable (be-
cause number of scheduling choices are finite in our setup), if the scheduling con-

Network scheduling and message-passing 19

straints are complex (e.g. independent set in wireless network example), then de-
signing efficient scheduling can become challenging (or may be impossible) in gen-
eral. In most of scheduling applications, such as the input-queued switch and the
wireless network considered here, the algorithms for finding schedule are highly
constrained due to various engineering limitations: (a) they need to perform few log-
ical operations either because of time-limitation or limited computational resources;
(b) they need to operate in totally distributed manner while exchanging as little in-
formation as possible due to physical or architectural reasons; and (c) they need to
maintain only little amount of data-structure. Such considerations lead to the funda-
mental question: is it possible to design implementable (as in satisfying the above
stated qualitative requirements) scheduling algorithms that have good performance,
both in terms of throughput and queue-size (delay), for any instance of the setup
described here?

In this section, we will present an extremely simple, randomized distributed and
hence implementable algorithm that is throughput optimal for any instance of the
setup describe here. However, this algorithm can have very poor queue-size per-
formance depending upon the complexity of the underlying problem structure. This
algorithm (in centralized setup) was first proposed by Tassiulas [30] in the context of
switch. The distributed implementation of this algorithm was discussed in [18, 13].
First, we present the generic algorithm and its throughput property. Then, we will
explain it in the context of input-queued switch (matching) and wireless network
(independent set). Finally, we will discuss its performance in terms of queue-size.

4.1 Throughput optimality through randomization and
message-passing

The algorithm essentially uses the following key insights: (1) if a schedule π ∈ S
has high weight (say, weight is equal to queue-size) at certain time-instance, then it
is likely to have high weight at the next time-step as long as the weight is a linear
or sub-linear function of queue-size; (2) in order to achieve throughput optimality,
it is sufficient to have the weight of the schedule close to optimal, not necessarily
optimal. Now, we describe the algorithm for any scheduling instance of our setup.
But, before that we describe two sub-routines that the algorithm will utilize.

Sub-routine RND. It produces a random schedule σ ∈ S such that any schedule in
S has strictly positive probability of being produced. That is, there exists ω > 0
such that for any σ ∈ S

Pr(RND outputs σ) > ω . (21)

Sub-routine CNT(σ ,w,ε ,δ). Given parameters ε,δ > 0 and schedule σ ∈S , with

node-weights w = (wi) (here, queue-size or function of queue-size), the algorithm
returns a random number W such that

20 Devavrat Shah

Pr((1− ε)w(σ) ≤W ≤ (1+ ε)w(σ)) ≥ 1− δ , (22)

where w(σ) = ∑i σiwi.

ALGO I(ε ,δ). Here, we describe the generic form of the algorithm. The distributed
implementation of this algorithm will follow by explaining the distributed imple-
mentation of the subroutines RND and CNT, which is done later.

0. Let σ(τ) be the schedule used at time τ ≥ 0 and Q(τ) denote the queue-size
vector at time τ .

1. Initially, at τ = 0 we have Q(0) = 0 and choose σ(0) at random using RND.
2. The schedule σ(τ + 1) at time τ + 1 is computed from σ(τ) as follows.

(a)Produce a random schedule R(τ + 1) using RND.
(b)Compute weights,

W (σ(τ)) = CNT(σ(τ),Q(τ + 1),ε/8,δ), and

W (R(τ + 1)) = CNT(R(τ + 1),Q(τ + 1),ε/8,δ).

(c)If W (R(τ + 1)) ≥ (1+ε/8)
(1−ε/8)W (σ(τ)), then σ(τ + 1) = R(τ + 1), else retain

σ(τ + 1) = σ(τ).

Remark. The above algorithm is an approximation of MW-1 algorithm. The result
stated next about its throughput optimality should not be affected if we were approx-
imating MW-α algorithm for α ∈ (0,1). That is, if instead of weight being Q(τ), it
were Qα(τ), then the above algorithm will still have good throughput property. This
is primarily because f (x) = xα is a Lipschitz continuous function (with Lipschitz
constant ≤ 1) for all α ∈ (0,1].

Performance of ALGO I(ε,δ). Here, we state the result that establishes (essentially)
throughput optimality of the ALGO I.

Theorem 3. Consider any strictly admissible λ ∈ Λ ◦. Then, there is a ε > 0 such
that (1−2ε)−1λ ∈ Λ◦. Then, under the algorithm ALGO I(ε,ω3−N),

limsup
τ→∞

E [‖Q(τ)‖1] < ∞.

The proof of this result follows from Foster-Lyapunov criteria [17] by considering
the quadratic Lyapunov function L(τ) = ∑i Q

2
i (τ) and establishing negative drift

over large enough finite horizon. We skip details here. An interested reader can re-
construct the proof from [18] or [13].

Cost of ALGO I(ε,ω3−N). As Theorem 3 suggests, we need to design distributed
algorithms RNDand CNT(ε,ω3−N) that are efficient (i.e. do computations in say
polynomial in N distributed operations). We describe such distributed algorithms
next. As we shall find, the RND, which is described for matching and indepen-

Network scheduling and message-passing 21

dent set, takes O(N) total computation (or O(1) rounds6); the CNT(ε,ω3−N) takes
O(ε−2N2 log3N/ω) total computation (or O(ε−2N log3N/ω) rounds). Thus, net
computation cost of the ALGO I(ε ,ω3−N) will boil down to O(ε−2N log3N/ω)
rounds or O(ε−2N2 log3N/ω) total distributed operations. It should be noted that
the number of message exchanged scales in the same manner as the number of
distributed operations. As we shall see, ω = 1/N! ≈ 2−N logN for matching and
ω = 2−N – thus, the cost (in terms of rounds) in case of matching is O(ε −2N2 logN)
and O(ε−2N2) in case of independent set.

