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Abstract

We investigate the use of message-passing algorithms for the problem of finding
the max-weight independent set (MWIS) in a graph. First, we study the perfor-
mance of loopy max-product belief propagation. We show that, if it converges,
the quality of the estimate is closely related to the tightness of an LP relaxation
of the MWIS problem. We use this relationship to obtain sufficient conditions for
correctness of the estimate. We then develop a modification of max-product — one
that converges to an optimal solution of the dual of the MWIS problem. We also
develop a simple iterative algorithm for estimating the max-weight independent
set from this dual solution. We show that the MWIS estimate obtained using these
two algorithms in conjunction is correct when the graph is bipartite and the MWIS
is unique. Finally, we show that any problem of MAP estimation for probability
distributions over finite domains can be reduced to an MWIS problem. We believe
this reduction will yield new insights and algorithms for MAP estimation.

1 Introduction

The max-weight independent set (MWIS) problem is the following: given a graph with positive
weights on the nodes, find the heaviest set of mutually non-adjacent nodes. MWIS is a well studied
combinatorial optimization problem that naturally arises in many applications. It is known to be
NP-hard, and hard to approximate [6]. In this paper we investigate the use of message-passing
algorithms, like loopy max-product belief propagation, as practical solutions for the MWIS problem.
We now summarize our motivations for doing so, and then outline our contribution.

Our primary motivation comes from applications. The MWIS problem arises naturally in many
scenarios involving resource allocation in the presence of interference. It is often the case that
large instances of the weighted independent set problem need to be (at least approximately) solved
in a distributed manner using lightweight data structures. In Section 2.1 we describe one such
application: scheduling channel access and transmissions in wireless networks. Message passing
algorithms provide a promising alternative to current scheduling algorithms.

Another, equally important, motivation is the potential for obtaining new insights into the perfor-
mance of existing message-passing algorithms, especially on loopy graphs. Tantalizing connections
have been established between such algorithms and more traditional approaches like linear pro-
gramming (see [9] and references). The MWIS problem provides a rich, yet relatively tractable, first
framework in which to investigate such connections.

1.1 Our contributions

In Section 4 we construct a probability distribution whose MAP estimate corresponds to the MWIS
of a given graph, and investigate the application of the loopy Max-product algorithm to this distrit-
buion. We demonstrate that there is an intimate relationship between the max-product fixed-points
and the natural LP relaxation of the original independent set problem. We use this relationship to
provide acertificate of correctnesi®r the max-product fixed point in certain problem instances.



In Section 5 we develop two iterative message-passing #hgosi The first, obtained by a minor
modification of max-product, calculates the optimal solution to the dual of the LP relaxation of the
MWIS problem. The second algorithm uses this optimal dual to produce an estimate of the MWIS.
This estimate is correct when the original graph is bipartite.

In Section 3 we show thatny problem of MAP estimation in which all the random variables can
take a finite number of values (and the probability distribution is positive over the entire domain) can
be reduced to a max-weight independent set problem. This implies that any algorithm for solving
the independent set problem immediately yields an algorithm for MAP estimation. We believe this
reduction will prove useful from both practical and analytical perspectives.

2 Max-weight Independent Set, and its L P Relaxation

Consider a grapl = (V, E), with a setV of nodes and a sdf of edges. LetV (i) = {j € V :
(i,j) € E} be the neighbors of € V. Positive weightsu;, i € V are associated with each node.
A subset ofV will be represented by vector = (x;) € {0,1}/V], wherex; = 1 meansi is in the
subsetr; = 0 meansi is not in the subset. A subsetis called anindependent sét no two nodes

in the subset are connected by an ed@s; ;) # (1,1) for all (¢,j) € E. We are interested in
finding a maximum weight independent set (MWI8). This can be naturally posed as an integer
program, denoted below Bf. Thelinear programing relaxatiorof IP is obtained by replacing the
integrality constraints;; € {0, 1} with the constraints;; > 0. We will denote the corresponding
linear program by P. The dual ofLP is denoted below bipUAL.

n DUAL : min Z Aijs
IP:  max ;wm, (i.d)EE
st mta <1 forall(ij)c B, s.t. > Nij = w, foralli eV,
7 € {0,1}. s

Aij >0, forall (4, j) € E.

It is well-known thatLP can be solved efficiently, and if it has an integral optimal solution then this
solution is an MWIS of5. If this is the case, we say that there isintegrality gapbetweerLP and

IP or equivalently that th&P relaxation istight. uslt is well known [3] that the LP relaxation is
tight for bipartite graphs. More generally, for non-bipartite graphs, tightness will depend on the
node weights. We will use the performanceld? as a benchmark with which to compare the
performance of our message passing algorithms.

