
Maximum Weight Matching via Max-Product Belief
Propagation

Mohsen Bayati
Department of EE

Stanford University
Stanford, CA 94305

Email: bayati@stanford.edu

Devavrat Shah
Departments of EECS & ESD

MIT
Boston, MA 02139

Email: devavrat@mit.edu

Mayank Sharma
Department of EE

Stanford University
Stanford, CA 94305

Email: msharma@stanford.edu

Abstract— The max-product “belief propagation” algorithm
is an iterative, local, message passing algorithm for finding
the maximum a posteriori (MAP) assignment of a discrete
probability distribution specified by a graphical model. Despite
the spectacular success of the algorithm in many application areas
such as iterative decoding and computer vision which involve
graphs with many cycles, theoretical convergence results are only
known for graphs which are tree-like or have a single cycle.

In this paper, we consider a weighted complete bipartite graph
and define a probability distribution on it whose MAP assignment
corresponds to the maximum weight matching (MWM) in that
graph. We analyze the fixed points of the max-product algorithm
when run on this graph and prove the surprising result that even
though the underlying graph has many short cycles, the max-
product assignment converges to the correct MAP assignment.
We also provide a bound on the number of iterations required
by the algorithm.

I. INTRODUCTION

Graphical models (GM) are a powerful method for repre-
senting and manipulating joint probability distributions. They
have found major applications in several different research
communities such as artificial intelligence [11], statistics [8],
error-control coding [6] and neural networks. Two central
problems in probabilistic inference over graphical models are
those of evaluating the marginal and maximum a posteriori
(MAP) probabilities, respectively. In general, calculating the
marginal or MAP probabilities for an ensemble of random
variables would require a complete specification of the joint
probability distribution. Further, the complexity of a brute
force calculation would be exponential in the size of the
ensemble. GMs assist in exploiting the dependency structure
between the random variables, allowing for the design of
efficient inference algorithms.

The belief propagation (BP) and max-product algorithms
[11] were proposed in order to compute, respectively, the
marginal and MAP probabilities efficiently. Comprehensive
surveys of various formulations of BP and its generalization,
the junction tree algorithm, can be found in [1], [20], [14]. BP-
based message-passing algorithms have been very successful
in the context of, for example, iterative decoding for turbo
codes and in computer vision. The simplicity, wide scope of
application and experimental success of belief propagation has
attracted a lot of attention recently [1], [7], [12], [19].

BP is known to converge to the correct marginal/MAP
probabilities on tree-like graphs [11] or graphs with a single
loop [2], [16]. For graphical models with arbitrary underlying
graphs, little is known about the correctness of BP. Partial
progress consists of [17] where correctness of BP for Gaussian
GMs is proved, [5] where an attenuated modification of
BP is shown to work, and [12] where the iterative turbo
decoding algorithm based on BP is shown to work in the
asymptotic regime with probabilistic guarantees. To the best of
our knowledge, little theoretical progress has been in resolving
the question: Why does BP work on arbitrary graphs?

Motivated by the objective of providing justification for the
success of BP on arbitrary graphs, we focus on the application
of BP to the well-known combinatorial optimization problem
of finding the Maximum Weight Matching (MWM) in a
bipartite graph, also known as the “Assignment Problem”. It
is standard to represent combinatorial optimization problems,
like finding the MWM, as calculating the MAP probability on
a suitably defined GM which encodes the data and constraints
of the optimization problem. Thus, the max-product algorithm
can be viewed at least as a heuristic for solving the problem.
In this paper, we study the performance of the max-product
algorithm as a method for finding the MWM on a weighted
complete bipartite graph.

Additionally, using the max-product algorithm for problems
like finding the MWM has the potential of being an exciting
application of BP in its own right. The assignment problem is
extremely well-studied algorithmically. Attempts to find better
MWM algorithms contributed to the development of the rich
theory of network flow algorithms [4], [9]. The assignment
problem has been studied in various contexts such as job-
assignment in manufacturing systems [4], switch scheduling
algorithms [10] and auction algorithms [3]. We believe that
the max-product algorithm can be effectively used in high-
speed switch scheduling where the distributed nature of the
algorithm and its simplicity can be very attractive.

