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Abstract

We investigate the use of message-passing algorithms for the problem of finding
the max-weight independent set (MWIS) in a graph. First, we study the perfor-
mance of loopy max-product belief propagation. We show that, if it converges,
the quality of the estimate is closely related to the tightness of an LP relaxation
of the MWIS problem. We use this relationship to obtain sufficient conditions for
correctness of the estimate. We then develop a modification of max-product – one
that converges to an optimal solution of the dual of the MWIS problem. We also
develop a simple iterative algorithm for estimating the max-weight independent
set from this dual solution. We show that the MWIS estimate obtained using these
two algorithms in conjunction is correct when the graph is bipartite and the MWIS
is unique. Finally, we show that any problem of MAP estimation for probability
distributions over finite domains can be reduced to an MWIS problem. We believe
this reduction will yield new insights and algorithms for MAP estimation.

1 Introduction

The max-weight independent set (MWIS) problem is the following: given a graph with positive
weights on the nodes, find the heaviest set of mutually non-adjacent nodes. MWIS is a well studied
combinatorial optimization problem that naturally arises in many applications. It is known to be
NP-hard, and hard to approximate [6]. In this paper we investigate the use of message-passing
algorithms, like loopy max-product belief propagation, as practical solutions for the MWIS problem.
We now summarize our motivations for doing so, and then outline our contribution.

Our primary motivation comes from applications. The MWIS problem arises naturally in many
scenarios involving resource allocation in the presence of interference. It is often the case that
large instances of the weighted independent set problem need to be (at least approximately) solved
in a distributed manner using lightweight data structures. In Section 2.1 we describe one such
application: scheduling channel access and transmissions in wireless networks. Message passing
algorithms provide a promising alternative to current scheduling algorithms.

Another, equally important, motivation is the potential for obtaining new insights into the perfor-
mance of existing message-passing algorithms, especially on loopy graphs. Tantalizing connections
have been established between such algorithms and more traditional approaches like linear pro-
gramming (see [9] and references). The MWIS problem provides a rich, yet relatively tractable, first
framework in which to investigate such connections.

1.1 Our contributions

In Section 4 we construct a probability distribution whose MAP estimate corresponds to the MWIS
of a given graph, and investigate the application of the loopy Max-product algorithm to this distrit-
buion. We demonstrate that there is an intimate relationship between the max-product fixed-points
and the natural LP relaxation of the original independent set problem. We use this relationship to
provide acertificate of correctnessfor the max-product fixed point in certain problem instances.
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In Section 5 we develop two iterative message-passing algorithms. The first, obtained by a minor
modification of max-product, calculates the optimal solution to the dual of the LP relaxation of the
MWIS problem. The second algorithm uses this optimal dual to produce an estimate of the MWIS.
This estimate is correct when the original graph is bipartite.

In Section 3 we show thatany problem of MAP estimation in which all the random variables can
take a finite number of values (and the probability distribution is positive over the entire domain) can
be reduced to a max-weight independent set problem. This implies that any algorithm for solving
the independent set problem immediately yields an algorithm for MAP estimation. We believe this
reduction will prove useful from both practical and analytical perspectives.

2 Max-weight Independent Set, and its LP Relaxation

Consider a graphG = (V,E), with a setV of nodes and a setE of edges. LetN (i) = {j ∈ V :
(i, j) ∈ E} be the neighbors ofi ∈ V . Positive weightswi, i ∈ V are associated with each node.
A subset ofV will be represented by vectorx = (xi) ∈ {0, 1}|V |, wherexi = 1 meansi is in the
subsetxi = 0 meansi is not in the subset. A subsetx is called anindependent setif no two nodes
in the subset are connected by an edge:(xi, xj) 6= (1, 1) for all (i, j) ∈ E. We are interested in
finding a maximum weight independent set (MWIS)x∗. This can be naturally posed as an integer
program, denoted below byIP. Thelinear programing relaxationof IP is obtained by replacing the
integrality constraintsxi ∈ {0, 1} with the constraintsxi ≥ 0. We will denote the corresponding
linear program byLP. The dual ofLP is denoted below byDUAL.

