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Abstract—We consider the problem of serving multicast flows
in a crossbar switch. We show that linear network coding across
packets of a flow can sustain traffic patterns that cannot be
served if network coding were not allowed. Thus, network coding
leads to a larger rate region in a multicast crossbar switch. We
demonstrate a traffic pattern which requires a switch speedup
if coding is not allowed, whereas, with coding the speedup
requirement is eliminated completely. In addition to throughput
benefits, coding simplifies the characterization of the rate region.
We give a graph-theoretic characterization of the rate region
with fanout splitting and intra-flow coding, in terms of the
stable set polytope of the “enhanced conflict graph” of the
traffic pattern. Such a formulation is not known in the case
of fanout splitting without coding. We show that computing
the offline schedule (i.e. using prior knowledge of the flow
arrival rates) can be reduced to certain graph coloring problems.
Finally, we propose online algorithms (i.e. using only the current
queue occupancy information) for multicast scheduling based on
our graph-theoretic formulation. In particular, we show that a
maximum weighted stable set algorithm stabilizes the queues for
all rates within the rate region.

I. INTRODUCTION

The input-queued crossbar switch has been studied well,
especially in the context of unicast traffic. It is known that
100% throughput can be achieved [1], in the sense that as
long as no input or output is over-subscribed, traffic can be
supported without causing the queues to grow unboundedly.
This is accomplished by the maximum weighted bipartite
matching algorithm, with queue lengths as weights. Several
simplifications of this algorithm have also been investigated
([2], [3], [4]). If the arrival rates are known in advance, we can
use the capacity decomposition approach of the Birkhoff-von
Neumann switch [5]. Reference [6] contains a good summary
of the unicast switching literature.

The extension of the problem to multicast flows is intrinsi-
cally more difficult. Early approaches used the copy strategy
– make copies of the cells1 in a separate stage before the
switching fabric, and then treat them like unicast flows [7].
However, this approach reduced the bandwidth available to
other traffic in the switch. It became clear that the intrinsic

This work was supported in part by the following grants: NSF CCR
0325496, AFOSR FA9550-06-1-0155 and DAWN UC Santa Cruz S0176938.

1Packets arriving at the switch are split into fixed-size units called cells
which are reassembled into packets at the output.

multicast capability2 of the switching fabric must be utilized.
Prabhakar et al. [8] studied the tradeoff between throughput
and complexity of two heuristic algorithms, under a fairness
constraint. The hardness of the multicast scheduling problem
was proved by Andrews et al. [9]. They also proved the
hardness of integrating unicasts along with the multicasts.

Marsan et al. [10] gave a characterization of the rate region
achievable in a multicast switch with fanout splitting3, and
also defined the optimal scheduling policy. Interestingly, this
work proved that unlike in the unicast case, 100% throughput
cannot be achieved for multicast flows in an input-queued
switch. In fact, the minimum speedup needed to achieve 100%
throughput grows unboundedly with the switch size.

Our paper studies the same problem as [10], with the
following modification. The inputs are allowed to send linear
combinations of cells waiting in the queues, i.e., they are
allowed to perform linear network coding. We show that this
change enables a number of interesting and non-trivial benefits
as well as insight. The main contributions of this paper are:

1) We prove that linear network coding increases the
achievable rate region of the switch.

2) We provide a simple graph-theoretic characterization of
the rate region with coding, which leads to more insight
on the problem.

3) We provide offline and online algorithms to achieve this
rate region while stabilizing the queues.

In the special case when fanout splitting is not allowed
for any flow, [11] showed that the rate region is the stable
set polytope of a suitably defined “conflict graph”. A similar
graph-theoretic formulation was used by Caramanis et al.
in [12] in the context of unicast traffic in Banyan networks.
References [11] and [13] showed that, if the flow rates are
known in advance, then a rate decomposition based approach
can be used to compute the schedule, in a manner similar to the
Birkhoff-von Neumann unicast switch [5]. It was also shown
that such rate decomposition reduces to fractional weighted
coloring of the conflict graph. In this paper, we extend these
graph-theoretic connections and insights to the case when
fanout splitting and coding are both allowed.

2The ability to transfer simultaneously, a cell to multiple outputs using
simultaneous switching paths

3Fanout splitting is the ability to serve partially, a multicast cell to only a
subset of its destined outputs, and complete the service in subsequent slots.
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Fig. 1. The example traffic pattern showing the benefit of network coding,
along with its enhanced conflict graph

For the case of fanout splitting without coding, [10] gave
a characterization of the rate region as the convex hull of
certain modified departure vectors. However, a graph-theoretic
formulation of the same is not known. On the other hand, for
the case with coding, our graph-theoretic formulation helps us
understand the effect of the traffic pattern on the throughput.
We transform any given traffic pattern into a conflict graph,
and the properties of this graph can be used to derive insight on
what kind of traffic patterns are “hard” in terms of computing
the schedule, and in terms of achieving 100% throughput.

