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Abstract—
In high-speed switches the Input Queued(IQ) architecture is very popu-

lar due to its low memory-bandwidth requirement compared to the Output
Queued (OQ) switch architecture which is extremely desirable in terms of
performance but requires very high memory-bandwidth. In the past decade
researchers and industry people have been trying hard to £nd good schedul-
ing algorithm for IQ switches. The two main performance criteria for a
scheduling algorithm are: (i) throughput, and (ii) delay. There has been a
lot of research done to £nd throughput of scheduling algorithms, but a little
has been known about delay performance of algorithms. This paper mainly
studies the delay properties of a class of scheduling algorithms known as
maximal matching algorithms.

It has been known that Maximum weight matching(MWM) scheduling al-
gorithm provides the maximum possible throughput, also denoted as 100%
throughput [1], [2], [4]. The delay bounds for MWM algorithm, and a suite
of approximations of MWM algorithm, are known under Bernoulli i.i.d.
traf£c. Unfortunately there are two problems: (i) MWM and its approxi-
mations are not implementable, and (ii) delay bounds are very weak com-
pared to the known theoretical lower bounds that can be obtained in terms
of performance of an OQ switch.

On the other end of spectrum lies simple maximal matching algorithm
like iSLIP [5] which is implemented in commercially available routers. In
[4] it was shown that all maximal matching scheduling algorithms are stable
at speedup of 2. But nothing is known about their delay performance. In
this paper, we obtain bounds on all maximal matching scheduling algorithm
running at speedup 2 when traf£c is Bernoulli i.i.d. Interestingly, these
bounds match the theoretical lower bound very closely and much better
than the bounds on MWM. In particular, we show that any CIOQ switch
running at speedup 2 with maximal matching schedule as at most 5 times
longer queue-sizes on average compared to the OQ switch under Bernolli
i.i.d. traf£c. This suggests that under assumption of traf£c being inde-
pendent enough, no switch can do better than a simple maximal matching
algorithm running at speedup 2. This provides the £rst theoretical support
to “iSLIP can provide QoS”.

We would like to note that any IQ switch architecture that needs to sup-
port OQ switch must have speedup 2 as shown in [9], [10]. The algorithms
proposed in [9], [10] are very complex compared to algorithms like iSLIP.

I. INTRODUCTION

Over the past decade the IQ switch architecture has become
dominant in high speed switching. This is mainly due to the
fact that the memory bandwidth of its packet buffers is very low
compared to that of an output-queued or a shared-memory ar-
chitecture.
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Fig. 1. Logical structure of an input-queued cell switch

Fig. 1 shows the logical structure for an input-queued (IQ)

switch. Suppose that time is slotted so that at most one packet
can arrive at each input in one time slot. Packets arriving at in-
put i and destined for output j are buffered in a “virtual output
queue” (VOQ), denoted here by V OQij . The use of virtual out-
put queues avoids performance degradation due to the head-of-
line blocking phenomenon [8]. Let the average cell arrival rate
at input i for output j be λij . The incoming traf£c is called ad-
missible if

∑N
i=1 λij < 1, and

∑N
j=1 λij < 1. Let the maximum

load on any row/column be λ which can be precisely de£ned as

λ = max
k
{

N
∑

j=1

λkj ,

N
∑

i=1

λik}.

For simplicity we will assume that for all i, j, λi. =
∑N

k=1 λik = λ and λ.j =
∑N

k=1 λkj = λ, that is, all row and
columns are loaded with equal overall load though individual
λij can be different. When traf£c is Bernoulli i.i.d. a packet ar-
riving at input i is for output j with probability λij independent
of past and other inputs. For notational simplicity in the rest of
the paper for any vector/matrix X we denote Xi. =

∑

kXik

and X.j =
∑

kXkj .
We assume that packets are switched from inputs to outputs

by a crossbar fabric. When switching unicast traf£c 1, this fabric
imposes the following constraint: in each time slot, at most one
packet may be removed from each input and at most one packet
may be transferred to each output. We would like to note that
speedup of c in an IQ switch means that in one packet time-slot
c scheduling cycles can take place. Thus in an IQ switch with
speedup 2 by the time one packet can arrive to an input, at most 2
packets can go to output from this input. At speedup higher than
1, this imposes requirement of having queues at output side too.
We will call such switches as Combined Input Output Queued
(CIOQ) switches.