IP : max

n∑

i=1

wixi,

s.t. xi + xj ≤ 1 for all (i, j) ∈ E,

xi ∈ {0, 1}.

DUAL : min
∑

(i,j)∈E

λij ,

s.t.
∑

j∈N (i)

λij ≥ wi, for all i ∈ V,

λij ≥ 0, for all (i, j) ∈ E.

It is well-known thatLP can be solved efficiently, and if it has an integral optimal solution then this
solution is an MWIS ofG. If this is the case, we say that there is nointegrality gapbetweenLP and
IP or equivalently that theLP relaxation istight. usIt is well known [3] that the LP relaxation is
tight for bipartite graphs. More generally, for non-bipartite graphs, tightness will depend on the
node weights. We will use the performance ofLP as a benchmark with which to compare the
performance of our message passing algorithms.

The next lemma states the standard complimentary slackness conditions of linear programming,
specialized forLP above, and for the case when there is no integrality gap.

Lemma 2.1 When there is no integrality gap betweenIP and LP, there exists a pair of optimal
solutionsx = (xi), λ = (λij) of LP and DUAL respectively, such that: (a)x ∈ {0, 1}n, (b)

xi

(∑
j∈N (i) λij − wi

)
= 0 for all i ∈ V , (c) (xi + xj − 1)λij = 0, for all (i, j) ∈ E.

2.1 Sample Application: Scheduling in Wireless Networks

We now briefly describe an important application that requires an efficient, distributed solution to the
MWIS problem: transmision scheduling in wireless networks that lack a centralized infrastructure,
and where nodes can only communicate with local neighbors (e.g. see [4]). Such networks are
ubiquitous in the modern world: examples range from sensor networks that lack wired connections
to the fusion center, and ad-hoc networks that can be quickly deployed in areas without coverage,
to the 802.11 wi-fi networks that currently represent the most widely used method for wireless data
access.

Fundamentally, any two wireless nodes that transmit at the same time and over the same frequencies
will interfere with each other, if they are located close by. Interference means that the intended
receivers will not be able to decode the transmissions. Typically in a network only certain pairs
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of nodes interfere. The scheduling problem is to decide whichnodes should transmit at a given
time over a given frequency, so that(a) there is no interference, and(b) nodes which have a large
amount of data to send are given priority. In particular, it is well known that if each node is given a
weightequal to the data it has to transmit, optimal network operation demands scheduling the set of
nodes with highest total weight. If a “ conflict graph” is made, with an edge between every pair of
interfering nodes, the scheduling problem isexactlythe problem of finding the MWIS of the conflict
graph. The lack of an infrastructure, the fact that nodes often have limited capabilities, and the local
nature of communication, all necessitate a lightweight distributed algorithm for solving the MWIS
problem.

3 MAP Estimation as an MWIS Problem

In this section we show that any MAP estimation problem is equivalent to an MWIS problem on
a suitably constructed graph with node weights. This construction is related to the “overcomplete
basis” representation [7]. Consider the following canonical MAP estimation problem: suppose we
are given a distributionq(y) over vectorsy = (y1, . . . , yM ) of variablesym, each of which can take
a finite value. Suppose also thatq factors into a product of strictly positive functions, which we find
convenient to denote in exponential form:

q(y) =
1

Z

∏

α∈A

exp (φα(yα)) =
1

Z
exp

(
∑

α∈A

φα(yα)

)

Hereα specifies the domain of the functionφα, andyα is the vector of those variables that are in
the domain ofφα. Theα’s also serve as an index for the functions.A is the set of functions. The
MAP estimation problem is to find a maximizing assignmenty∗ ∈ arg maxy q(y).

We now build an auxillary graph̃G, and assign weights to its nodes, such that the MAP estimation
problem above is equivalent to finding the MWIS ofG̃. There is one node iñG for each pair(α,yα),
whereyα is anassignment(i.e. a set of values for the variables) of domainα. We will denote this
node ofG̃ by δ(α,yα).