The rest of the paper is organized as follows. Section II
revisits an example that appeared in [14], of a traffic pattern
that cannot be achieved with fanout splitting alone, but can
be achieved with network coding. Reference [14] gave an
outer bound on the rate region with fanout splitting and intra-
flow coding. In this paper, we prove that this bound is indeed
achievable. Section III introduces the concept of “enhanced
conflict graph” and gives a graph-theoretic formulation of
the problem. It also states our main theorems on the rate
region and the computation of an offline schedule using a rate
decomposition based approach. Section IV uses these theorems
to quantify the benefits due to coding, in two situations – the
2× 3 switch, and the 2×N switch, with a traffic pattern that
generalizes the example of Section II. In the latter case, we
prove that a speedup of around 1.5 is needed without coding,
as opposed to no speedup if coding is allowed. Section V
addresses the problem of finding online algorithms for optimal
scheduling of a multicast switch, when fanout splitting and
coding are allowed. We propose a maximum weighted stable
set algorithm and show that it is optimal. Finally, in Section VI,
we summarize the contributions of this paper, and discuss
potential avenues for future work.

II. NETWORK CODING IMPROVES THROUGHPUT:
AN EXAMPLE

Consider the traffic pattern T shown in Figure 1. This is a
2×3 switch, with 4 flows4 – one multicast flow (A) from input
1 to all 3 outputs, and 3 unicast flows (B,C,D) from input 2
to outputs 1, 2 and 3 respectively. The rates of the 4 flows are
set at 2

3 , 1
3 , 1

3 and 1
3 respectively (normalized with respect to

the arrival rates).

4The definition of a flow, and the switch assumptions are given in Section
III.

Time-Slot Code Outputs
1 P1 1,2
2 P2 2,3
3 P1 ⊕ P2 3,1

TABLE I
THE NETWORK CODE USED BY INPUT 1

This traffic pattern cannot be achieved with fanout splitting.
To show this, we note that at all times in the schedule, one
of the unicasts from input 2 has to be served, since it is a
saturated input (i.e. the total inflow is 1). Therefore, in any
time-slot, one output is blocked and a multicast packet can, at
best, be sent to the other 2 outputs. This means, it will take at
least 2 slots to complete the service of each packet, and hence,
a rate of more than 1

2 is not achievable. Since the required rate
is 2

3 , fanout splitting cannot achieve this traffic pattern.
However, it can be served if intra-flow network coding and

fanout splitting are allowed. In fact, a code over the binary
field is sufficient. The network code involves coding at input
1, over packets only from the multicast flow. Input 1 codes
over blocks of 2 packets, and sends them over 3 time-slots.
Consider a block of two packets {P1, P2} from the multicast
flow. Table I gives the code and also specifies to which outputs
the coded packet is sent. The ⊕ sign indicates that the packets
are XORed bitwise and sent. It can be verified that this code
enables each of the three destinations to decode both packets
in the block, at the end of 3 time-slots.

As for the unicast flows, they are also served in these time-
slots, in parallel. Input 1 talks to only 2 outputs at any given
time (column 3 of the table). Thus, input 2 can send a unicast
packet to the third unoccupied output and a rate of 1

3 is
achieved for each of the unicasts. In other words, the given
code satisfies all the rate requirements of the example.

III. THE RATE REGION

In this section, we present our main theorem which uses a
graph-theoretic formulation to characterize the rate region with
fanout splitting and coding. We begin with some definitions
and a note on the queuing assumptions in the switch.

Definition 1 (Flow): A flow is a stream of packets that have
a common source and destination set. It is represented by a 2-
tuple (i, J) consisting of the input i and a subset J of outputs
corresponding to the destination set of the multicast stream.

Definition 2 (Subflow): A subflow is a 3-tuple (i, J, j) con-
sisting of an input i, a subset of outputs J and one output j
from that set, i.e. j ∈ J .

A subflow (i, J, j) is that part of the flow (i, J) that goes
from input i to a particular output j in J . A multicast flow
can be thought to consist of several subflows, each going to a
different output.
Queuing assumptions: The inputs are assumed to have a
separate buffer for every flow. The buffers are not restricted
to be FIFO. In fact, we assume that in any time-slot, an input
may transmit a linear combination of all packets within a
buffer. However, there is no coding across contents of different
buffers. The usual switch constraints are assumed to hold
– an input may send the same packet to many outputs at
once, but may not send different packets to different outputs
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simultaneously. An output may receive a packet from only one
input at a time. For the case when coding is not allowed, we
assume the multicast virtual output queue architecture with
re-enqueuing, as described in [10].

Since fanout splitting is allowed, subflows belonging to the
same flow do not conflict with each other, i.e., any subset
of them may be served simultaneously. However, an input
cannot send different information to different outputs at the
same time. Also, we do not allow coding across packets of
different flows. Hence, subflows belonging to different flows
may not be served together. Thus, any subflow conflicts with
subflows of other flows at the same input. It also conflicts
with subflows from other inputs, that are destined to its output.
These conflicts are captured by the enhanced conflict graph 5.

Definition 3 (Enhanced Conflict Graph): Given a traffic
pattern, the enhanced conflict graph G = (V,E) is an
undirected vertex-weighted graph defined as follows:

Vertices: The graph contains one vertex for every subflow.
Edges: Each subflow6 is connected to all subflows belonging

to other flows at the same input. In addition, each subflow is
also connected to all subflows that have the same output.

Weights: Each vertex is assigned a weight equal to the rate
of the flow to which the corresponding subflow belongs.

The above definition implies that the set of subflows that
are served simultaneously in any valid configuration of the
switch, must be a stable set in the enhanced conflict graph.

Definition 4 (Enhanced Rate Vector): Let r ∈ R
|F | be the

rate vector of a traffic pattern consisting of a set of flows F .
Let s be the total number of subflows in the pattern (i.e. the
sum of all the fanout sizes). The enhanced rate vector e ∈ R

s

corresponding to r is defined as:
e(i,J,j) = r(i,J), ∀ j ∈ J, ∀ (i, J) ∈ F.