To perform well, an N × N input-queued switch requires a
good packet scheduling algorithm for determining which inputs
to connect with which outputs in each time slot. It is well-known
that the crossbar constraint makes the switch scheduling prob-
lem a matching problem in an N ×N weighted bipartite graph.
The weight of the edge connecting input i to output j is often
chosen to be some quantity that indicates the level of conges-
tion; for example, queue-lengths or the ages of packets.

A matching for this bipartite graph is a valid schedule for the
switch. Note that a valid matching can be seen as a permutation
of the N outputs. In this paper we will use the words schedule,
matching and permutation interchangeably. A matching of par-
ticular importance for this paper is the Maximum Weight Match-
ing algorithm (MWM). Given a weighted bipartite graph, the

1We do not consider multicast traf£c in this paper.
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MWM £nds that matching whose weight is the highest. For ex-
ample, Figure 2 shows a weighted bipartite graph and one valid
schedule (or matching). In [3], [7] bounds on average delay for
MWM and a suite of approximations of MWM-like scheduling
algorithms under Bernoulli i.i.d. traf£c were obtained. Roughly
speaking these bounds are O(N 2) with respect to switch size
N . As we shall show the average delay/queue-size for an OQ
switch under Bernoulli i.i.d. traf£c are O(N). Thus theoret-
ically known bounds on MWM are quite weak compared to
known lower bounds. Further, these algorithms are too com-
plicated to implement due to various reasons. In [11], many
easy to implement algorithms were proposed. These algorithms
have provable 100% throughput and simulations show good de-
lay property but nothing is known about their performance rela-
tive to an OQ switch’s performance.

In past very interesting research has been done to show the
possibility of emulating performance of an OQ switch in a Com-
bined Input Output Queued(CIOQ) switch at a constant speedup
[9], [10]. They showed that it is not possible to emulate OQ
switches at speedup lower than 2. They proposed algorithms to
emulate OQ switch performance at speedup 2 and 4. These al-
gorithms are stable-marriage type algorithms which do packet-
by-packet scheduling. This makes it very dif£cult to implement
as it requires to process a lot of information at every time slot.
Thus though theoretically performance is guaranteed to be as
good as an OQ switch, it is not feasible to implement.

The main question remains: is it possible to have simple
scheduling algorithm that run at speedup 2 and almost do as
good as an OQ switch. We answer this question in af£rmative
sense in this paper by showing that maximal matching algorithm
has such properties.

A maximal matching scheduling algorithm obtains a maximal
schedule, that is it has the following property: no pair of input
and output which are not connected under the schedule do not
have packets for each other. The other implication of this al-
gorithm is that, if an input i has packets for output j, then at
least one of the input i and output j is connected in any maxi-
mal matching. One such maximal matching algorithm is known
as iSLIP [5]. A version of iSLIP is known to be implemented in
commercially available routers. These maximal matching algo-
rithms do not require any kind of weight information like queue-
length, age of cell etc. or any urgency information required in
OQ switch emulation. This makes it very simple to implement
in IQ switches. Hence it is important to know the theoretical
properties of such maximal matching algorithms.

It is known that any maximal matching algorithm with
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Fig. 2. Example of weighted bipartite graph and its maximum weight matching.

speedup 2– every cell-time switch schedules packets 2 times–
provides 100% throughput under any admissible traf£c [4], [12].
But nothing is known about the average queue size or delays.

In this paper, we study the average queue size under maximal
matching algorithm at speedup 2 under any admissible Bernoulli
i.i.d. traf£c. We obtain upper bound on the average queue size.
The proof technique used here involves two main tools: (i) a
Lyapunov function based argument (similar to [7]), and (ii) a
novel combinatorial argument.