There is an edge iñG between any two nodesδ(α1,y
1
α1

) andδ(α2,y
2
α2

) if and only if there exists
a variable indexm such that

1. m is in both domains, i.e.m ∈ α1 andm ∈ α2, and

2. the corresponding variable assignments are different, i.e.y1
m 6= y2

m.

In other words, we put an edge between all pairs of nodes that correspond toinconsistentassign-
ments. Given this graph̃G, we now assign weights to the nodes. Letc > 0 be any number such that
c + φα(yα) > 0 for all α andyα. The existence of such ac follows from the fact that the set of
assignments and domains is finite. Assign to each nodeδ(α,yα) a weight ofc + φα(yα).

Lemma 3.1 Supposeq and G̃ are as above. (a) Ify∗ is a MAP estimate ofq, let δ∗ =

{δ(α,y∗
α) |α ∈ A} be the set of nodes iñG that correspond to each domain being consistent

with y∗. Then,δ∗ is an MWIS ofG̃. (b) Conversely, supposeδ∗ is an MWIS ofG̃. Then, for every
domainα, there is exactly one nodeδ(α,y∗

α) included inδ∗. Further, the corresponding domain
assignments{y∗α |α ∈ A} are consistent, and the resulting overall vectory∗ is a MAP estimate ofq.

Example. Let y1 andy2 be binary variables with joint distribution

q(y1, y2) =
1

Z
exp(θ1y1 + θ2y2 + θ12y1y2)

where theθ are any real numbers. The correspondingG̃ is shown
to the right. Letc be any number such thatc+θ1, c+θ2 andc+θ12

are all greater than 0. The weights on the nodes inG̃ are:θ1 + c on
node “1” on the left,θ2 + c for node “1” on the right,θ12 + c for
the node “11”, andc for all the other nodes.
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4 Max-product for MWIS

The classical max-product algorithm is a heuristic that can be used to find the MAP assignment of a
probability distribution. Now, given an MWIS problem onG = (V,E), associate a binary random
variableXi with eachi ∈ V and consider the following joint distribution: forx ∈ {0, 1}n,

p (x) =
1

Z

∏

(i,j)∈E

1{xi+xj≤1}

∏

i∈V

exp(wixi), (1)

whereZ is the normalization constant. In the above,1 is the standard indicator function:1true = 1
and1false = 0. It is easy to see thatp(x) = 1

Z
exp (

∑
i wixi) if x is an independent set, and

p(x) = 0 otherwise. Thus, any MAP estimatearg maxx p(x) corresponds to a maximum weight
independent set ofG.

The update equations for max-product can be derived in a standard and straightforward fashion from
the probability distribution. We now describe the max-product algorithm as derived fromp. At every
iterationt each nodei sends amessage{mt

i→j(0),mt
i→j(1)} to each neighborj ∈ N (i). Each node

also maintains abelief{bt
i(0), bt

i(1)} vector. The message and belief updates, as well as the final
output, are computed as follows.

Max-product for MWIS

(o) Initially, m0
i→j(0) = m0

j→i(1) = 1 for all (i, j) ∈ E.

(i) The messages are updated as follows:

mt+1
i→j(0) = max





∏

k 6=j,k∈N (i)

mt
k→i(0) , ewi

∏

k 6=j,k∈N (i)

mt
k→i(1)



 ,

mt+1
i→j(1) =

∏

k 6=j,k∈N (i)

mt
k→i(0).

(ii) Nodesi ∈ V , compute their beliefs as follows:

bt+1
i (0) =

∏

k∈N (i)

mt+1
k→i(0), bt+1

i (1) = ewi

∏

k∈N (i)

mt+1
k→i(1).

(iii) Estimate max. wt. independent setx(bt+1) as follows:xi(b
t+1
i ) = 1{bt+1

i
(1)>bt+1

i
(0)}.

(iv) Updatet = t + 1; repeat from (i) tillx(bt) converges and output the converged estimate.