The next lemma states the standard complimentary slackness conditions of linear programming,
specialized foLP above, and for the case when there is no integrality gap.

Lemma 2.1 When there is no integrality gap betwelh and LP, there exists a pair of optimal
solutionsx = (x;), A = (\;;) of LP and DUAL respectively, such that: (a3 € {0,1}", (b)

Z; (Z]ENU) )\ij — ’U}i> =0forallieV, (C) (»Lz +z; — 1) )\ij =0, for all (Z,]) € F.

2.1 Sample Application: Scheduling in Wireless Networks

We now briefly describe an important application that requires an efficient, distributed solution to the
MWIS problem: transmision scheduling in wireless networks that lack a centralized infrastructure,
and where nodes can only communicate with local neighbors (e.g. see [4]). Such networks are
ubiquitous in the modern world: examples range from sensor networks that lack wired connections
to the fusion center, and ad-hoc networks that can be quickly deployed in areas without coverage,
to the 802.11 wi-fi networks that currently represent the most widely used method for wireless data
access.

Fundamentally, any two wireless nodes that transmit at the same time and over the same frequencies
will interfere with each other, if they are located close by. Interference means that the intended
receivers will not be able to decode the transmissions. Typically in a network only certain pairs



of nodes interfere. The scheduling problem is to decide whimthes should transmit at a given
time over a given frequency, so th@l) there is no interference, arfd) nodes which have a large
amount of data to send are given priority. In particular, it is well known that if each node is given a
weightequal to the data it has to transmit, optimal network operation demands scheduling the set of
nodes with highest total weight. If a “ conflict graph” is made, with an edge between every pair of
interfering nodes, the scheduling probleneisctlythe problem of finding the MWIS of the conflict
graph. The lack of an infrastructure, the fact that nodes often have limited capabilities, and the local
nature of communication, all necessitate a lightweight distributed algorithm for solving the MWIS
problem.

3 MAP Estimation asan MWIS Problem

In this section we show that any MAP estimation problem is equivalent to an MWIS problem on
a suitably constructed graph with node weights. This construction is related to the “overcomplete
basis” representation [7]. Consider the following canonical MAP estimation problem: suppose we
are given a distribution(y) over vectoryy = (y1, . .., yar) Of variablesy,,, each of which can take

a finite value. Suppose also thgfactors into a product of strictly positive functions, which we find
convenient to denote in exponential form:

qly) = % H exp (¢a(Ya)) = %QXP <Z @ba(ya))

a€cA acA

Herea specifies the domain of the functien,, andy,, is the vector of those variables that are in
the domain ofp,. Thea’s also serve as an index for the functionsis the set of functions. The
MAP estimation problem is to find a maximizing assignmght arg max, ¢(y).

We now build an auxillary grapﬁ?, and assign weights to its nodes, such that the MAP estimation

problem above is equivalent to finding the MWIS@f There is one node i for each paifc, y.),
wherey,, is anassignmen(i.e. a set of values for the variables) of domainWe will denote this

node ofG by 6(c, yo ).

There is an edge ity between any two nodeX¥a, Ya,) andd(as, y2,) if and only if there exists
a variable indexn such that

1. misin both domains, i.em € a; andm € a», and
2. the corresponding variable assignments are differenyj,e# 2, .

In other words, we put an edge between all pairs of nodes that correspomisistentassign-

ments. Given this grap@, we now assign weights to the nodes. ket 0 be any number such that
¢+ ¢a(yo) > 0 forall @ andy,. The existence of suchafollows from the fact that the set of
assignments and domains is finite. Assign to each nédey,,) a weight ofc + ¢4 (y«)-

Lemma 3.1 Supposeg and G are as above. (a) lfy* is a MAP estimate of;, let 6* =
{6(a,y%) | € A} be the set of nodes i&¥ that correspond to each domain being consistent

with y*. Then,0* is an MWIS ofG. (b) Conversely, suppoggé is an MWIS ofG. Then, for every
domaina, there is exactly one nod¥«, y;) included ind*. Further, the corresponding domain
assignments{¥y| « € A} are consistent, and the resulting overall vecgdris a MAP estimate af.