Remark. It should be noted that we can slow down our schedule computation algo-
rithm by factor O(ε−2N log3N/ω) – thus, spending O(1) computation per timeslot
– and retain the throughput optimality as is. This fact follows directly from the
Lyapunov-Foster’s criteria. However, it increases the average queue-size and thus
degrades performance. An interested reader will find a detailed study of this aspect
of scheduling algorithms in the context of input-queued switch in [23].

Description of RND. Here, we describe the distributed algorithm RND for two ex-
amples: matching and independent set. The algorithm for any instance of our setup
can be obtained as long as the constraints corresponding to the feasibility of a sched-
ule is checkable locally; which happens to be the case for matching and independent
set.

First, consider RND for finding a random matching or a random schedule in the
case of input-queued switch. Each input node i, uniformly at random selects an out-
put node, say r(i), and sends a request to r(i). An output node, say j, upon receiving
multiple requests, selects one of the inputs at random and sends it notification of
acceptance. Input node i, upon receiving accept matches the output and upon not
receiving accept (i.e. receiving reject) does not connect to any output.

It can be easily checked that all complete matchings are likely to be chosen with
probability at least 1/N!, for switch of size N, under this RND. Further, it involves
only two rounds of distributed computation. Thus, it satisfies our required condition
(21).

Next, we describe a similar description for independent set. Here, in the network
graph G = (V,E), each node (vertex) chooses to become active with probability 1/2.
An active node, becomes inactive if any of its neighbor is active. All the remaining
active nodes declare them to be part of the independent set while others (inactive)
keep out.

Again, it is easy to check that the nodes that decide to be part of independent set,
indeed form an independent set. Further, any independent set has probability at least
1/2N of being chosen for network of size N. As description suggests, it is a simple
two-round algorithm.

Description of CNT(ε,ω3−N). The purpose of algorithm is to compute summation
of node weights (approximately) for a given schedule – equivalently, given N num-
bers in the network graph G, compute their summation approximately. The standard

6 By a round, we mean an iteration of distributed computation where each node gets to perform
O(1) exchanges.

22 Devavrat Shah

averaging algorithm (cf. [32, 6]) will not work here, because we need an algorithm
that will produce exactly the same estimation at all the nodes so that local decisions
(i.e. whether to choose new schedule R(τ +1) or to choose an old schedule σ(τ)) are
globally consistent. And, averaging algorithm does not posses this property. Here,
we will describe an approximate summation procedure based [19]. The algorithm is
based on the following probabilistic facts:

F1. Let X1, . . . ,Xk be independent random variables with exponential distribution
and parameters r1, . . . ,rk. Then, X∗ = min1≤i≤k Xi has exponential distribution
with parameter ∑k

i=1 ri.
F2. Let Y1, . . . ,Ym be independent exponential random variables with parameter
r. Let Sm = 1

m ∑m
i=1Yi. Then, for γ ∈ (0,1/2)

Pr
(
Sm /∈ (1− γ)r−1,(1+ γ)r−1)≤ 2exp

(−γ2m/2
)
.

F1 is well-known about exponential distribution; F2 follows from Cramer’s Theo-
rem [10] about large deviation estimation for exponential distribution.

Now, the algorithm. Given node weights W = [Wv], F1 and F2 can be used to
compute W̄ = ∑vWv approximately as follows: each node v ∈V draws an indepen-
dent exponential random variable with parameter Wv (nodes with Wv = 0 do not
participate in generating numbers); then all nodes together compute minimum, say
X∗ of these random numbers in distributed fashion by iteratively asking their neigh-
bors for their estimates of minimum. Nodes should terminate this process after Θ(n)
transmissions. Repeat this for m times to obtain minimums X∗(i),1 ≤ i ≤ m. Now
set Sm = 1

m ∑m
i=1 X∗(i) and declare Zm = 1/Sm as an estimate summation of W̄ .

Now, given small enough ε it follows from F1, F2 that by selecting m =
O(ε−2 log3N/ω), we obtain estimate of summation, say Ŵ such that

Pr
(
Ŵ /∈ ((1− ε)W̄ ,(1+ ε)W̄)

) ≤ ω3−N . (23)

Computation of a single minimum over the network can be done in a distributed
manner in many ways. We skip the details here in interest of space. However, we
refer an interested reader to see [19] for interesting account on such algorithms. The
minimum computation takes total O(N 2)or O(N) per node message exchanges. This
completes the description of desired CNT(ε,ω3−N) algorithm.