Thus, the enhanced rate vector is the same as the weight vector
for vertices of the enhanced conflict graph. Figure 1 shows the
enhanced conflict graph for the example traffic pattern. Note
that, the weights associated with the subflows of a particular
flow are all equal to the rate of that flow.

Definition 5 (Innovative Packet): A packet transmitted
from an input to an output is said to be innovative if it conveys
previously unknown information to an output. For linear
network coding, this means that the vector of coefficients
used in the linear combination while computing the packet,
is linearly independent of coefficient vectors of all packets
received previously by the output, thereby conveying a new
degree of freedom.

Definition 6 (Virtual Queue): We introduce the notion of a
virtual queue associated with every subflow. An arrival to a
subflow virtual queue is defined to occur when a packet arrives
into the corresponding flow’s queue. A departure (or service)
is defined to occur when an innovative packet is conveyed for
that subflow. Thus, the size of the virtual queue represents the
number of degrees of freedom that still need to be conveyed to

5The term “enhanced conflict graph” is used to distinguish it from the term
“conflict graph” that was used in [11], for the case of no-fanout-splitting.

6In the rest of this definition, by subflow, we mean the vertex representing
this subflow.

the output, in order to serve all the packets that have arrived so
far. An arrival rate vector r for the actual flow queues translates
to a rate vector of e (the enhanced rate vector corresponding
to r) for the virtual queues.

A. The rate region with fanout splitting and intra-flow coding

We now examine the conditions under which the virtual
queues can be served in a stable manner. We begin with a
theorem that provides service guarantees for a certain set of
rate vectors.

Theorem 1: If fanout splitting and intra-flow linear network
coding are allowed, then there exists a frame-based schedule
with a suitably chosen frame size F such that in one frame
duration, every virtual queue (i, J, j) receives service up to
e(i,J,j)F times, if and only if the enhanced rate vector e is in
the stable set polytope of the enhanced conflict graph.

Proof:
Achievability: If e is in the stable set polytope of the enhanced
conflict graph, then we can express e as a convex combination
of the incidence vectors of stable sets of the graph:

e =
∑m

i=1 φiχ
Si , where χSi denotes the incidence vector

of the stable set Si.
Assuming the φi’s are rational, we can choose a large

enough integer F such that φiF is an integer for all i. (This
F will also satisfy the property that e(i,J,j)F is an integer for
all subflows.) Using this F as the frame size, we construct a
frame-based schedule by appropriate time-sharing among the
different switch configurations represented by the stable sets.
Thus, out of F slots in a frame, the switch is configured to
stable set Si for φiF slots, for each i. In each slot, the stable
set specifies which subflows are to be served.

This schedule has the property that for every flow (i, J)
with rate r(i,J), each output j in its fanout receives e(i,J,j)F =
r(i,J)F transmissions from the input during one frame.

Thus, to prove achievability, we only need to ensure that
each transmitted packet is innovative to all the outputs it
reaches. For this, we will need to perform network coding.

We use a maximum distance separable (MDS) code [15].
The key property of an MDS code that we use here is that
an (n, k) MDS code can correct up to (n− k) erasures, each
of which may occur anywhere in the codeword. Hence, using
any k codeword symbols one can retrieve all the information.

Of the F slots, let T(i,J) be the number of slots when
flow (i, J) is served to any of its outputs. Owing to fanout
splitting, T(i,J) is in general more than r(i,J)F . In the coding
scheme we propose, the input uses a (T(i,J), r(i,J)F ) MDS
code and computes the codeword treating the r(i,J)F packets
as symbols of the information word. Then, at each of the T(i,J)

transmission opportunities, the input transmits a new symbol
from the MDS codeword that it computed.

Since each output in the fanout of (i, J) is guaranteed
to receive r(i,J)F codeword symbols, it can retrieve the
entire transmitted information. (The schedule and the code are
computed offline, and are known to all inputs and outputs.)
Converse: The proof of the converse was given in [14], and is
summarized here for completeness. Let r be a rate vector and
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e be the corresponding enhanced rate vector. Suppose there is
a schedule of switch configurations and associated codes for
each slot such that, every subflow receives innovative packets
for enough fraction of time so as to meet its rate requirement.
Based on this achieving schedule, form a 0-1 vector in each
time-slot, with an entry for each subflow such that, the entry
is a 1 if an innovative packet is conveyed for that subflow by
the code in that slot. Then e is the average of such indicator
vectors over all the F slots in a frame. But, each indicator
vector has to be the incidence vector of some stable set of the
enhanced conflict graph due to the switch constraints. Thus,
any such enhanced rate vector can be written as a convex
combination of the stable sets, and this proves the converse.

The schedule used in the above proof suggests the following
algorithm – after every F slots, remove e(i,J,j)F packets from
each virtual queue (i, J, j) and serve them over the next F
slots using an MDS code. This algorithm, viewed at the time-
scale of frames (rather than slots), guarantees deterministic
service to each virtual queue with a rate of e(i,J,j)F packets
per frame. Working at the level of frames, we use the above
theorem to establish the rate region for a multicast switch
with fanout splitting and network coding, under fairly general
assumptions on the arrival process.

Let A(τ) denote the number of arrivals into the virtual
queue (i, J, j), during frame number τ . We use the same
assumptions on the arrival process as in Definition 3.4 of [16]:

• limt→∞ 1
t

∑t−1
τ=0 E{A(τ)} = e(i,J,j).