Example. Lety; andy, be binary variables with joint distribution

1
q(yi,y2) = Z exp(01y1 + O2y2 + O12y1Y2)

where thed are any real numbers. The correspondifng shown
to the right. Letc be any number such that- 0., c+ 605 andc+ 61

are all greater than 0. The weights on the nodes are:0; + con
node “1” on the leftd, + ¢ for node “1” on the rightf,> + ¢ for

the node “11”, and for all the other nodes.




4 Max-product for MWIS

The classical max-product algorithm is a heuristic that can be used to find the MAP assignment of a
probability distribution. Now, given an MWIS problem @i = (V, E), associate a binary random
variableX; with eachi € V and consider the following joint distribution: far € {0,1}",

p H 1{:1: +x;<1} H eXp w; xz (1)

(i,)€EE i€V

whereZ is the normalization constant. In the abo¥ds the standard indicator functiofyye = 1
and1lipise = 0. It is easy to see thai(x) = %exp(zi w;x;) if x is an independent set, and
p(x) = 0 otherwise. Thus, any MAP estimaieg max, p(x) corresponds to a maximum weight
independent set af.

The update equations for max-product can be derived in a standard and straightforward fashion from
the probability distribution. We now describe the max-product algorithm as derivegfrdtrevery
iterationt each node sends anessaggm;__ ;(0), m;_ ;(1)} to each neighbaj € N/ (i). Each node

also maintains &elief {b!(0), bf(1)} vector. The message and belief updates, as well as the final
output, are computed as follows.

Max-product for MWIS

(0) Initially, m?_;(0) = m$_,(1) = 1forall (i,7) € E.

Jj—i

(i) The messages are updated as follows:

mfi}] (O) = max H m];c—»i (0) ’ eu” H mi:—n(l) ’
k#j,kEN (1) k#j,keN (i)
m (1) = I mii0.
k#35,kEN (i)

(i) Nodesi € V, compute their beliefs as follows:

t+1 t+1 t+1 t+1
i) = I mii). v IT mita
EEN (i) EEN (4)

(iii)y Estimate max. wt. independent seth'*!) as follows:z; (bi™') = L+ (1)>5+ (0)} -

(iv) Updatet =t + 1; repeat from (i) tillx(b*) converges and output the converged estimate.

For the purpose of analysis, we find it convenient to transfidvenmessages be defini‘ngf_v =

log ( ﬂifi) Step (i) of max-product now becomes

Wztii max 07 w; — Z ’YItC*?'L ) (2)

k4, keN (i)

where we use the notatide) . = max{z,0}. The estimation of step (iii) of max-product becomes:
zi(ytt) = L =S e nay Vomei >0} This modification of max-product is often known as the “min-
sum” algorithm, and is just a reformulation of the max-product. In the rest of the paper we refer to
this as simply the max-product algorithm.

LIf the algorithm starts with all messages being strictly positive, the messages will remain strictly positive
over any finite number of iterations. Thus taking logs is a valid operation.



4.1 Fixed Points of Max-Product

When applied to general graphs, max product may eithenot converge(b) converge, and yield

the correct answer, dc) converge but yield an incorrect answer. Characterizing when each of the
three situations can occur is a challenging and important task. One approach to this task has been to
look directly at the fixed points, if any, of the iterative procedure [8].

Proposition 4.1 Let v represent a fixed point of the algorithm, and lety) = (x;(v)) be the
corresponding estimate for the independent set. Then, the following properties hold:

(a) Leti be a node with estimate;(v) = 1, and letj € N (i) be any neighbor of. Then,
the messages on edge j) satisfyy;_.; > ~,—;. Further, from this it can be deduced thaty)
represents an independent setGn

(b) Letj be a node withe;(y) = 0, which by definition means that; — ZkeN(j) Vo—j < 0.

Suppose now there exists a neighbar N (j) whose estimate is;(v) = 1. Then it has to be that
Wi — X pen) Ve—j < 0, 1.e. the inequality is strict.

(c) For any edg€ i, j2) € F, if the estimates of the endpoints arg (v) = z;,(y) = 0, then it has
to be thaty;, _.;, = 7vj,—;, - In addition, if there exists a neighbér € A/'(j1) of j; whose estimate
is z;, (v) = 1, then it has to be that;, —;, = ~v,,—;, = 0 (and similarly for a neighbot, of js).