For the purpose of analysis, we find it convenient to transformthe messages be defining1 γt
i→j =

log
(

mt
i→j(0)

mt
i→j

(1)

)
. Step (i) of max-product now becomes

γt+1
i→j = max



0,


wi −

∑

k 6=j,k∈N (i)

γt
k→i






 , (2)

where we use the notation(x)+ = max{x, 0}. The estimation of step (iii) of max-product becomes:
xi(γ

t+1) = 1{wi−
P

k∈N(i) γk→i>0}. This modification of max-product is often known as the “min-
sum” algorithm, and is just a reformulation of the max-product. In the rest of the paper we refer to
this as simply the max-product algorithm.

1If the algorithm starts with all messages being strictly positive, the messages will remain strictly positive
over any finite number of iterations. Thus taking logs is a valid operation.
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4.1 Fixed Points of Max-Product

When applied to general graphs, max product may either(a) not converge,(b) converge, and yield
the correct answer, or(c) converge but yield an incorrect answer. Characterizing when each of the
three situations can occur is a challenging and important task. One approach to this task has been to
look directly at the fixed points, if any, of the iterative procedure [8].

Proposition 4.1 Let γ represent a fixed point of the algorithm, and letx(γ) = (xi(γ)) be the
corresponding estimate for the independent set. Then, the following properties hold:

(a) Let i be a node with estimatexi(γ) = 1, and let j ∈ N (i) be any neighbor ofi. Then,
the messages on edge(i, j) satisfyγi→j > γj→i. Further, from this it can be deduced thatx(γ)
represents an independent set inG.

(b) Let j be a node withxj(γ) = 0, which by definition means thatwj −
∑

k∈N (j) γk→j ≤ 0.
Suppose now there exists a neighbori ∈ N (j) whose estimate isxi(γ) = 1. Then it has to be that
wj −

∑
k∈N (j) γk→j < 0, i.e. the inequality is strict.

(c) For any edge(j1, j2) ∈ E, if the estimates of the endpoints arexj1(γ) = xj2(γ) = 0, then it has
to be thatγj1→j2 = γj2→j1 . In addition, if there exists a neighbori1 ∈ N (j1) of j1 whose estimate
is xi1(γ) = 1, then it has to be thatγj1→j2 = γj2→j1 = 0 (and similarly for a neighbori2 of j2).

The properties shown in Proposition 4.1 reveal striking similarities between the messagesγ of fixed
points of max-product, and the optimalλ that solves the dual linear programDUAL. In particular,
suppose thatγ is a fixed point at which the corresponding estimatex(γ) is amaximalindependent
set: for everyj whose estimatexj(γ) = 0 there exists a neighbori ∈ N (j) whose estimate is
xi(γ) = 1. The MWIS, for example, is also maximal (if not, one could add a node to the MWIS and
obtain a higher weight). For a maximal estimate, it is easy to see that

• (xi(γ) + xj(γ) − 1) γi→j = 0 for all edges(i, j) ∈ E.

• xi(γ)
(
γi→j +

∑
k∈N (i)−j γk→i − wi

)
= 0 for all i, j ∈ V

At least semantically, these relations share a close resemblance to the complimentary slackness
conditions of Lemma 2.1. In the following lemma we leverage this resemblance to derive a certificate
of optimality of the max-product fixed point estimate for certain problems.

Lemma 4.1 Let γ be a fixed point of max-product andx(γ) the corresponding estimate of the
independent set. DefineG′ = (V,E′) whereE′ = E\{(i, j) ∈ E : γi→j = γj→i = 0} is the
set of edges with at least one non-zero message. Then, ifG′ is acyclic, we have that : (a)x(γ) is
a solution to the MWIS forG, and (b) there is no integrality gap betweenLP and IP, i.e. x(γ) is
an optimal solution toLP. Thus the lack of cycles inG′ provides a certificate of optimality for the
estimatex(γ).

Max-product vs. LP relaxation. The following general question has been of great recent interest:
which of the two, max-product and LP relaxation, is more powerful ? We now briefly investigate
this question for MWIS. As presented below, we find that there are examples where one technique
is better than the other. That is, neither technique clearly dominates the other.