• E[A(t)2|H(t)] ≤ A2
max for all frames t, where H(t)

represents the history up to frame t.
• For any δ > 0, there exists T such that for any t0,

E
[

1
T

∑T−1
k=0 A(t0 + k|H(t0))

]
≤ e(i,J,j) + δ

The type of stability we consider is also the same as in
Chapter 3 in [16], i.e., strong stability – a queue is strongly
stable if it has a finite time average expected backlog.

Definition 7 (Rate Region): A rate vector r is said to be
achievable if there exists a schedule that ensures strong stabil-
ity of all the virtual queues. The rate region is the set of all
achievable rate vectors.

In Lemma 3.6 of [16], the necessary and sufficient condi-
tions for the strong stability of a single queue under admissible
arrival and service processes are given. Applying those results
in the present context, we arrive at the following corollary.

Corollary 1: The rate region Γ with fanout splitting and
intra-flow linear network coding is given by the set of all rate
vectors r such that, the enhanced rate vector e(r) is strictly
within the stable set polytope of the enhanced conflict graph.

Since we view the packets as elements of a finite field while
computing the code, the field size is a parameter of interest.
If the field is too large, then we may need more than one
packet to represent a single field element, which makes the
implementation more difficult. On the other hand, the field
should be large enough to ensure that every transmission con-
veys an innovative packet to all the recipients. The following
discussion indicates that for reasonable assumptions on the

switch size and the packet size, the field size required will be
such that a field element will indeed fit within one packet.

The proof above uses an MDS code to show achievability.
In general, for an (n, k) MDS code to exist, we need to work
over a large field size, comparable to n. This means the field
size could depend on the length of the schedule, which is not
desirable. However, using the results of [17] and [18], one
can show that there are other codes, defined over a field only
as big as the fanout size of the flows, which still ensure that
every transmission is useful to all recipients.

Proposition 3.1: A field size equal to the fanout size is
sufficient to ensure that every transmission is innovative to
all outputs, in the proof of Theorem 1.

Proof: We use the same notation as in the earlier proof.
Consider a network with three layers of nodes. The first
layer has a single node – the source. The second layer nodes
correspond to the time-slots in the frame in which flow (i, J)
is being served. Thus, there are T(i,J) such nodes. In the
third layer, there is one node corresponding to each output
in the fanout of flow (i, J). The source node is connected to
all nodes in the second layer. A node in the second layer
is connected to those nodes of the third layer which are
served in the corresponding time-slot. All links have unit
capacity. Consider the single source multicast problem with
network coding, from the source node to all nodes of the
third layer. Since the schedule guarantees that every output
receives r(i,J)F transmissions, this means the min-cut of this
network is r(i,J)F . Therefore, using the results of [17] and
[18], r(i,J)F packets can be transmitted to each output using
network coding, and the field size required is equal to the
number of destinations, which in our case is the size of the
fanout. The network coding solution to this new network
naturally leads to the code for the switch, namely that, in
the ith time-slot, the switch input should use the same linear
combination that the source transmitted to the ith node of the
second layer in the network.

B. Admissible region vs. rate region

For a general graph, a complete characterization of the
stable set polytope in terms of linear inequalities is unknown.
Several families of necessary conditions are known. One
example is the clique inequalities, which say that the total
weight on the vertices of a maximal clique must not exceed 1.
(A clique is a set of vertices all of which are connected to each
other.) In terms of the switch, we can show that the maximal
cliques of the enhanced conflict graph correspond to flows
either from the same input or to the same output. Thus, the
clique inequalities imply that no input nor any output may be
overloaded. These are also called the admissibility conditions.
The polytope described by these conditions along with non-
negativity constraints is called the admissible region.

It is known that the non-negativity and clique inequalities
suffice in describing the stable set polytope, if and only if, the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

1148



graph is perfect7 [19]. This leads to the following corollary.
Corollary 2: For a given traffic pattern, the entire admis-

sible region is achievable with fanout splitting and intra-flow
linear coding, if the enhanced conflict graph is perfect.

In a more general case, the admissible region is a strict
superset of the rate region. This implies that it is not possible
to achieve 100% throughput even with fanout splitting and
coding. The formulation presented here gives us insight on
what kind of traffic patterns will lead to a reduced throughput.

For the case with fanout splitting, but no network coding,
Marsan et al. showed in [10] that 100% throughput cannot be
achieved. However, in that case, the rate region is in terms of
the convex hull of all possible departure vectors, which do not
have a neat graph-theoretic characterization in general. Thus,
allowing network coding leads to a more insightful description
of the rate region, and enables the use of graph-theoretic tools.

C. Rate decomposition approach to compute the schedule

In this subsection, we address the problem of the Birkhoff-
von Neumann like rate decomposition approach for offline
computation of the schedule, given the rates of the flows, in a
manner similar to [5] . The following corollary gives a graph-
theoretic interpretation of this approach.

Definition 8 (Fractional Weighted Coloring Problem):
Given a graph G and a weight wv ∈ R

+ for each vertex,
minimize

∑k
i=1 λi (λi ∈ R

+, ∀i) such that there
exist stable sets {Si} of G with

∑k
i=1 λiχ

Si = w, where w is
the given weight vector, and χS denotes the incidence vector
of the stable set S. The optimum value of the minimization
problem is called the fractional weighted chromatic number.