The main result of this paper is to show that the max-
product algorithm for finding the MWM always finds the
correct solution, as long as the solution is unique. Our proof
is purely combinatorial and depends on the graph structure.
We think that this result may lead to further insights in
understanding how BP algorithms work when applied to other

optimization problems. The rest of the paper is organized
as follows: In Section II, we provide the setup, define the
assignment problem and describe the max-product algorithm
for finding the MWM. Section III states and proves the main
result of this paper. Finally, we discuss some implications of
our results in Section IV.

II. SETUP AND PROBLEM STATEMENT

In this section, we first define the problem of finding
the MWM in a weighted complete bipartite graph and then
describe the max-product BP algorithm for solving it.

A. MAXIMUM WEIGHT MATCHING

Consider an undirected weighted complete bipartite graph
Kn,n = (V1, V2, E), where V1 = {α1, . . . , αn}, V2 =
{β1, . . . , βn} and (αi, βj) ∈ E for 1 ≤ i, j ≤ n. Let each
edge (αi, βj) have weight wij ∈ R.

If π = {π(1), . . . , π(n)} is a permutation of {1, . . . , n}
then the collection of n edges {(α1, βπ(1)), . . . , (αn, βπ(n))}
is called a matching of Kn,n. We denote both the permutation
and the corresponding matching by π. The weight of matching
π, denoted by Wπ , is defined as

Wπ =
∑

1≤i≤n

wiπ(i).

Then, the Maximum Weight Matching (MWM), π∗, is the
matching such that

π∗ = argmaxπ Wπ .

Note 1. In this paper, we always assume that the weights are
such that the MWM is unique. In particular, if the weights of
the edges are independent, continuous random variables, then
with probability 1, the MWM is unique.

Next, we model the problem of finding MWM as find-
ing a MAP assignment in a graphical model where the
joint probability distribution can be completely specified in
terms of the product of functions that depend on at most
two variables (nodes). For details about GMs, we urge the
reader to see [8]. Now, consider the following GM defined
on Kn,n: Let X1, . . . , Xn, Y1, . . . , Yn be random variables
corresponding to the vertices of Kn,n and taking values
from {1, 2, . . . , n}. Let their joint probability distribution,
p

(
X = (x1, . . . , xn); Y = (y1, . . . , yn)

)
, be of the form:

p
(
X, Y

)
=

1
Z

∏
i,j

ψαiβj(xi, yj)
∏

i

φαi (xi)φβi(yi), (1)

where the pairwise compatibility functions, ψ··(·, ·), are de-
fined as

ψαiβj (r, s) =




0 r = j and s �= i
0 r �= j and s = i
1 Otherwise

and the potentials at the nodes, φ·(·), are defined as

φαi(r) = ewir , φβj (r) = ewrj , ∀ 1 ≤ i, j, r, s ≤ n.

The following claims are a direct consequence of these
definitions.

Claim 1: For the GM as defined above, the joint den-
sity p

(
X = (x1, . . . , xn), Y = (y1, . . . , yn)

)
is nonzero if

and only if πα(X) = {(α1, βx1
), (α2, βx2

), . . . , (αn, βxn)}
and πβ(Y) = {(αy1

, β1), (αy2
, β2), . . . , (αyn , βn)} are both

matchings and πα(X) = πβ(Y). Further, when nonzero, they
are equal to 1

Z e2
P

i wixi .
Claim 2: Let (X

∗
, Y

∗
) be such that

(X
∗
, Y

∗
) = arg max{p (

X, Y
)}.