4.2 Performance in terms of queue-size

The ALGO I is a simple, randomized message-passing algorithm that is through-
put optimal for almost all reasonable instances of our setup. Now, we consider its
performance in terms of queue-size. We will consider the cases of matching (switch
scheduling) and independent set (wireless scheduling) to establish existence of the
following dichotomy: for some scheduling problem, it is possible to have simple al-
gorithms that are throughput optimal and have small queue-size; for other schedul-

Network scheduling and message-passing 23

0.01

0.1

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
ea

n
IQ

 L
en

Normalized Load

ALGO I
MERGE

MWM

Fig. 3 An illustration of impact of MERGE on Performance.

ing problems we can only hope for throughput optimal simple algorithms with very
large queue-size.

ALGO I for switches: a simple modification. The basic version of the ALGO I de-
scribed above is likely to induce very large queue-size. However, a simple modifica-
tion of the ALGO I can lead to smaller queue-size7 as described here. To exemplify
this, we present a sample simulation in Figure 3 which plots average queue-size
(on Y-axis) with respect to the varying load (on X-axis) for three algorithms: MW
scheduling (MWM), the ALGO I, and MERGE (which is the modification of ALGO
I for matching). The figure shows that the queue-sizes are very large under ALGO
I , but MERGE and MWM have very small and comparable queue-sizes. The mod-
ification presented here, the MERGE algorithm, is based on the results described in
[12] and a later adaption of it for distributed algorithm design in [18].

The main insight is as follows. In ALGO I, every time either we choose schedule
R(τ + 1) or σ(τ) entirely. However, some parts of R(τ + 1) are likely to be higher
weights while some other parts of σ(τ) are likely to be of higher weights. Therefore,
a better approach towards designing such algorithm would be to choose a mixture
of the best parts of these two schedules. In general, not all scheduling constraint

7 We make note of the following: while the modification presented here seem to reduce queue-size
drastically (see [12] for detailed simulations) and there are arguments based on toy-model (again,
see [12]) to justify this, the problem of establishing average queue-size being polynomial in size of
switch N, under algorithm using MERGE remains an important open problem.

24 Devavrat Shah

structures allow for this. However, matching constraint allows for this possibility.
Below, we describe this formally as the Merge procedure.

W=100 W=190

W=245

10
10
10

40

40

30

30

90

90

80

80

5

5

7

8MERGE

Fig. 4 An example of MERGE procedure.

Consider a switch bipartite graph with Q matrix as its edge weights. Given two
matchings π 1 and π2, define

S (π1,π2) = {π ∈ S : πi j = 1 only if π 1
i j = 1 or π2

i j = 1}.

The MERGE procedure, when applied to π 1 and π2 with weights given by Q, returns
a matching π̃ such that

π̃ = arg max
π∈S (π(1),π(2))

{∑
i j

πi jQi j}. (24)

The MERGE finds such matching using only 2n addition and subtraction. It is de-
scribed as follows: Color the edges of π 1 as red and the edges of π 2 as green. Start at
output node j1 and follow the red edge to an input node, say i 1. From input node i1

follow the (only) green edge to its output node, say j 2. If j2 = j1, stop. Else continue
to trace a path of alternating red and green edges until j 1 is visited again. This gives
a “cycle” in the subgraph of red and green edges.

Suppose the above cycle does not cover all the red and green edges. Then there
exists an output j outside this cycle. Starting from j repeat the above procedure to
find another cycle. In this fashion find all cycles of red and green edges. Suppose
there are � cycles, C1, ...,C� at the end. Then each cycle, Ci, contains two matchings:
Gi which has only green edges, and Ri which has only red edges. For each cycle Ci,
the MERGE chooses Ri if the sum of the queue-size corresponding to these edges is
higher than that of the Gi. Else, MERGE chooses Gi. It is easy to show that the final
matching as chosen above is precisely the one claimed in (24). Figure 4 illustrates
the MERGE procedure.

Network scheduling and message-passing 25

Finally, the MERGE is used in place of choosing R(τ + 1) or σ(τ) entirely. Note
that, in order to construct the schedule for MERGE, essentially we need to compute
the weights of schedules only restricted to the “cycles” as described above. However,
this can be done in a totally distributed manner using the same CNT procedure since
the membership to a cycle (or paths) is by definition defined locally. Note that this
modification does not increase the (bound on the) cost of the algorithm. We refer
interested readers to [18] for details.

ALGO I for independent set: impossibility of low queue-size. The above simple
modification for matching reduces queue-sizes drastically and makes the algorithms
comparable to MW scheduling. However, it utilizes the structure of matching cru-
cially. Therefore, question remains whether it is possible to modify ALGO I to
obtain small queue-size for any scheduling problem. Here, we will state an impos-
sibility result in the context of independent set based scheduling which implies that,
(a) ALGO I has exponentially large, in problem size N, average queue-size and (b)
it is not possible to have simple modification of ALGO I to obtain smaller queue-
sizes. This is based on a recent work [24].

To this end, we consider a wireless network operating under independent set con-
strained model. We assume that the network graph G can be arbitrary. Let Λ be its
admissible arrival rate region and cΛ = {cλ : λ ∈ Λ} for c > 0. Here, cΛ means
fraction c of the capacity region: e.g. for c = 0.1, it will be 10% of the capacity re-
gion. The following impossibility result implies that for any ε > 0, there is no simple
algorithm that can achieve small average queue-size for all network instances. Thus,
the problem of scheduling for low queue-size is inherently hard !

Theorem 4. Consider any ε > 0. Then, there is no (centralized or distributed, deter-
ministic or randomized) algorithm that runs in polynomial (in N) time and induces
polynomial (in N) average queue-size for all λ ∈ εΛ unless certain computational
hypothesis8 is false.