We interpret the weights to correspond to the flow rates, and
the coefficients λi to be the fractions of time in the schedule.
Essentially, if the fractional weighted chromatic number is less
than 1, then the optimal solution expresses the weight vector
as a convex combination of stable sets, which in turn leads to
a switch schedule. This leads to the following corollary.

Corollary 3: The problem of computing the offline switch
schedule for a multicast traffic pattern when fanout splitting
and intra-flow linear network coding are allowed, is equivalent
to the problem of fractional weighted coloring of the enhanced
conflict graph, with the enhanced rates used as vertex weights.

Given the set of rates of the various flows in a multicast
switch, the switch schedule can be obtained as above. This
ensures that each input gets to talk to each output for enough
fraction of time about each flow. To make sure that every
transmission opportunity is used to convey a new degree of
freedom, we need to use an appropriate code. One way to do
this is the MDS code idea described in the proof of Theorem 1.
Alternatively, to obtain a code using a smaller field size, one
can use the ideas in Proposition 3.1, where a multicast network
code construction is used on a new network that represents the
transmission schedule. The switch schedule and the network

7A graph is said to be perfect if the coloring number equals the size of the
largest clique for every induced subgraph. Coloring number is the minimum
number of colors so that each vertex can be assigned a color with no two
adjacent vertices receiving the same color.

code which ensures that every transmission conveys an in-
novative packet, together give a complete specification of a
frame-based scheme that achieves the entire rate region.

D. The effect of speedup

Definition 9 (Speedup): A switch is said to have a speedup
s if the switching fabric can transfer packets at a rate s times
the incoming and outgoing line rate of the switch.

If we define a time-slot to be the reciprocal of the line
rate, then this means the switching fabric can go through s
configurations within one time-slot. Note that this requires
output queuing if s > 1. So far we have considered the case
where s = 1. It is easy to see that a rate vector r is achievable
with speedup s if and only if it is admissible and 1

sr is within
the rate region corresponding to a speedup of 1.

Now, if the fractional weighted chromatic number c (defined
above) for a given rate vector exceeds 1, then such a rate
vector cannot be achieved, since it is not within the stable
set polytope. However, if we allow a speedup equal to c,
then the rate can be achieved. This is because the speedup
essentially scales down the rate vector by a factor of c, and
this in turn scales down the optimum value of the minimization
by the same factor. Hence, the new rate vector is inside the
rate region. This gives an interesting physical interpretation
for the fractional weighted chromatic number corresponding
to a given rate vector, which is summarized in the following
theorem.

Theorem 2: The minimum speedup needed to achieve a
given rate vector with fanout splitting and coding, is the
fractional weighted chromatic number of the enhanced conflict
graph, with the enhanced rate vector used as vertex weights.

IV. EXAMPLES AND SIMULATION

Network coding gives a benefit in the rate region, even if
we use only linear intra-flow coding. In this section, we apply
the formulation described in the previous section, to quantify
the benefits in a 2 × 3 switch with arbitrary traffic, and in a
2 × N switch, for a special traffic pattern.

A. 2 × 3 switch

In a 2 × 3 switch, there are 14 possible flows - three
unicasts, three two-casts, and one broadcast from each of two
inputs. Thus, the rate region is a 14-dimensional polytope.
We numerically computed the facets of the stable set polytope
of the enhanced conflict graph corresponding to this traffic
pattern. Then, we used this to obtain and study the rate region
of the 2 × 3 switch.

The methodology we used was to first list out all stable sets
of the enhanced conflict graph. These are the extreme points
of the rate region. We used the multi-parametric toolbox [20]
package for MATLAB, to convert the extreme points to a
representation using linear inequalities, which was then used
for the speedup computations. To compute the volume of the
polytopes, we used a software known as Vinci [21]. The rate
region of the case with fanout splitting but no coding was
obtained using the characterization given in [10].
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Polytope Volume Normalized
Volume

Speedup to
achieve Padm

Padm 4.921 × 10−9 1 1
Pintra 4.686 × 10−9 0.952 1.25
Pfs 4.613 × 10−9 0.937 1.25
Pnofs 2.260 × 10−9 0.460 1.67

TABLE II
A COMPARISON OF THE FOUR SCHEMES

Fig. 2. A special traffic pattern which demonstrates the benefit of coding

The two rate regions were compared in terms of the volume
of the polytope and the minimum speedup needed to achieve
the entire admissible region. The results are summarized in
Table IV-A. Here, Padm refers to the admissible region, Pintra

refers to the rate region with linear intra-flow network coding
and fanout splitting, Pfs is the case with only fanout splitting,
and Pnofs is the rate region when fanout splitting is not
allowed. The corresponding values for the case with no fanout
splitting, are also shown. These results were obtained using the
graph-theoretic formulation that was obtained in [11] and [13].

The results indicate that there is a marginal improvement in
throughput due to coding. There is another way to compare
the two schemes. Although network coding enlarges the rate
region. The same region can also be achieved without coding,
if we allowed a speedup. The amount of speedup needed for
this to happen is a measure of the gain due to coding. This
value is 1.1667 for the 2 × 3 case. Thus, for certain traffic
patterns, coding can remove the need for speedup, even in a
2 × 3 switch.