Using simple (and novel as far as our knowledge) argument
that an OQ switch is the best any switch, and in particular a
CIOQ switch at speedup 2, can do with outgoing line rate being
1, we obtain lower bound on the average delay.

Interestingly, the upper bound and lower bounds obtained are
of the same order(see section III-II for details). This suggests
that the average queue size of a CIOQ switch operating under
maximal matching at speed up 2 is very similar to that of the
queue sizes in an OQ switch.

The following is a strong implication: a CIOQ switch running
at speedup 2 with iSLIP as scheduling algorithm performs as
good as an OQ switch in terms of (i) throughput, and (ii) average
delay.

The rest of the paper is organized as follows: In section II
and section III we obtain lower bound and upper bound respec-
tively for the average queue size of a CIOQ switch with any
maximal matching scheduling algorithm at speedup 2 with ad-
missible Bernoulli i.i.d. arrival traf£c. In section IV we present
the conclusion.

II. AVERAGE QUEUE SIZE: LOWER BOUND

To obtain lower bound on the net queue size, we turn our
attention to the Output Queued(OQ) switches. In OQ switches,
there is no unnecessary queuing due to switch scheduling. The
queues build up in OQ switch due to the arrival traf£c. Since
in all switch architecture, IQ, CIOQ or OQ, this queuing has to
occur as in all switches output line runs at speed 1, the average
queue size on in OQ switch is the lower bound on all switching
architecture.

Before proceeding further consider the following notations:
Let Yi(t) be queue size at output i at time t. Let Y (t) =
∑

i Yi(t) be the total queue size of the OQ switch at time t. We
claim the following theorem for the average queue size in OQ
switch:

Theorem 1. Under Bernoulli i.i.d. traf£c with arrival-rate ma-
trix Λ with λ < 1 as the average load on each input and output
node. Then,

E[Y (t)] =
Nλ

2(1− λ)
(1)

Proof. In OQ switch consider one particular output, say 1. Ev-
erytime, it receives packets from possibly N inputs. At each
input the packets arrive for output 1 according to N indepen-
dent Bernoulli i.i.d. processes with rates λ11, . . . , λN1. The
output 1 serves out 1 packet at a time. Thus the output 1 is a
deterministic server of rate 1. For large N , we can approximate
this queue at output 1 by an M/D/1 queue with arrival process
being Poisson of rate λ =

∑

i λi1 (use of Binomial-Poisson ap-
proximation). By Pollaczek-Khinchine formula [6], we obtain
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that, the average queue size for such an M/D/1 queue is

E[Y1(t)] =
λES2

2(1− λES)

=
λ

2(1− λ)
(2)

where, ES2 = ES = 1 as the deterministic service of rate 1.
Since all outputs are symmetric, we obtain the similar is true to
E[Yi(t)] for all i. Thus, we obtain,

E[Y (t)] = E[
N
∑

i=1

Yi(t)]

= NE[Y1(t)]

=
Nλ

2(1− λ)
(3)

This proves our claimed Theorem 1.

III. AVERAGE QUEUE SIZE: UPPER BOUND

In this section we obtain an upper bound on the average queue
size for CIOQ switch running with any maximal matching run-
ning at speedup 2. We need to bound queue sizes at inputs as
well as outputs. First we obtain bounds on the queue sizes at in-
put side. We will use this bound to obtain the bounds on queue
sizes at output. This will give us bound on the net queue-size of
such a CIOQ switch.