Then, the corresponding πα(X
∗
) = πβ(Y

∗
) is the MWM in

Kn,n.
Claim 2 implies that finding the MWM is equivalent to

finding the maximum a posteriori (MAP) assignment on the
GM defined above. Thus, the standard max-product algorithm
can be used as an iterative strategy for finding the MWM. In
fact we show that this strategy yields the correct answer. Next
we describe the max-product algorithm (and the equivalent
min-sum algorithm) for the GM defined above.

B. MAX-PRODUCT ALGORITHM FOR Kn,n

We need some definitions and notations before we can
describe the max-product algorithm. Consider the following.

Definition 1: Let D ∈ R
n×n and X, Y, Z ∈ R

n×1. Then
the operations ∗,� are defined as follows:

D ∗ X = Z ⇐⇒ zi = max
j

dijxj , ∀i, (2)

X � Y = Z ⇐⇒ zi = xiyi, ∀i. (3)

For X1, . . . , Xm ∈ R
n×1,

m⊙
i=1

Xi = X1 � X2 � . . . � Xn. (4)

Define the compatibility matrix Ψαiβj ∈ R
n×n such that

its (r, s) entry is ψαiβj (r, s), for 1 ≤ i, j ≤ n. Also, let
Φαi , Φβj ∈ R

n×1 be the following:

Φαi = [φαi(1), . . . , φαi(n)]t, Φβj = [φβj (1), . . . , φβj (n)]t.

Max-Product Algorithm.

(1) Let Mk
αi→βj

= [mk
αi→βj

(1), mk
αi→βj

(2), . . . , mk
αi→βj

(n)]t ∈
R

n×1 denote the messages passed from αi to βj in the
iteration k ≥ 0, for 1 ≤ i, j ≤ n. Similarly, Mk

βjαi
is the

message vector passed from βj to αi in the iteration k.
(2) Initially k = 0 and set the messages as follows. Let

M0
αi→βj

= [m0
αi→βj

(1) . . .m0
αi→βj

(n)]t and M0
βj→αi

=
[m0

βj→αi
(1) . . . m0

βj→αi
(n)]t where

m0
αi→βj

(r) =
{

ewij if r = i
1 otherwise

(5)

m0
βi→αj

(r) =
{

ewji if r = i
1 otherwise

(6)

(3) For k ≥ 1, messages in iteration k are obtained from
messages of iteration k − 1 recursively as follows:

Mk
αi→βj

= Ψt
αiβj

∗
(
(
⊙
l�=j

Mk−1
βl→αi

) � Φαi

)

Mk
βi→αj

= Ψt
αiβj

∗
(
(
⊙
l�=j

Mk−1
αl→βi

) � Φβi

)
(7)

(4) Define the beliefs (n × 1 vectors) at nodes αi and βj ,
1 ≤ i, j ≤ n, in iteration k as follows.

bk
αi

=

(⊙
l

Mk
bl→αi

)
� Φαi

bk
βj

=

(⊙
l

Mk
αl→βi

)
� Φβi (8)

(5) The estimated1 MWM at the end of iteration k is πk,
where πk(i) = argmax1≤j≤n{bk

αi
(j)}, for 1 ≤ i ≤ n.

(6) Repeat (3)-(5) till πk converges.

Note 2. For computational stability, it is often recommended
that messages be normalized at every iteration. However, such
normalization does not change the output of the algorithm.
Since we are only interested in theoretically analyzing the
algorithm, we will ignore the normalization step. Also, the
messages are usually all initialized to one. Although the result
doesn’t depend on the initial values, setting them as defined
above makes the analysis and formulas nicer at the end.

C. MIN-SUM ALGORITHM FOR Kn,n

The max-product and min-sum algorithms can be seen
to be equivalent by observing that the logarithm function
is monotone and hence maxi log(αi) = log(maxi αi). In
order to describe the min-sum algorithm, we need to redefine
Φαi , Φβj , 1 ≤ i, j ≤ n, as follows:

Φαi = [wi1, . . . , win]t, Φβj = [w1j , . . . , wnj]t.