B. Example in a 2 × N switch

We now study a special traffic pattern in a 2 × N switch,
where the benefit of network coding is pronounced. Consider a
2×N switch, with the following traffic pattern: at input 1, there
is one broadcast flow going to all outputs, having a rate r0; at
input 2, there are N unicasts, one to each output – the rate of
the unicast going to output j is rj , for j = 1, 2, . . . , N . See
Figure 2. The rate region of this pattern with fanout splitting
but no coding, can be shown to be:

N∑
i=1

ri ≤ 1 (1)

r0 + ri ≤ 1 for i = 1, 2, . . . N (2)

2r0 +
N∑

i=1

ri ≤ 2 (3)

along with the non-negativity conditions. It is easy to verify
that these conditions are necessary. It turns out that they are

sufficient as well, but we skip the proof for want of space.
Now, consider the enhanced conflict graph for this pattern.
Theorem 3: The enhanced conflict graph for the special

pattern is a perfect graph.
Proof: It consists of a set of N subflows one for each

unicast, and another set of N subflows for the broadcast.
The unicast subflows form a clique, while the broadcast
subflows form a stable set. Thus, the set of vertices can be
partitioned into two parts, which induce a clique and a stable
set respectively. This means the graph is a “split graph”, which
is known to be perfect [19].

The next corollary follows immediately from Section III-B.
Corollary 4: For the special traffic pattern, the entire ad-

missible region is achievable if fanout splitting and linear
intra-flow coding are allowed.

This means that the following rate vector is achievable: r0 =(
1 − 1

N

)
; rj = 1

N for all other j.
This fact can be verified by observing that the traffic pattern

is a generalization of the example given in Section II, and that,
the same single parity check code can be generalized to N bits,
and used here, to achieve the traffic pattern.

But, this rate vector does not lie within the rate region
for fanout splitting without coding because it violates the
inequality given in Eqn. 3. The left hand side evaluates to(
3 − 2

N

)
, while the right hand side is only 2. Hence, the

smallest scaling factor such that the scaled rate vector lies
inside the rate region is

(
1.5 − 1

N

)
. In other words, we have

demonstrated a traffic pattern which can be served with no
speedup if network coding is allowed, but needs a speedup of(
1.5 − 1

N

)
, if coding is not allowed.

The two examples show that the throughput benefit due
to coding depends on the traffic pattern in the switch. For
instance, in the 2×3 case, for some traffic patterns, both fanout
splitting and coding are equally far away from the admissibility
limit, which is why both need the same speedup of 1.25 to
cover the entire admissible region. However, for some other
traffic patterns, coding needs no speedup, while fanout splitting
may need a non-trivial speedup.

We expect the gains observed to be more pronounced in
larger switches, as there will be more traffic patterns where
coding gives a benefit. However, there will still be patterns
for which there is no gain due to coding. The more important
gain of coding is the simpler characterization of the rate region
and the insight gained from the graph-theoretic formulation.

V. MAXIMUM WEIGHTED STABLE SET ALGORITHM FOR

ONLINE SCHEDULING

Suppose the rates of the various flows are unknown, and
scheduling has to be done online, using only the queue
occupancy information. Analogous to the maximum weighted
matching algorithm for unicast, we show that a maximum
weighted stable set (MWSS) algorithm on the enhanced con-
flict graph achieves the entire rate region for multicast when
fanout splitting is allowed along with network coding. In this
section, we assume that the arrivals to each flow are i.i.d. and
independent across flows.
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Algorithm: Max Weighted Stable Set (MWSS)

1. Using xiJj(t) as the weight for the vertex corresponding to the
subflow (i, J, j), compute the maximum weighted stable set in
the enhanced conflict graph. This specifies the set of subflows
that will be served in the current time-slot. If xiJj is 0 for any
chosen subflow, it is dropped from the stable set.

2. For every flow in the chosen set, compute a linear combination of
all packets received for that flow until time t, such that, the linear
combination is an innovative packet for all the chosen outputs of
that flow.

3. Transfer the computed linear combination to the outputs of the
subflows chosen in the stable set in step 1, and update xiJj(t)
accordingly. Go back to step 1.

Let xiJj(t) denote the occupancy of the virtual queue for
subflow (i, J, j) in time-slot t. Thus, xiJj(t) is a measure of
the backlog for subflow (i, J, j) in terms of the degrees of
freedom. The MWSS algorithm uses these “virtual backlogs”
as weights to compute the maximum weighted stable set.
Decoding the packets: We assume a centralized system where
the output knows the coefficients used by the input in the linear
combinations. The output can verify if a packet is innovative
by checking whether its coefficient vector is in the span of the
coefficient vectors of packets received earlier. Each innovative
packet counts as a new degree of freedom, and with enough
degrees of freedom, the output simply needs to invert the
matrix of coefficients to obtain the original packets. Thus, if
the backlog becomes 0, the output can completely decode all
the packets till that point. The network code ensures that every
transmission is used to convey a new degree of freedom.

Lemma 1: Let V be a vector space with dimension n over
a field of size q, and let V1,V2, . . .Vk, be subspaces of V , of
dimensions n1, n2, . . . , nk respectively. Suppose that n > ni

for all i = 1, 2, . . . , k. Then, there exists a vector that is in V
but is not in any of the Vi’s, if q > k.

Proof: The total number of vectors in V is qn. The
number of vectors in Vi is qni . Hence, the number of vectors
in ∪k

i=1Vi is at most
∑k

i=1 qni . Now,
∑k

i=1 qni ≤ kqnmax ≤ kqn−1 < qn

where, nmax is maxi ni, which is at most (n − 1). Thus, V
has more vectors than ∪k

i=1Vi. This completes the proof.
Theorem 4: If the arrivals are i.i.d. and independent across

flows and the rate vector is inside Γ (the rate region in
Corollary 1), then the MWSS algorithm given above, stabilizes
the vector x in the mean.