Let Q(t) = [Qij(t)] be the N ×N matrix of N2 VOQs in the
switch at input side. Let the net queue size at input side be de-
noted as Z(t) =

∑

i,j Qij(t). We state the following theorem:

Theorem 2. Let a CIOQ switch running at speedup 2 and uses
any maximal matching algorithm for scheduling. Let the traf£c
be Bernoulli i.i.d. with rate matrix Λ with row/column load of
λ < 1. In equilibrium, the average of Z(t) can be bounded as

E[Z(t)] ≤
λN

(1− λ)
(4)

Proof. To prove this theorem we use Lyapunov function tech-
nique used in [3], [7]. Consider the following Lyapunov func-
tion

f(t) = 〈Q(t), C(t)〉
4
=
∑

i,j

Qij(t)Cij(t)

where,
C(t) =MQ(t) +Q(t)M,

where, M = [mij ] with mij = 1 for all i, j. In other words,
C(t) = [Cij(t)] then Cij(t) =

∑

kQik(t) +
∑

lQlj(t).
We would like to £nd the f(t+1)−f(t) given the Q(t). This

in turn will imply the desired bound. Consider the following:

f(t+ 1)− f(t) =
∑

i,j

Qij(t+ 1)Cij(t+ 1)−Qij(t)Cij(t)

By queuing equation, Qij(t+1) = [Qij(t)+Aij(t)−Dij(t)]
+.

Let us neglect the non-negativity: neglecting it means at most
Qij(t + 1) can be 1 due to an arrival after departure. Since at
most N arrivals per time slot are possible this requires us to add

N to the bound on Z(t) to overcome the error introduced by
neglecting it. As we will see, the £nal bound on Z(t) is higher
and hence we can neglect this. Thus, effectively we obtain,

Qij(t+ 1) = Qij(t) +Aij(t+ 1)−Dij(t) (5)

Similarly, for Cij(t) we obtain,

Cij(t+ 1) = Cij(t) +Ai.(t+ 1) +

A.j(t+ 1)−Di.(t)−D.j(t) (6)

Using (5)-(6), we obtain,

f(t+ 1)− f(t) =
∑

i,j

{[Qij(t) +Aij(t+ 1)−Dij(t)]×

[Cij(t) +Ai.(t+ 1) +A.j(t+ 1)−Di.(t)−D.j(t)]}

−Qij(t)Cij(t)

=
∑

i,j

{Qij(t)[Ai.(t+ 1) +A.j(t+ 1)−Di.(t)−D.j(t)]

+ Cij(t)(Aij(t+ 1)−Dij(t+ 1)) + [Aij(t+ 1)

− Dij(t+ 1)]× [Ai.(t+ 1) +A.j(t+ 1)

−Di.(t)−D.j(t)]} (7)

It will be clear later that our main goal is to bound E[f(t+1)−
f(t)|Q(t)]. Hence in (7) we bound the expected change for each
term. First we bound the last term in (7) on the right hand side
as follows:

(Aij(t+ 1)−Dij(t+ 1)) ≤ Aij(t), and

(Ai.(t+ 1) +A.j(t+ 1)−Di.(t)−D.j(t)) ≤ 2

Hence,
∑

i,j

[Aij(t+ 1)−Dij(t+ 1)][Ai.(t+ 1) +A.j(t+ 1)

−Di.(t)−D.j(t)] ≤ 2λN (8)

For the other two terms, note that by simple algebraic manipu-
lation

∑

i,j

Qij(t)[Ai.(t+ 1) +A.j(t+ 1)−Di.(t)−D.j(t)]

=
∑

i,j

Cij(t)× (Aij(t+ 1)−Dij(t+ 1)) (9)

By property of maximal matching, if Qij(t) > 0 then either
input i is matched to some output or output j is matched to some
input. Hence at every schedule, Di.(t)+D.j(t) is at least 1 given
Qij(t) > 0. At speedup 2 scheduling happens twice. Hence ev-
ery time Di.(t) + D.j(t) ≥ 2. Before proceeding further, we
would like to note that, if Qij(t) = 1 and it is served in the £rst
phase of the scheduling, then it may become 0, and hence have
to neglect its effect as Qij(t) > 0 in the above analysis. But
note that, only N of them can have this effect and such N add
only N to the net queue size in the effect and hence by adding
this additional N to the upper bound, we can neglect this ef-
fect (there are other ways to do this, but it being non-important
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point we do not discuss here in detail). From above discus-
sion, we obtain that if Qij(t) > 0 then Di.(t) + D.j(t) ≥ 2.
Along with equations (8)-(9) and this observation and noticing
that E[Qij(t)(Ai.(t+1)+A.j(t+1))|Q(t)] = Qij(t)(2λ) due
to the traf£c being independent in time, we obtain,