Now, the min-sum algorithm is exactly the same as max-
product with the equations (6), (7) and (8) replaced by:

(a) Replace (6) by the following.

m0
αi→βj

(r) =
{

wij if r = i
0 otherwise

(9)

m0
βi→αj

(r) =
{

wji if r = i
0 otherwise

(10)

(b) Replace (7) by the following.

Mk
αi→βj

= Ψt
αiβj

∗
(
(
∑
l�=j

Mk−1
βl→αi

) + Φαi

)

Mk
βi→αj

= Ψt
αiβj

∗
(
(
∑
l�=j

Mk−1
αl→βi

) + Φβi

)
(11)

1Note that, as defined, πk need not be a matching. Theorem 1 shows that
for large enough k, πk is a matching and corresponds to the MWM.

(c) Replace (8) by the following.

bk
αi

= (
∑

l

Mk
βl→αi

) + Φαi

bk
βj

= (
∑

l

Mk
αl→βi

) + Φβi (12)

Note 3. The min-sum algorithm involves only summations
and subtractions compared to max-product which involves
multiplications and divisions. Computationally, this makes the
min-sum algorithm more efficient and hence very attractive.

III. MAIN RESULT

Now we state and prove Theorem 1, which is the main
contribution of this paper. Before proceeding further, we need
the following definitions.

Definition 2: Let ε be the difference between the weights
of the MWM and the second maximum weight matching; i.e.

ε = Wπ∗ − max
π �=π∗

(Wπ).

Due to the uniqueness of the MWM, ε > 0. Also, define
w∗ = maxi,j(|wij |).

Theorem 1: For any weighted complete bipartite graph
Kn,n with unique maximum weight matching, the max-
product or min-sum algorithm when applied to the corre-
sponding GM as defined above, converges to the correct MAP
assignment or the MWM within
 2nw∗

ε � iterations.

A. PROOF OF THEOREM 1

We first present some useful notation and definitions. Con-
sider αi, 1 ≤ i ≤ n. Let T k

αi
be the level-k unrolled tree corre-

sponding to αi, defined as follows: T k
αi

is a weighted regular
rooted tree of height k+1 with every non-leaf having degree n.
All nodes have labels from the set {α1, . . . , αn, β1, . . . , βn}
according to the following recursive rule: (a) root has label
αi; (b) the n children of the root αi have labels β1, . . . , βn;
and (c) the children of each non-leaf node whose parent has
label αr (or βr) have labels α1, . . . , αr−1, αr+1, . . . , αn (or
β1, . . . , βr−1, βr+1, . . . , βn). The edge between nodes labeled
αi, βj in the tree is assigned weight wij for 1 ≤ i, j ≤ n.
Examples of such a tree for n = 3 are shown in the Figure 1.

Note 4. T k
αi

is often called the level-k unwrapped graph
at node αi corresponding to the GM under consideration.
The unwrapped graph in general is constructed by replicating
the pairwise compatibility functions ψαiβj (r, s) and potentials
φαi(r), φβj (s), while preserving the local connectivity of
the (possibly loopy) graph. They are constructed so that the
messages received by node αi after k iterations in the actual
graph are equivalent to those that would be received by the
root αi in the unwrapped graph, if the messages are passed up
along the tree from the leaves to the root. Let tkαi

(r) be the
weight of maximum weight matching in T k

αi
which uses the

edge (αi, βr) at the root. Here, we consider only the matchings
on the tree under which all non-leaf nodes of T k

αi
are the

endpoints of exactly one edge.

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

(a)

(b)

α1

α1

α2α2α2

α2 α2α2

α3α3

α3α3α3

α3

β1

β1

β1β1β1β1β2

β2

β2

β2 β2β2

β3

β3

β3 β3 β3 β3

Fig. 1. When n = 3 (a) is T 1
αi

and (b) is T 2
αi

.

Now, we state two important lemmas that will lead to the
proof of Theorem 1. The first presents an important charac-
terization of the min-sum algorithm while the second lemma
relates the maximum weight matching over the unwrapped
tree-graph and the MWM in Kn,n.