Key message on simple, randomized message-passing algorithm. The ran-
domized algorithm ALGO I described here is a simple, message-passing
mechanism that is essentially throughput optimal for any scheduling instance
that allows for checking feasibility of a schedule through local constraints
(e.g. matching, independent set). However, the queue-sizes induced are very
large. The simpler problem structures, like matching allow for minor (prob-
lem dependent) modification of the ALGO I, to obtain lower queue-sizes
while retaining the high throughput. However, for hard problem structures,
like independent set it is impossible to obtain simultaneously high-throughput
and low queue-sizes under arbitrary setup. Thus, obtaining high-throughput
is relatively simple, and meanwhile maintaining low queue-size is quite hard.

8 The precise computational hypothesis is NP �⊂ BPP.

26 Devavrat Shah

5 Message-passing: low queue-size or delay

In essence, we have learnt so far that in order to retain small queue-size a known
effective way is to design excellent approximation algorithm of maximum weight
scheduling – in case of matching, we could do it since it is an easy problem, but in
case of independent set we could not since it is a hard problem. The modification
of randomized algorithm ALGO I to obtain small queue-size for matching is very
problem specific. Ideally, we would like to have a generic method. Specifically, in
this section we would like to design general message-passing algorithmic method
that has the following properties: (a) for easy problem, allows for fine-control to
trade-off performance with implementation cost; and (b) for hard problem, works
well when problem posses special structure (like solvable through linear program)
and gives a reasonable heuristic otherwise.

We will present two, somewhat surprisingly very related, approaches for algo-
rithm design: (a) the classical optimization based method of co-ordinate descent
algorithm and (b) the recently emerging heuristic from Statistical Physics and Ar-
tificial Intelligence, called belief propagation (also known as max-product for op-
timization problem). The presentation here is based on [3], [4] and [21]. We will
explain these two methods in the context of input-queued switch (matching) and
wireless network (independent set).

5.1 Input-queued switch: message-passing algorithm

Here, we describe two algorithms for input-queued switch. The first algorithm is a
direct adaptation of the Auction algorithm by Bertsekas [5]. The second algorithm
is based on belief propagation (max-product).

Auction algorithm. For ease of explanation, we introduce some notation. Consider
an N port input-queued switch with N input ports and N output ports. Denote the N
input ports by α1, . . . ,αN and the N output ports by β1, . . . ,βN . As described earlier
in Section 2, there are N2 queues, one per distinct input-output pair. Let

At time τ the weight of an edge (αi,β j) will be Qi j(τ −1) and the weight of the
matching π is ∑n

i=1 Qiπ(i)(τ −1). Recall that the Maximum Weight Matching π ∗(τ)
at time τ is such that

π∗(τ) ∈ argmax
π∈S

n

∑
i=1

Qiπ(i)(τ −1).

Now we describe the auction algorithm with parameter ε > 0. In the description
of the algorithm, we drop reference to time τ for the queue-size. Readers familiar
with the iSLIP [15] algorithm may notice a striking syntactic similarity between the
iSLIP and the auction algorithms: both algorithms iterate between inputs proposing

Network scheduling and message-passing 27

and outputs accepting/refusing. This similarity suggests that the auction algorithm
is likely to very close to be implementable.

◦ Phase 0: Initialization. Given queue-size matrix Q, let Q∗ = maxi j Qi j which
is determined as follows:

− Each output β j computes Q∗· j = maxn
k=1 Qk j.

− Each input αi obtains Q∗· j from all outputs β j and computes Q∗ = max j Q∗· j.
− Each output β j contacts input α j to obtain Q∗.
− Set δ = εQ∗/n.
− Initially, the set of matched inputs-outputs S = /0; the set of unassigned inputs

I = {α1, . . . ,αn}, and parameters p j = 0 for 1 ≤ j ≤ n.
− Algorithm finds matching of interest in two phases, described next.

◦ Phase 1: Bidding For all αi ∈ I,

(1)Find the ‘weight’ maximizing output β j. Let,

ji = argmax j{Qi j − p j}, vi = max
j
{Qi j − p j}, (25)

and ui = max
j �= ji

{Qi j − p j}. (26)

(2)Compute the ’proposal’ of input α i, denoted by bαi→β j
as follows:

bαi→β ji
= Qi ji −ui + δ .

◦ Phase 2: Assignment. For each output β j,

(3)Let P(j) be the set of inputs from which β j received a ‘proposal’. If P(j) �=
/0, increase p j to the highest bid, i.e.

p j = max
αi∈P(j)

bαi→β j
.

(4)Remove the maximum proposing input α i j from I and add (αi j ,β j) to S. If
(αk,β j) ∈ S, k �= i j, then put αk back in I.

Performance of Auction algorithm. The auction algorithm described above is a
slight variant of Bertsekas’ auction algorithm. Given a fixed weighted bipartite
graph, the behavior of the auction algorithm is well understood. However, the al-
gorithm converges only if all the weights are finite. In our setup, weights are given
by Q(·). Hence, it is not clear if the above described algorithm will maintain finite
queue-sizes Q∗(·) with probability 1. Specifically, the size of Q∗(·) directly affects
the number of iterations required by the algorithm to converge. We state the follow-
ing result (Theorem 1, [4]).