To understand whether correctness of max-product (e.g. Lemma 4.1) provides information about
LP relaxation, we consider the simplest loopy graph: a cycle. For bipartite graph, we know that
LP relaxation is tight, i.e. provides answer to MWIS. Hence, we consider odd cycle. The following
result suggests that if max-product works then it must be thatLP relaxation is tight (i.e.LP is no
weaker than max-product for cycles).

Corollary 4.1 Let G be an odd cycle, andγ a fixed point of Max-product. Then, if there exists at
least one nodei whose estimatexi(γ) = 1, then there is no integrality gap betweenLP andIP.

Next, we present two examples which help us conclude that neither max-product norLP relaxation
dominate the other. The following figures present graphs and the corresponding fixed points of
max-product. In each graph, numbers represent node weights, and an arrow fromi to j represents
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a message value ofγi→j = 2. All other messages haveγ are equal to 0. The boxed nodes indicate
the ones for which the estimatexi(γ) = 1. It is easy to verify that both represent max-product fixed
points.

3

2 2 2

3 3
3

2 2 2

3 3

For the graph on the left, the max-product fixed point results in an incorrect estimate. However,
the graph is bipartite, and henceLP will get the correct answer. In the graph on the right, there is
an integrality gap betweenLP and IP: setting eachxi = 1

2 yields an optimal value of 7.5, while
the optimal solution toIP has value 6. However, the estimate at the fixed point of max-product
is the correct MWIS. In both of these examples, the fixed points lie in the strict interiors of non-
trivial regions of attraction: starting the iterative procedure from within these regions will result in
convergence to the fixed point.

These examples indicate that it may not be possible to resolve the question of relative strength of the
two procedures based solely on an analysis of the fixed points of max-product.

5 A Convergent Message-passing Algorithm

In this section we present our algorithm for finding the MWIS of a graph. It is based on modifying
max-product by drawing upon a dual co-ordinate descent and barrier method. Specifically, the
algorithm is as follows: (1) For small enough parametersε, δ, run subroutineDESCENT(ǫ, δ) (close
to) convergence. This will produce outputλε,δ = (λε,δ

ij )(i,j)∈E . (2) For small enough parameterδ1,
use subroutineEST(λε,δ, δ1), to produce an estimate for the MWIS as the output of algorithm.

Both of the subroutines,DESCENT, EST are iterative message-passing procedures. Before going
into details of the subroutines, we state the main result about correctness and convergence of this
algorithm.

Theorem 5.1 The following properties hold for arbitrary graphG and weights: (a) For any choice
of ε, δ, δ1 > 0, the algorithm always converges. (b) Asε, δ → 0, λε,δ → λ∗ whereλ∗ is an optimal
solution of DUAL . Further, ifG is bipartite and the MWIS is unique, then the following holds: (c)
For small enoughε, δ, δ1, the algorithm produces the MWIS as output.

5.1 Subroutine: DESCENT

Consider the standard coordinate descent algorithm forDUAL: the variables are{λij , (i, j) ∈
E}(with notationλij = λji) and at each iterationt one edge(i, j) ∈ E is picked2 and update

λt+1
ij = max



0,


wi −

∑

k∈N (i),k 6=j

λt
ik


 ,


wj −

∑

k∈N (j),k 6=i

λt
jk






 (3)

The λ on all the other edges remain unchanged fromt to t + 1. Notice the similarity (at least
syntactic) between (3) and update of max-product (min-sum) (2): essentially, the dual coordinate
descent is asequential bidirectionalversion of the max-product algorithm !

It is well known that the coordinate descent always coverges, in terms of cost for linear programs.
Further, it converges to an optimal solution if the constraints are of theproduct settype (see [2] for
details). However, due to constraints of type

∑
j∈N (i) λij ≥ wi in DUAL, the algorithm may not

2A good policy for picking edges is round-robin or uniformly at random
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converge to an optimal ofDUAL. Therefore, a direct adaptation of max-product to mimic dual co-
ordinate descent is not good enough. We use barrier (penalty) function based approach to overcome
this difficulty. Consider the following convex optimization problem obtained fromDUAL by adding
a logarithmic barrier for constraint violations withε ≥ 0 controlling penalty due to violation.