Lemma 1: At the end of the kth iteration of the min-sum
algorithm, the belief at node αi of Kn,n is precisely bk

αi
=

[2tkαi
(1) . . . 2tkαi

(n)]t.
Lemma 2: If π∗ is the MWM of graph Kn,n then for k >

2nw∗
ε we have

π∗(i) = argmax
r

{tkαi
(r)}.

That is, for k large enough, the maximum weight matching in
T k

αi
chooses the edge (αi, βπ∗(i)) at the root.
Proof: [Theorem 1] Consider the min-sum algorithm. Let

bk
αi

= [bk
αi

(1), . . . , bk
αi

(n)]t. Recall that πk = (πk(i)) where
πk(i) = argmaxr{bk

αi
(r)}. Then, by Lemmas 1 and 2, for

k > 2nw∗
ε , πk = π∗.

Next, we present the proofs of Lemmas 1 and 2 in that order.
Proof: [Lemma 1] It is known [15] that under the min-

sum (or max-product) algorithm, the vector bk
αi

corresponds to
the correct marginals for the root αi of the MAP assignment
on the GM corresponding to T k

αi
. The pairwise compatibility

functions force the MAP assignment on this tree to be a
matching. Now, each edge has two endpoints and hence its
weight is counted twice in the weight of matching.

Next consider the jth entry of bk
αi

, bk
αi

(j). By definition, it
corresponds to the MAP assignment with the value of αi at
the root being j. That is, (αi, βj) edge is chosen in the tree
at the root. From the above discussion, bk

αi
(j) must be equal

to 2tkαi
(j).

Proof: [Lemma 2] We prove the lemma by contradiction.
Assume to contrary that for some k > 2nw∗

ε ,

π∗(i) �= argmax
r

tkαi
(r)

�
= î, for some i. (13)

Then, let î = π∗(i1) for i1 �= i. Let Λ be the matching on T k
αi

whose weight is tkαi
(̂i). We will modify Λ and find Λ′ whose

weight is more than Λ and which connects (αi, βπ∗(i)) at the
root instead of (αi, βπ∗(i1)), thus contradicting with (13).

Consider paths P�, � ≥ 0, that contain edges from match-
ings2 π∗ and Λ alternatively on the tree T k

αi
defined as follows.

Let α0 = root αi, i0 = i and P1 = (α0) be a single vertex
path. Let P2 = (βπ∗(i0), α0, βπ∗(i1)), where i1 is such that
α0 = αi is connected to βπ∗i1 under Λ. For r ≥ 1, define
P2r+1 and P2r+2 recursively as follows:

P2r+1 = (αi−r , P2r, αir),

P2r+2 = (βπ∗(i−r), P2r+1, βπ∗(ir+1))

where αi−r is the node at level 2r to which the endpoint node
βπ∗(i−r+1) of path P2r is connected to under Λ, and ir+1

is such that αir at level 2r (part of P2r+1) is connected to
βπ∗(ir+1) under Λ. Note that, by definition, such paths P� for
� ≤ k exist since the tree T k

αi
has k+1 levels and can support

a path of length at most 2k as defined above.
Now consider the path Pk of length 2k. It’s edges are

alternately from Λ and π∗. Let us refer to the edges of Λ
as the Λ-edges of Pk . Replacing the Λ-edges of Pk with their
complement in Pk produces a new matching Λ′ in T k

αi
; this

follows from the way the paths are constructed.
Lemma 3: The weight of matching Λ′ is strictly higher than

that of Λ on tree T k
αi

.
This completes the proof of Lemma 2 since Lemma 3 shows
that Λ is not the maximum weight matching on T k

αi
, leading

to a contradiction.
Now, we provide the proof of Lemma 3.