The properties shown in Proposition 4.1 reveal striking similarities between the messade®d
points of max-product, and the optimalthat solves the dual linear progradUAL. In particular,
suppose that is a fixed point at which the corresponding estimate) is amaximalindependent

set: for everyj whose estimate;;(y) = 0 there exists a neighbar € N (j) whose estimate is
z;(v) = 1. The MWIS, for example, is also maximal (if not, one could add a node to the MWIS and
obtain a higher weight). For a maximal estimate, it is easy to see that

o (z;(v)+x;(y) —1)v—,; = 0forall edgeqi,j) € E.
o z;(7) ('Yi—»j + Zk;e_/\/(i)—j Ve—i — wz) =0foralli,j eV

At least semantically, these relations share a close resemblance to the complimentary slackness
conditions of Lemma 2.1. In the following lemma we leverage this resemblance to derive a certificate
of optimality of the max-product fixed point estimate for certain problems.

Lemma4.1l Let v be a fixed point of max-product and~) the corresponding estimate of the
independent set. Defi@ = (V,E’) whereE' = E\{(i,j) € E : vi; = vj—; = 0} is the
set of edges with at least one non-zero message. Théh,sfacyclic, we have that : (a}(v) is

a solution to the MWIS fof7, and (b) there is no integrality gap betwekeR andIP, i.e. x(~) is
an optimal solution td_P. Thus the lack of cycles i’ provides a certificate of optimality for the
estimatex(~).

Max-product vs. LP relaxation. The following general question has been of great recent interest:
which of the two, max-product and LP relaxation, is more powerful ? We now briefly investigate
this question for MWIS. As presented below, we find that there are examples where one technique
is better than the other. That is, neither technique clearly dominates the other.

To understand whether correctness of max-product (e.g. Lemma 4.1) provides information about
LP relaxation, we consider the simplest loopy graph: a cycle. For bipartite graph, we know that
LP relaxation is tight, i.e. provides answer to MWIS. Hence, we consider odd cycle. The following
result suggests that if max-product works then it must beltRatelaxation is tight (i.e.LP is no
weaker than max-product for cycles).

Corollary 4.1 Let G be an odd cycle, and a fixed point of Max-product. Then, if there exists at
least one nodeé whose estimate;(y) = 1, then there is no integrality gap betweeR andIP.

Next, we present two examples which help us conclude that neither max-produd® nelaxation
dominate the other. The following figures present graphs and the corresponding fixed points of
max-product. In each graph, numbers represent node weights, and an arroitdrgmepresents



a message value of_; = 2. All other messages haveare equal to 0. The boxed nodes indicate
the ones for which the estimatg(~) = 1. It is easy to verify that both represent max-product fixed
points.

For the graph on the left, the max-product fixed point resultar incorrect estimate. However,
the graph is bipartite, and hent® will get the correct answer. In the graph on the right, there is
an integrality gap betweeldP andIP: setting each;; = % yields an optimal value of 7.5, while

the optimal solution tdP has value 6. However, the estimate at the fixed point of max-product
is the correct MWIS. In both of these examples, the fixed points lie in the strict interiors of non-
trivial regions of attraction: starting the iterative procedure from within these regions will result in
convergence to the fixed point.

These examples indicate that it may not be possible to resolve the question of relative strength of the
two procedures based solely on an analysis of the fixed points of max-product.

5 A Convergent Message-passing Algorithm

In this section we present our algorithm for finding the MWIS of a graph. It is based on modifying
max-product by drawing upon a dual co-ordinate descent and barrier method. Specifically, the
algorithm is as follows: (1) For small enough parameteds run subroutin®©ESCENT (e, ¢) (close

to) convergence. This will produce outp\it’ = ()\f]’.‘;)(,;yj)eE. (2) For small enough parametgr,

use subroutin€EST()\%, 6;), to produce an estimate for the MWIS as the output of algorithm.

Both of the subroutinef)ESCENT, EST are iterative message-passing procedures. Before going
into details of the subroutines, we state the main result about correctness and convergence of this
algorithm.

Theorem 5.1 The following properties hold for arbitrary grapfi and weights: (a) For any choice
ofe, 8,6, > 0, the algorithm always converges. (b) A — 0, A>* — \* where)\* is an optimal
solution of DUAL . Further, if G is bipartite and the MWIS is unique, then the following holds: (c)
For small enouglz, ¢, 61, the algorithm produces the MWIS as output.

5.1 Subroutine: DESCENT

Consider the standard coordinate descent algorithmDIGAL: the variables arg\;;, (4,7) €
E}(with notation)\;; = \;;) and at each iteratiohone edgéi, j) € E is picked and update

)\fjl =max 0, [ w; — Z DY I T Z A;k 3)
kEN (i), k#j kEN (), ki

The XA on all the other edges remain unchanged frioto ¢ + 1. Notice the similarity (at least
syntactic) between (3) and update of max-product (min-sum) (2): essentially, the dual coordinate
descent is aequential bidirectionaersion of the max-product algorithm !