Proof: First we need to show that in the second step of
the MWSS algorithm, there is at least one linear combination
which is guaranteed to be innovative to all outputs. Now, xiJj

gives the difference in the number of dimensions that the input
knows and the number of dimensions that output j knows.
Hence, if xiJj is positive for a set of outputs, then we have the
same situation as in Lemma 1. The k subspaces in the lemma
correspond to the subspaces known at the outputs, while n is
the dimension of the overall vector space that is known at the
input. Thus, the lemma guarantees that there exists a linear
combination of the packets of flow (i, J) that is innovative to
all those outputs, for a field size that is larger than the number
of outputs involved. Such a combination is chosen in step 2.

The rest of the proof is essentially an application of the
results of [22] and [23] for the case of parallel queues. The
queues under consideration are the virtual queues defined
earlier. Eligible activation vectors of the queues therefore
correspond to conflict-free sets of subflows, or in other words,
stable sets in the enhanced conflict graph.

Under these definitions, the only difference between this
situation and the one assumed in [22] is that [22] assumes
that arrivals to different queues are independent of each other,
whereas in our case, arrivals to subflows of the same flow
always occur simultaneously. However, this lack of inde-
pendence across arrival processes does not affect the results
of [22], essentially because of the linearity of expectation of
dependent random variables. Stability in the mean still holds,
as long as other assumptions such as the ergodicity of the
arrival processes and the finiteness of their second moment
hold. Thus, the MWSS algorithm stabilizes the occupancy of
the virtual queues (x), as long as their arrival rates are inside
the convex hull of the eligible activation vectors, i.e. the stable
set polytope. In other words, as long as the arrival rate vector
is within Γ, limt→∞ E[xiJj(t)] < ∞ ∀ subflows (i, J, j).

Finite Horizon MWSS Algorithm

The above theorem shows that the MWSS algorithm stabi-
lizes the backlog in number of degrees of freedom. But, while
an output may receive degrees of freedom at the correct rate, it
is not guaranteed to decode packets often enough, because to
decode packets, it needs to receive as many degrees of freedom
as the current size of coding window used for the code. Since
all packets that arrived until time t can potentially be used
for coding at time t, the coding window might keep growing.
This means, the input cannot clear its buffer often enough.

To show that the buffers can also be stabilized, we modify
the algorithm into a batching scheme called the finite horizon
MWSS algorithm. Packets are grouped into batches according
to their arrival times. The basic idea is to run MWSS on one
batch, then take a break to clear the backlog for that batch,
thereby allowing the outputs to decode it completely. After
that, the batch is flushed out of the input buffers, and the we
begin afresh with the next batch. These breaks will cause a loss
in throughput, since the MWSS algorithm is now running for
only a fraction of the time. However, with a large enough batch
length, this throughput loss can be made arbitrarily small.

A similar batching policy was studied in [24]. However, the
motivation there was to reduce the frequency of reconfigura-
tion, which required estimation of the load vector. We do not
estimate the load vector, but instead use the queue occupancies
at each slot. Our algorithm is described in more detail below.

The batch length is denoted ∆0, and all arrivals from time
k∆0 + 1 to (k + 1)∆0 are said to belong to batch k, for k =
0, 1, 2, . . . The processing of a batch begins only after it has
fully arrived. Each batch is processed as follows. For a frame
of ∆(< ∆0) time-slots, the MWSS algorithm is allowed to
run on packets of the current batch. In order to exactly mimic
the MWSS algorithm, we impose the constraint that, at the
kth slot of the MWSS frame, the weights and coded packets
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Fig. 3. Finite horizon MWSS: A typical instance of the batching process

are computed using only those arrivals that occurred before
slot number ∆0

∆ k in the batch, even though the entire batch
is available. This is because the original MWSS algorithm
runs in an online manner, without using future arrivals. This
restriction allows us to use the stability result of Theorem 4
for the finite horizon case. It is expected that using the entire
batch at every step will only improve the performance.

At the end of the frame, the switch clears out the existing
backlog in the degrees of freedom of the current batch, by
sending enough number of innovative packets to each of the
subflows one by one. The duration of this backlog clearance
period, denoted Tk for the kth batch, depends on the amount of
backlog that the MWSS phase leaves behind. Thus, whatever
arrives in a time ∆0 is cleared within a time of (∆ + Tk).

Once the backlog of the kth batch is cleared, all packets of
that batch are flushed out and a new frame begins, in which
the next batch is processed. Before starting the new frame, the
algorithm waits for the (k + 1)st batch to arrive fully at the
switch. If there is no fully arrived batch waiting at the switch,
and all previous batches have been served, the system is said
to be in an idle state. All other times are called busy state. A
typical instance of the batching process is shown in Figure 3.

Theorem 5: If the arrivals are i.i.d. and independent across
flows and the mean arrival rate vector is strictly inside Γ,
then there exist choices of ∆ and ∆0 for which, the finite
horizon MWSS algorithm guarantees stability of the buffers in
the switch, in the sense that the system reaches an idle state
infinitely often, with probability (w.p.) 1.

Proof: We use the stability of the MWSS algorithm in
terms of degrees of freedom, to show that for each batch,
the expected backlog clearance time can be made as small as
needed, compared to the size of the frame ∆.