Theorem 5. Given ε > 0, let λ = ∑k αkπk be such that ∑k αk ≤ 1−2ε. Then, for a
switch operating under the Auction algorithm with parameter ε ,

28 Devavrat Shah

limsup
τ→∞

E

[
∑
i j

Qi j(τ)

]
= O(n2/ε).

Further, the algorithm takes O(n2/ε) iterations to compute the schedule.

Now, we consider a natural variant of the Auction algorithm to utilize the slowly
varying nature of the switch. Specifically, at any time slot τ +1 the parameter p j for
1 ≤ j ≤ n instead of being initiated with zero starts with its final value from the time
slot τ . The intuition behind this modification is the following. At the end of the time
slot τ the parameters p j are optimal for the queue sizes Qi j(τ−1). Since, queue-size
only changes by ±1 in a time slot, one expects the parameters p j to be near optimal
at time τ + 1 as well. Therefore, we expect algorithm to converge quickly starting
from thus chosen new initial condition – this is confirmed by simulations presented
next.

Representative simulation results. We describe simulation results for an 8× 8 in-
put queued switch with a non-uniform admissible arrival matrix. The traffic load
takes one of the values from the set {.65,8, .9, .95, .98}. All simulations are done
for one million time slots. Here, ”auction(c)” denotes the auction algorithm with
δ = c where c is a constant. For the ε-Auction algorithm we use ε = 1 and hence
denote it by 1-Auction. We compare the performance of auction algorithm with
MWM and iSLIP algorithm – iSLIP is the popular heuristic used in practice. When
the number of iterations of the iSLIP algorithm is not mentioned it is understood to
have run all the way to the end, i.e. it runs n = 8 iterations.

Figure 5 shows that the 1-Auction algorithm performs much better than the iSLIP
algorithm and is as good as MWM. The next plot, Figure 6, shows that 1-Auction
with memory has better performance than 1-Auction.

Figures 7 and 8 show the trade-off achieved by tuning the parameter δ : the higher
the value of δ , the poorer the performance and the fewer iterations required to find
solution. Here the value δ = B/N takes one of the values 1,10,50. As mentioned
before larger values of δ yield less number of iterations but at the expense of greater
queue sizes. Figure 9 shows a comparison between 1-Auction and iSLIP when both
run only three iterations in each time slot. In practice sometimes only a few iterations
of the iSLIP algorithm are used instead of the full iSLIP. This figure shows that the
1-Auction algorithm can also be used for a fewer number of iterations and it still
outperforms iSLIP.

Belief propagation(BP) for matching. In a switch, the partition in the bipartite
graph is well known. However, in general graph, even if it is bipartite such par-
tition may not be known – for example, wireless ad-hoc network operating under
primary interference constraints. In such cases, Auction algorithm, which requires
prior partitioning and is not symmetric in its response to partitioning, is not very
attractive. Instead, we would like to have a scalable approach that does not require
prior knowledge of the bipartition and operates symmetrically. That is, we need an
algorithm, that treats nodes of the two partitions in the same manner. Next, we de-
scribe such an algorithm based on the (Max-Product) Belief propagation algorithm.

Network scheduling and message-passing 29

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
iSLIP

Fig. 5 Average queue sizes for MWM, 1-Auction and iSLIP.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
1−auction memory

Fig. 6 Average queue sizes MWM, 1-Auction and 1-Auction with memory.

30 Devavrat Shah

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

auction(1)
auction(10)
auction(50)

Fig. 7 Average queue sizes for auction(1), auction(10), auction (50)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

load

A
ve

ra
ge

 It
er

at
io

ns

auction(1)
auction(10)
auction(50)

Fig. 8 Average iterations to converge for auction(1), auction(10), auction(50)

Network scheduling and message-passing 31

The following algorithm is an adaption of the (Max-Product) Belief Propagation
algorithm described in [3] that operates very similarly to the auction algorithm.

◦ Let Q∗ = maxi j Qi j, which can be quickly computed in a distributed manner.
Set δ = εQ∗/n.

◦ Given queue-size matrix Q, define a symmetric weight matrix W = [Wi j]
as follows: for all (i, j) /∈ E, set Wi j = 0 and for all (i, j) ∈ E set Wi j =
max{Qi j,Qji}+ δi j. Where δi j is a randomly chosen number from the inter-
val (0,δ) and can be selected by one communication between i, j.

◦ The algorithm variables are messages that are exchanged between neighboring
nodes. Let m̂k

i→ j ∈ R denote message from node i to node j in iteration k.

◦ Initialize k = 0 and set the messages as follows: m̂0
i→ j = Wi j; m̂0

j→i = Wi j.
◦ Algorithm is iterative, as described next.
◦ For k ≥ 1, iterate as follows:

(a)Update messages as follows:

m̂k
αi→β j

= Wi j −max
� �= j

m̂k−1
β�→αi

,

m̂k
β j→αi

= Wi j −max
� �=i

m̂k−1
α�→β j

. (27)

(b)The estimated MWM at the end of iteration k is π k, where π k(i) =
argmax j∈N (i){m̂k

β j→αi
} for 1 ≤ i ≤ n. But when max j∈N (i){m̂k

β j→αi
} < 0

then let π k(i) = ”null” which means node i chooses not to connect to any of
its neighbors.