Proof: [Lemma 3] It suffices to show that the total weight
of the Λ-edges is less than the total weight of their complement
in Pk. Consider the projection P ′

k of Pk in the graph Kn,n.
P ′

k can be decomposed into a union of a set of simple cycles
{C1, C2, . . . , Cm} and at most one even length path Q of
length at most 2n. Since each simple cycle has at most 2n
vertices and the length of Pk is 2k,

m ≥ 2k

2n
=

k

n
. (14)

Consider one of these simple cycles, say Cs. Construct the
matching π′ in Kn,n as follows: (i) For αl ∈ Cs, select edges
incident on αl that belong to Λ. Such edges exist by the
property of the path Pk that contains Cs. (ii) For αl /∈ Cs,
connect it according to π∗, that is, add the edge (αl, βπ∗(l)).

Now π′ �= π∗ by construction. Since the MWM is unique,
the definition of ε gives us

Wπ′ ≤ Wπ∗ − ε.

But, Wπ∗ − Wπ′ is exactly equal to the total weight of the
non-Λ-edges of Cs minus the total weight of the Λ-edges of
Cs. Thus,

weight of Λ-edges of Cs − weight of rest of Cs =
−(Wπ∗ − Wπ′) ≤ − ε. (15)

2The matching π∗ is defined on Kn,n but can be naturally projected to the
tree T k

αi
. Hence, when we refer to ‘edges of matching π∗’, we mean edges

in Kn,n or the tree T k
αi

depending on the context.

End of Pk

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
����

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
� ��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
�� ���

���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
���

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(a) (b)

(c)

Start of Pk

α1α1α1α1α1 α1α1 α1 α1α1α1α1

α1

α1α1

α2α2α2α2α2α2

α2 α2 α2

α2α2

α3α3α3α3α3α3

α3 α3 α3

α3α3

β1

β1β1β1β1

β1β1

β2 β2
β2β2

β2

β2β2

β3β3β3β3

β3

β3β3

Fig. 2. Projection of the path Pk is decomposed to (a): path Q of length 4
and (b) cycle C1 of length 4.

Since the path Q is of even length, either the first edge or the
last edge is an Λ-edge. Without loss of generality, assume it
is the last edge. Then, let

Q = (βπ∗(ij1), αij1
, βπ∗(ij2), . . . , βπ∗(ijl

), αijl
, βπ∗(ijl+1

)).

Now consider the cycle

C = (βπ∗(ij1), αij1
, βπ∗(ij2), . . . , βπ∗(ijl

), αijl
, βπ∗(ij1)).

Alternate edges of C are from the maximum weight matching
π∗. Hence, using the same argument as above, we obtain

weight of Λ-edges of Q − weight of rest of Q

=
∑

1≤r≤l

wijr π∗(ijr+1
) −

∑
1≤r≤l

wijr π∗(ijr)

≤ −ε + |wijl
π∗(ij1)| + |wijl

π∗(ijl+1
)|

≤ −ε + 2w∗. (16)

From (14)-(16), we obtain that for matchings Λ′ and Λ in T k
αi

:

weight of Λ − weight of Λ′ ≤ −(m + 1)(ε) + 2w∗

≤ −k

n
ε + 2w∗ < 0. (17)

This completes the proof of Lemma 3.

IV. DISCUSSION AND CONCLUSION

In this paper, we proved that the max-product algorithm
converges to the desirable fixed point in the context of MWM
for bipartite graph, even in the presence of loops. This result
has a twofold impact. First, it will possibly open avenues
for demystification of the max-product algorithm. Second, the
same approach may provably work for other combinatorial
optimization problems and possibly lead to better algorithms.

Though, the algorithm described in the paper may seem
complicated, we have managed to simplify3 it using the
regularity of the structure of the problem. In the simpli-
fied algorithm, each node needs to perform O(n) addition-
subtraction operations in each iteration. Since O(n) iterations

3More details will appear in a technical report

are required in the worst case, for finite w∗ and ε, the algorithm
requires O(n3) operations at the most. This is comparable with
the best known MWM algorithm. Furthermore, the distributed
nature of the max-product algorithm makes it particularly
suitable for networking applications like switch scheduling
where scalability is a necessary property.