For any rate point r that is strictly inside the rate region,
∃ε > 0, s.t. (1 + ε)r is also inside the rate region. Choose
∆0 = (1 + ε)∆. Consider a single MWSS frame. As far as
the algorithm is concerned, the arrival process appears like
the original arrival process, except that, the time-axis is com-
pressed by a factor of ∆0

∆ . As a result, the MWSS algorithm
sees an effective arrival rate of ∆0

∆ r. Since this effective rate
is inside the rate region, it follows from Theorem 4 that the
backlogs xiJj(t) are stable in the mean.

The backlog clearance duration Tk is essentially the sum of
the degree of freedom backlogs over all subflows at the end

of the MWSS frame, i.e., Tk(∆) =
∑

(i,J,j) xiJj(∆). Thus,
Tk is also stable in the mean, i.e., limt→∞ E[Tk(t)] < ∞. It
follows that: limt→∞

E[Tk(t)]
t = 0. Choose ∆ large enough

such that, E[Tk(∆)]
∆ < ε.

The time for which the system is in a busy state, is called a
busy period. We prove that the duration of a single contiguous
busy period is finite w.p. 1. This implies that the system will
become empty infinitely often w.p. 1.

Consider a single busy period. We denote the waiting time
of the nth batch in the busy period, by Wn. This is the
difference between the time when the batch arrives completely
at the switch and the time when the batch is flushed out after
service. In a busy period, Wn is always more than ∆0. The
moment Wn falls below ∆0, the busy period ends, since any
batch arrives only at the end of ∆0 slots after the previous
one. Hence, we need to show that Wn will fall below ∆0

eventually. Now, Wn = n∆ +
∑n

i=1 Ti − (n − 1)∆0.
Thus, Wn < ∆0 iff

∑n
i=1 Ti < nε∆. Since the Ti’s are

i.i.d., it follows from the strong law of large numbers that for
large n, w.p. 1,

∑n
i=1 Ti = nE[Ti] + o(n).

(A function f(n) is said to be o(n), if limn→∞
f(n)

n = 0.)
Now, since E[Ti] < ε∆,

∑n
i=1 Ti can be made smaller than

nε∆, for large enough n. This completes the proof.
Remark 1: The algorithm used in this proof can be im-

proved using an online streaming policy for buffer clearance,
in place of a frame based policy. Packets in the buffer can be
replaced with innovative linear combinations in each time-slot.
The analysis of this approach is part of future work.

Remark 2: The results in [25] are related to our approach.
In that paper, the authors analyze the performance of a back-
pressure based policy for wired and wireless networks with
intra-flow coding, and show that it stabilizes the system
for all rate vectors within the capacity region. The network
constraints are captured in terms of capacities on each link,
which could be inter-dependent in the wireless setting. The
crossbar switch, studied in our paper, is similar to the wireless
setting in the sense that, an input may not send a different
packet to different outputs simultaneously. Besides, there is a
special kind of inter-dependence among the links in that, of all
links going to the same output, at most one may be active at
a time. However, [25] gives an indirect characterization of the
rate region in terms of certain flow variables, unlike the more
explicit graph-theoretic characterization we have provided.

A. Simulation of the Online Algorithm

In this section, we study the effect of coding in an online
setting, through MATLAB simulations in a 4× 3 switch. The
setup we use is similar to the finite horizon MWSS algorithm,
except, instead of the max weight stable set which is known
to be NP -hard [26], we use a simpler randomized algorithm
using the idea proposed in [23]. In each slot, we choose the
best of a constant number of randomly generated maximal
stable sets, and the stable set that was used in the previous
slot. The values of ∆ and ε were chosen to be 1000 and 0.005.

We compare the performance with the case of fanout split-
ting without coding. For this case, we use a similar randomized
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Fig. 4. Delay vs. load plots with and without network coding

modification of the algorithm given in [10]. Instead of stable
sets, we use the modified departure vectors defined in [10].

The traffic pattern is chosen to be a combination of the
example pattern used in Section II weighted by a factor of
2
3α, and a pattern with uniform unicasts, each having a rate
of 0.01α, where α represents the load factor. Thus, the traffic
pattern consists of one broadcast from input 1, with a rate of
4
9α. There are 3 unicasts, one to each output, from inputs 1,
3 and 4, each having a rate of 0.01α. From input 2, there is a
unicast of rate ( 2

9 + 0.01)α. Arrivals are generated according
to an i.i.d. Bernoulli process independently for each flow.

Figure 4 shows the plot of delay vs. load for the randomized
algorithm with and without coding. At light loads, the algo-
rithm due to coding is seen to have a larger delay. However,
for the uncoded scheme, the delay shoots up at a lower value
of load, as opposed to the coded scheme. Thus, in terms of
throughput, the coded scheme is clearly better. Equivalently,
network coding leads to delay benefits at high loads.

VI. CONCLUSIONS

This paper addresses the problem of serving multicast flows
in an input-queued crossbar switch. We show that allowing
linear intra-flow network coding at the inputs leads to a larger
rate region in general. We demonstrate examples of traffic
patterns where coding eliminates the need for speedup to
serve the traffic in a stable manner. We use a graph-theoretic
formulation to derive the rate region of the switch with
network coding, and propose offline and online algorithms
to achieve this rate region. We also use the formulation to
understand the effect of the structure of the traffic pattern
on the throughput and on the complexity of computing the
schedule. Possible future work could be to use this formulation
to come up with approximation schemes and heuristics that
simplify the online scheduling algorithm and make it practical.
Thus, with intra-flow linear network coding, we get not only
a throughput gains, but also a more insightful characterization
of the rate region, with potential to use graph-theoretic results.
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