(c)Repeat (a)-(b) till π k(i) converges, i.e. for each 1 ≤ i ≤ n, π k(πk(i)) = i or
πk(i) = ”null” for all k large enough.

Performance of Belief Propagation(BP). Let Q ′ = [Q′
i j] be a symmetric matrix of

queue seizes defined by Q′
i j = max{Qi j,Qji}. Also, let π∗ denote the MWM of

matrix Q′ and let W ∗ denote weight of π ∗. We will prove the following result.

Theorem 6. Given ε > 0, with probability one BP will converge to a matching with
weight at least W ∗−εQ∗. The algorithm takes O(n2/ερ) iterations to converge with
high probability, where ρ is some function of n.

The BP algorithm performs very similar to the auction algorithm. Here, we provide
a simulation run that confirms this as shown in Figure 10.

5.2 Wireless scheduling: message-passing scheduling

Here we describe message-passing algorithm for finding maximum weight indepen-
dent set in order to obtain schedule in wireless networks. Clearly, it is not possible to

32 Devavrat Shah

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

iSLIP 3 it
1−auction 3 it

Fig. 9 Average queue sizes for iSLIP with 3 iterations and 1-Auction with 3 iterations

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

load

A
ve

ra
ge

 Q
ue

ue
 s

iz
e

MWM
1−auction
1−min−sum

Fig. 10 Average queue sizes for MWM, 1-Auction and 1-min-sum

Network scheduling and message-passing 33

find such an algorithm for all possible graph structures. We describe an algorithm,
based on co-ordinate descent along with a combinatorial method, that works per-
fectly for bipartite graphs. We will end with a heuristic based on BP, very similar to
the first algorithm, that is likely to provide very good performance on other graphs.
The most of the results presented in this section are from [21].

Exact algorithm: bipartite graph. Here, we describe an algorithm for finding max-
imum weight independent set in a given graph G = (V,E) with node weights rep-
resented by w = [wi]. The algorithm is essentially a modification of the standard
co-ordinate descent algorithm for a “dual” of an appropriate linear programming
relaxation of the integer program of maximum weight independent set. We refer an
interested reader to [21] for further details. The basic algorithm, described below,
invokes two sub-routines which are described next.

(o)Given (small enough) positive parameter ε,δ , run sub-routine
DESCENT(ε ,δ) results in an output λ ε,δ = (λ ε,δ

i j)(i, j)∈E upon conver-
gence (or close to convergence).

(i) Next, using (small enough) δ1 > 0, use EST(λ ε,δ ,δ1), to produce an estimate
for the MWIS as an output of the algorithm.

Algorithm DESCENT. Here, we describe the DESCENT algorithm.

(o)The parameters are variables λ i j, one for each edge (i, j) ∈ E. We will use
notation that λ t

i j = λ t
ji. The vector λ is iteratively updated, with t denoting the

iteration number.

◦ Initially, set t = 0 and λ 0
i j = max{wi,wj} for all (i, j) ∈ E.

(i) In iteration t + 1, update parameters as follows:

◦ Pick an edge (i, j) ∈ E. The edge selection is done in a round-robin manner
over all edges.

◦ For all (i′, j′) ∈ E,(i′, j′) �= (i, j) do nothing, i.e. λ t+1
i′ j′ = λ t

i′ j′ .

◦ For edge (i, j), nodes i and j exchange messages as follows:

γt+1
i→ j =

(
wi − ∑

k �= j,k∈N (i)
λ t

ki

)
+

, γt+1
j→i =

(
wj − ∑

k′ �=i,k′∈N (j)
λ t

k′ j

)
+

.

◦ Update λ t+1
i j as follows: with a = γ t+1

i→ j and b = γ t+1
j→i,

λ t+1
i j =

(
a+b+ 2ε +

√
(a−b)2 + 4ε2

2

)
+

. (28)

(ii) Update t = t + 1 and repeat till algorithm converges within δ for each compo-
nent.

(iii) Output the vector λ , denoted by λ ε,δ , when the algorithm stops.

34 Devavrat Shah

Remark. It can be established that the update (28) turns out to be

λ t+1
i j = β ε + max

{
−β ε,

(
wi − ∑

k∈N (i)\ j

λ t
ik

)
,

(
wj − ∑

k∈N (j)\i

λ t
k j

)}
,

where for some β ∈ (1,2] with its precise value dependent on γ t+1
i→ j,γ

t+1
j→i.

Algorithm EST. The algorithm EST estimates the assignment of nodes in the
maximum weight independent set based on the converged messages of the DE-
SCENT algorithm.

(o) The algorithm iteratively estimates x = (xi) given λ (expected to be a dual
optimal solution).

(i) Initially, color a node i gray and set xi = 0 if ∑ j∈N (i) λi j > wi. Color all
other nodes with green and leave their values unspecified. The condition
∑ j∈N (i) λi j > wi is checked as whether ∑ j∈N (i) λi j ≥ wi + δ1 or not.

(ii) Repeat the following steps (in any order) till no more changes can happen:

◦ if i is green and there exists a gray node j ∈ N (i) with λ i j > 0, then set
xi = 1 and color it orange. The condition λ i j > 0 is checked as whether
λi j ≥ δ1 or not.

◦ if i is green and some orange node j ∈ N (i), then set xi = 0 and color it
gray.