Future work will consist of trying to extend our result to
finding the MWM in a general graph, as our current arguments
do not carry over4. Also, we would like to obtain tighter
bounds on the running time of the algorithm since simulation
studies show that the algorithm runs much faster on average
than the worst case bound obtained in this paper.

ACKNOWLEDGMENT

While working on this paper the first and the last author
were supported by Air Force grant AF F49620-01-1-0365.

REFERENCES

[1] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE
Trans. Inform. Theory, Vol. 46, pp. 325-343, 2000.

[2] S. M. Aji, G. B. Horn and R. J. McEliece, “On the Convergence of
Iterative Decoding on Graphs with a Single Cycle,” Proc. 1998 IEEE Int.
Symp. Information Theory, Cambridge, MA, p. 276, 1998.

[3] D. Bertsekas and J. Tsitsiklis, “Parallel and Distributed Computation:
Numerical Methods,” Prentice Hall, Englewood Cliffs, N. J., 1989.

[4] J. Edmonds and R. Karp, “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems,” Jour. of the ACM, Vol. 19,
pp 248-264, 1972.

[5] B.J. Frey, R. Koetter, “Exact inference using the attenuated max-product
algorithm”, in Advanced Mean Field Methods: Theory and Practice, ed.
Manfred Opper and David Saad, MIT Press, 2000.

[6] R. G. Gallager, “Low Density Parity Check Codes,” MIT Press, Cam-
bridge, MA, 1963.

[7] G. B. Horn, “Iterative Decoding and Pseudocodewords,” Ph.D. disserta-
tion, Dept. elect. Eng., Calif. Inst. Technol., Pasadena, CA, 1999.

[8] S. Lauritzen, “Graphical models,” Oxford University Press, 1996.
[9] E. Lawler, “Combinatorial Optimization: Networks and Matroids”, Holt,

Rinehart and Winston, New York, 1976.
[10] N. McKeown, V. Anantharam and J. Walrand, “Achieving 100 %

Throughput in an Input-Queued Switch,” Infocom, Vol. 1, pp 296-302,
1996.

[11] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference,” San Francisco, CA: Morgan Kaufmann, 1988.

[12] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity
Check Codes under Message-Passing Decoding,” IEEE Trans. Info.
Theory, Vol. 47, pp 599-618, 2001.

[13] M. Wainwright, T. Jaakkola and A. Willsky, “Tree Consistency and
Bounds on the Performance of the Max-Product Algorithm and its
Generalizations,” Statistics and Computing, Vol. 14, pp 143-166, 2004.

[14] M. Wainwright, M. Jordan, “Graphical models, exponential families,
and variational inference,” Tech. Report, Dept. of Stat.,University of Cal.,
Berkeley, 2003.

[15] Y. Weiss, “Belief propagation and revision in networks with loops,” MIT
AI Lab., Tech. Rep. 1616, 1997.

[16] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,” Neural Comput., Vol. 12, pp. 1-42, 2000.

[17] Y. Weiss and W. Freeman, “Correctness of belief propagation in Gaus-
sian graphical models of arbitrary topology,” Neural Comput., Vol. 13,
Issue 10, pp 2173-2200, 2001

[18] Y. Weiss W. Freeman, “On the optimality of solutions of the max-
product belief propagation algorithm in arbitrary graphs.,” IEEE Trans.
Info. Theory, Vol. 47, pp 736-744, 2001.

[19] J. Yedidia, W. Freeman and Y. Weiss, “Generalized Belief Propagation,”
Mitsubishi Elect. Res. Lab., TR-2000-26, 2000.

[20] J. Yedidia, W. Freeman and Y. Weiss, “Understanding Belief Propagation
and its Generalizations,” Mitsubishi Elect. Res. Lab., TR-2001-22, 2000.

4A key fact in the proof of lemma was the property that bipartite graphs
do not have odd cycles.