CP(ε) : min



∑

(i,j)∈E

λij


− ε



∑

i∈V

log



∑

j∈N (i)

λij − wi






subject to λij ≥ 0, for all (i, j) ∈ E.

The following is coordinate descent algorithm forCP(ε).

DESCENT(ε, δ)

(o) The parameters are variablesλij , one for each edge(i, j) ∈ E. We will use notation that
λt

ij = λt
ji. The vectorλ is iteratively updated, witht denoting the iteration number.

◦ Initially, set t = 0 andλ0
ij = max{wi, wj} for all (i, j) ∈ E.

(i) In iterationt + 1, update parameters as follows:

◦ Pick an edge(i, j) ∈ E. This edge selection is done so that each edge is chosen
infinitely often ast → ∞ (for example, at eacht choose an edge uniformly at random.)

◦ For all (i′, j′) ∈ E, (i′, j′) 6= (i, j) do nothing, i.e.λt+1
i′j′ = λt

i′j′ .

◦ For edge(i, j), nodesi andj exchange messages as follows:

γt+1
i→j =


wi −

∑

k 6=j,k∈N (i)

λt
ki




+

, γt+1
j→i =


wj −

∑

k′ 6=i,k′∈N (j)

λt
k′j




+

◦ Updateλt+1
ij as follows: witha = γt+1

i→j andb = γt+1
j→i,

λt+1
ij =

(
a + b + 2ε +

√
(a − b)2 + 4ε2

2

)

+

. (4)

(ii) Updatet = t + 1 and repeat till algorithm converges withinδ for each component.

(iii) Output λ, the vector of paramters at convergence,

Remark. The iterative step (4) can be rewritten as follows: for someβ ∈ [1, 2],

λt+1
ij = βε + max



−βε,


wi −

∑

k∈N (i)\j

λt
ik


 ,


 wj −

∑

k∈N (j)\i

λt
kj






 ,

whereβ depends on values ofγt+1
i→j , γ

t+1
j→i. Thus the updates inDESCENT are obtained by small

but important perturbation of dual coordinate descent forDUAL, and making it convergent. The
output ofDESCENT(ε, δ), sayλε,δ → λ∗ asε, δ → 0 whereλ∗ is an optimal solution ofDUAL.

5.2 Subroutine: EST

DESCENT yields a good estimate of the optimal solution toDUAL, for small values ofǫ and
δ. However, we are interested in the (integral) optimum ofLP. In general, it isnot possible to
recover the solution of a linear program from a dual optimal solution. However, we show that such
a recoveryis possible throughEST algorithm described below for the MWIS problem whenG is
bipartite with unique MWIS. This procedure is likely to extend for generalG whenLP relaxation is
tight andLP has unique solution.

EST(λ, δ1).
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(o) The algorithm iteratively estimatesx = (xi) givenλ.

(i) Initially, color a nodei gray and setxi = 0 if
∑

j∈N (i) λij > wi. Color all other nodes
with greenand leave their values unspecified. The condition

∑
j∈N (i) λij > wi is checked

as whether
∑

j∈N (i) λij ≥ wi + δ1 or not.

(ii) Repeat the following steps (in any order) till no more changes can happen:

◦ if i is greenand there exists agray nodej ∈ N (i) with λij > 0, then setxi = 1 and
color it orange. The conditionλij > 0 is checked as whetherλij ≥ δ1 or not.

◦ if i is greenand someorangenodej ∈ N (i), then setxi = 0 and color itgray.

(iii) If any node isgreen, sayi, setxi = 1 and color itred.

(iv) Produce the outputx as an estimation.

6 Discussion

We believe this paper opens several interesting directions for investigation. In general, the exact rela-
tionship between max-product and linear programming is not well understood. Their close similarity
for the MWIS problem, along with the reduction of MAP estimation to an MWIS problem, suggests
that the MWIS problem may provide a good first step in an investigation of this relationship.

Also, our novel message-passing algorithm and the reduction of MAP estimation to an MWIS prob-
lem immediately yields a new message-passing algorithm for MAP estimation. It would be interest-
ing to investigate the power of this algorithm on more general discrete estimation problems.
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