(iii)If any node is green, say i, set xi = 1 and color it red.
(iv)Produce the output x as an estimation.

Overall performance of algorithm ALGO. Here, we state the convergence, correct-
ness and bound on convergence time of the ALGO using parameters (ε,δ ,δ 1).

Theorem 7. The algorithm ALGO with parameters ε,δ converges for any choice
of ε,δ > 0 and for any G. The solution obtained by it is correct if G is bipartite with
unique maximum weight independent set solution and ε ,δ > 0,δ 1 are small enough.
The convergence happens exponentially fast (constant dependent on problem size
and weights through reasonable function).

BP heuristic. We end this section, with brief description of the BP heuristic for
maximum weight independent set. Many interesting properties of BP are known (see
[21] for details). A reader is suggested to observe the extreme similarity between BP
and the DESCENT algorithm.

Network scheduling and message-passing 35

(o)The parameters are variables γ t
i→ j,γt

j→i, for each (i, j) ∈ E and iteration t. Ini-
tially, all of them are set to 0.

(i) In iteration t + 1, update parameters as follows: for each (i, j) ∈ E,

γt+1
i→ j =

(
wi − ∑

k �= j,k∈N (i)
γt
k→i

)
+

,

γt+1
j→i =

(
wj − ∑

k′ �=i,k′∈N (j)
γt
k′→ j

)
+

.

(ii) In iteration t +1, estimate assignment for i ∈V in independent set as x̂ t+1
i = 1,

if wi > ∑k∈N (i) γt
k→i, and x̂t+1

i = 0, otherwise.
(iii)Update t = t + 1 and repeat till convergence.

Key message on message-passing algorithms. The algorithmic method based
on co-ordinate descent and Belief Propagation provides extremely simple,
message-passing algorithms that require very little data structure (few num-
bers at each node) and perform few simple (addition, maximum) logical op-
erations. Such algorithms naturally allow trade-off between performance and
implementation cost by varying the number of iterations and the tuning algo-
rithm parameters. In that sense, this provides a universal algorithmic archi-
tecture for a large class of scheduling problems. One may imagine running a
message-passing scheduler all the time and when required network can read-
off schedule based on the current message-values – thus, providing excellent
pipelineability along with simple, distributed and parallel implementation.

6 Discussion and future direction

We surveyed the current state-of-art in the field of scheduling algorithms for net-
works with input-queued switch and wireless networks as running examples. In
summary, we note three important points: (1) optimal scheduling algorithm is the
MW-0+ which can be interpreted as maximum weight maximum size scheduling;
(2) designing throughput optimal simple, distributed algorithm for any problem in-
stance is easy but obtaining small queue-size in addition is impossible for all prob-
lems; and (3) belief propagation and co-ordinate descent provide very attractive
message-passing algorithmic architecture for scheduling problems.

The future work involves progress in the direction of design and analysis of
scheduling algorithms. An important question in terms of analysis lies in identifying
optimal algorithm beyond the fluid model scaling. In terms of design, the question
lies in designing better algorithms and heuristic methods for message-passing and

36 Devavrat Shah

simple implementation. Specifically, algorithms with easily tunable performance in
various dimensions would be extremely useful.

Acknowledgements I am very grateful to all my collaborators on the topic of scheduling; with-
out those collaborations it would not be possible for me to write this survy. I would particularly
like to thank Balaji Prabhakar and Damon Wischik for numerous enlightening conversations on
the topic of scheduling and network algorithms over many years: in person, on phone and more
recently through skype. Finally, I would like to thank Cathy Xia and Zhen Liu for carefully read-
ing the chapter and providing feedback to improve the readability of this chapter. I would like to
acknowledge support by NSF CAREER from CNS division (on scheduling algorithms) and NSF
Theoretical Foundation grant (on flow-level models) while preparing this manuscript.

References

1. Andrews, M. and Kumaran, M. and Ramanan, K. and Stolyar, A. and Vijayakumar, R. and
Whiting, P. : Scheduling in a queueing system with asynchronously varying service rates.
Probability in the Engineering and Informational Sciences, Vol. 18 (2): 191–217, (2004).

2. Bambos, N. and Walrand, J. : Scheduling and stability aspects of a general class of parallel
processing systems. Advances in Applied Probability, Vol. 25(1) :176–202, (1993).

3. Bayati, M. and Shah, D. and Sharma, M. : Max-product for maximum weight matching:
convergence, correctness and LP duality. IEEE Information Theory Transactions, Vol. 54 (3):
1241–1251, (2008). Preliminary versions appeareared in IEEE ISIT, (2005) and (2006).

4. Bayati, M. and Prabhakar, B. and Shah, D. and Sharma, M. : Iterative scheduling algorithms.
IEEE Infocom, (2007).

5. Betsekas, D. : The auction algorithm: a distributed relaxation method for the assignment
problem. Annals of operations research, Vol. 14: 105–123., (1988).

6. Boyd, S. and Ghosh, A. and Prabhakar, B. and Shah, D. : Gossip algorithms: design, analysis
and application. In proceedings of IEEE Infocom, (2005).

7. Bramson, M. : State space collapse with application to heavy traffic limits for multiclass
queueing networks. Queueing Systems 30 89–148, (1998).