It is well known that the coordinate descent always coverges, in terms of cost for linear programs.
Further, it converges to an optimal solution if the constraints are gbiiduct setype (see [2] for
details). However, due to constraints of tyﬁ%eN(i) Aij > w; in DUAL, the algorithm may not

2/ good policy for picking edges is round-robin or uniformly at random



converge to an optimal dUAL. Therefore, a direct adaptation of max-product to mimic dual co-
ordinate descent is not good enough. We use barrier (penalty) function based approach to overcome
this difficulty. Consider the following convex optimization problem obtained flldAL by adding

a logarithmic barrier for constraint violations with> 0 controlling penalty due to violation.

CP(e) : min Z Xij | —¢€ Zlog Z Aij — w;

(i,j)EE i€V JEN(4)
subjectto  A;; >0, forall (i,5) € E.

The following is coordinate descent algorithm foP(¢).

DESCENT(z, 6)

(0) The parameters are variableg, one for each edgg, j) € E. We will use notation that
/\ﬁj = )@i. The vector\ is iteratively updated, with denoting the iteration number.

o Initially, sett = 0 and\; = max{w;, w;} for all (i, 7) € E.
(i) Initerationt + 1, update parameters as follows:

o Pick an edg€i,j) € E. This edge selection is done so that each edge is chosen
infinitely often ag — oo (for example, at eachchoose an edge uniformly at random.)

o Forall(i,j') € E, (i, ') # (i, j) do nothing, i.e A"} = AL,
o For edg€(i, j), nodes andj exchange messages as follows:

t+1 __ t t+1 t
pas el KR D DEEP ) B LR D DR
k#j,kEN () " k'#i,k' €N (5) +

o Update’" as follows: witha = 7/} andb = 7",

(a—i—b—i—?s—i— \/(a—b)2+452>
2

Nyt = (4)
+
(i) Updatet = ¢ + 1 and repeat till algorithm converges withirfor each component.

(iif) Output )\, the vector of paramters at convergence,

Remark. The iterative step (4) can be rewritten as follows: for sghme [1, 2],

t+1
AU =pe+ maxq —Be, [wi— > Ny, R IRE
kEN(4)\j kEN (5)\i
where depends on values o/fﬂ, %tfl Thus the updates IBESCENT are obtained by small
but important perturbation of dual coordinate descentfofAL, and making it convergent. The
output of DESCENT(e, §), say *® — \* ase, § — 0 where\* is an optimal solution oDUAL.

5.2 Subroutine: EST

DESCENT yields a good estimate of the optimal solutionRAL, for small values ok and

0. However, we are interested in the (integral) optimunLBf In general, it isnot possible to
recover the solution of a linear program from a dual optimal solution. However, we show that such
a recovenyis possible througheST algorithm described below for the MWIS problem wh@rs
bipartite with unique MWIS. This procedure is likely to extend for genérathenLP relaxation is

tight andLP has unique solution.

EST(), 61).




(o) The algorithm iteratively estimates= (z;) given \.

(i) Initially, color a nodei gray and setc; = 0 if ZjEN(i) Aij > w;. Color all other nodes
with greenand leave their values unspecified. The condi@&mi) Aij > w; is checked
as WhetheEjeN(i) Aij = w; + 61 Or not.

(i) Repeat the following steps (in any order) till no more changes can happen:

o if 7 is greenand there exists gray node; € N (i) with \;; > 0, then setr; = 1 and
color itorange. The conditiot\;; > 0 is checked as whether; > §; or not.

o if i is greenand somerangenode; € N (i), then setr; = 0 and color itgray.
(iii) If any node isgreen, say, setx; = 1 and color itred.
(iv) Produce the output as an estimation.

6 Discussion

We believe this paper opens several interesting directions for investigation. In general, the exact rela-
tionship between max-product and linear programming is not well understood. Their close similarity
for the MWIS problem, along with the reduction of MAP estimation to an MWIS problem, suggests
that the MWIS problem may provide a good first step in an investigation of this relationship.

Also, our novel message-passing algorithm and the reduction of MAP estimation to an MWIS prob-
lem immediately yields a new message-passing algorithm for MAP estimation. It would be interest-
ing to investigate the power of this algorithm on more general discrete estimation problems.
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