8. Dai, J. G. “Jim” : Stability of fluid and stochastic processing networks. MaPhySto Lecture
Notes, (1999). http://www.maphysto.dk/cgi-bin/gp.cgi?publ=70

9. Dai, J. and Prabhakar, B. : The throughput of switches with and without speed-up. In pro-
ceedings of IEEE Infocom, (2000).

10. Dembo, A. and Zeitouni, O. : Large Deviations Techniques and Applications, 2nd edition,
Springer, (1998).

11. Eryilmaz, A. and Srikant, R. and Perkins, J. R. : Stable scheduling policies for fading wireless
channels. IEEE/ACM Trans. Networking, Vol. 13(2):411–424, (2005).

12. Giaccone, P. and Prabhakar, B and Shah, D. : Randomized scheduling algorithms for high-
aggregate bandwidth switches. IEEE J. Sel. Areas Commun., 21(4), 546- 559, (2003).

13. Jung, K. and Shah, D. : Low Delay Scheduling in Wireless Network. In Proceedings of IEEE
ISIT, (2007).

14. Keslassy, I. and McKeown, N. : Analysis of Scheduling Algorithms That Provide 100%
Throughput in Input-Queued Switches. In proceedings of Allerton Conference on Communi-
cation, Control and Computing, (2001).

15. McKeown, N. : The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM
Transactions on Networking, 7(2), 188 – 201, (1999).

16. McKeown, N. and Anantharam, V. and Walrand, J.: Achieving 100% throughput in an input-
queued switch. In Proceedings of IEEE Infocom, 296–302 (1996).

17. Meyn, S. P. and Tweedie, R. L. : Markov Chains and Stochastic Stability. Springer-Verlag,
London, (1993). http://probability.ca/MT/

Network scheduling and message-passing 37

18. Modiano, E. and Shah, D. Zussman, G. : Maximizing Throughput in Wireless Network via
Gossiping. In Proceedings of ACM SIGMETRIC/Performance, (2006).

19. Mosk-Aoyama, D. and Shah, D. Computing separable functions via gossip. In Proceedings of
ACM PODC, (2006). Longer version to appear in IEEE Transaction on Information Theory,
(2008).

20. Tassiulas, L. and Ephremides, A.: Dynamic server allocation to parallel queues with randomly
varying connectivity. IEEE Transactions on Information Theory, Vol. 39(2), 466-478, (1993).

21. Sanghavi, S. and Shah, D. and Willsky, A. : Message-passing for Maximum Weight Indepen-
dent Set. Submitted. In Proceedings of NIPS, (2007).

22. Shah, D. : Stable algorithms for Input Queued Switches. In Proceedings of Allerton Confer-
ence on Communication, Control and Computing, (2001).

23. Shah, D. and Kopikare, M. : Delay bounds for the approximate Maximum Weight matching
algorithm for input queued switches. In Proceedings of IEEE Infocom, (2002).

24. Shah, D. and Tse, D. and Tsitsiklis, J. N. : On hardness of low delay scheduling. Pre-print,
(2008).

25. Shah, D. and Wischik, D. J. : Optimal scheduling algorithms for input-queued switches. In
Proceedings of IEEE Infocom, (2006).

26. Shah, D. and Wischik, D. J. : Heavy traffic analysis of opti-
mal scheduling algorithms for switches networks. Submitted. Pre-
liminary version appeared in proceedings of IEEE Infocom, (2006).
http://www.cs.ucl.ac.uk/staff/D.Wischik/Research/netsched.html

27. Shakkottai, S. and Srikant, R. and Stolyar, A. L. : Pathwise Optimality of the Exponential
Scheduling Rule for Wireless Channels. Advances in Applied Probability, Vol. 36(4), 1021–
1045, (2004).

28. Stolyar, A. L. : On the stability of multiclass queueing networks: A relaxed sufficient
condition via limiting fluid processes. Markov Processes and Related Fields, 491–512,
(1995).http://cm.bell-labs.com/who/stolyar/stabil mprf.pdf

29. Stolyar, A. L. : Maxweight scheduling in a generalized switch: State space collapse and work-
load minimization in heavy traffic. Annals of Applied Probability, Vol. 14(1), 1–53, (2004).

30. Tassiulas, L. : Linear complexity algorithms for maximum throughput in radio networks and
input queued switches. In Proceedings of IEEE INFOCOM’98, (1998).

31. Tassiulas, L. and Ephremides, A. : Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37, 1936–1948 (1992).

32. Tsitsiklis, J. N. : Problems in decentralized decision making and computation. Ph.D. Thesis,
Department of EECS, MIT, (1984).

33. Williams, R. : iffusion approximations for open multiclass queueing networks: sufficient con-
ditions involving state space collapse. Queueing Systems 30 27–88, (1998).

Index

approximate distributed summation, 21
auction algorithm, 26

belief propagation, 26, 28, 34

co-ordinate descent, 26, 33
critical fluid model, 13
critical loading, 14

fluid model, 10

implementable algorithm, 19
impossibility of scheduling, 25
independent set, 8
input-queued switch, 2, 6

Lyapunov function, 11

matching, 6, 7
maximum weight independent set, 9
maximum weight matching, 7
maximum weight scheduling, 5
Merge, 24

optimal scheduling algorithm, 18

queue-size optimal, 14

scheduling algorithm, 2, 4

throughput optimal, 11

wireless scheduling, 2

39