E[f(t+ 1)− f(t)|Q(t)] ≤ 2
∑

i,j

Qij(t)[2λ− 2] + 2λN

= 4(λ− 1)Z(t) + 2λN (10)

Consider the following (using (10)):

E[f(t+ 1)] = E[E[f(t+ 1)− f(t) + f(t)|Q(t)]]

= E[E[f(t+ 1)− f(t)|Q(t)]] + E[f(t)]

≤ E[4(λ− 1)Z(t) + 2λN ] + E[f(t)] (11)

Summing the equation (11) for t = 0, . . . , T , we obtain that,

E[f(T + 1)] ≤ 4(λ− 1)

T
∑

t=0

E[Z(t)] + 2λN(T + 1)

+E[f(0)] (12)

Since the system is stable limT→∞
E[f(T+1)]

T+1 = 0 and
assuming system starts with £nite queue size, we have
limT→∞

E[f(0)]
T+1 = 0 Further, since our systemQ(t) is a discrete

time Markov process and it being aperiodic and irreducible, it is
ergodic. For Bernoulli i.i.d. traf£c by result of stability [12] we
know that Q(t) has bounded average (also other bounded mo-

ments). By ergodic theorem limT→∞

∑

T

t=0
Z(t)

T+1 = E[Z(t)] in
equilibrium. Hence the bounded moment imply the convergence
in L1 also. Hence we £nally obtain using (12) that in equilib-
rium,

E[Z(t)] = lim
T→∞

∑T
t=0 Z(t)

T + 1

≤
λN2

2(1− λ)
(13)

If we consider the neglected N term, we obtain bound as,

E[Z(t)] ≤
λN

(1− λ)
(14)

Thus we have proved the desired results as claimed in the state-
ment of Theorem 2.

Note: we note that the above bound is a bit weaker and can
be tightened. Though qualitatively the result does not change.

The above theorem bounds the queue sizes formed at the in-
put side in the CIOQ switch. In such an CIOQ switch the bound
on queue size at the input side is important as the packets trans-
ferred to output side will get transferred without problem. But
we need to prove concretely that this is the case. We use a novel
technique based on the idea of “leaky bucket constrainted” traf-
£c to prove this.

We £rst consider the following scenario: packets arrive at a
queue with a deterministic server running at rate 1 according
to arrival process A(t). The number of packets arrived during

any time period [s, t], denote as A(s, t), obey the leaky bucket
constraint:

A(s, t) ≤ σ(t− s) + ρ, ∀0 ≤ s < t (15)

where, σ < 1 and ρ any positive £xed integer. The following is
a well-known result:

Lemma 1. For such a leaky-bucket constrainted queue, the
maximum queue-size is bounded above by ρ.

Proof. Since σ < 1 the queue is stable. By Lindley’s equation,
the queue size at time t is,

Q(t) = max
0≤s≤t

{A(s, t)− (t− s)}.

By replacingA(s, t) ≤ σ(t−s)+ρ, we obtain that the maximum
is ρ for t = s. This proves the lemma.

To obtain bound on the queue-size on the output side, we con-
sider the following ”virtual” OQ switch. This OQ switch has
two sources of packet arrivals: (i) packets arriving according to
the original Bernoulli i.i.d. arrival process, and (ii) the packets
queued up on the input-side of the original CIOQ switch. The
way to view the (i) as the ”σ” part of the arrival process as in
(15) and (ii) as the ”ρ” part of the arrival process. In Lemma
1 the queue-sizes are formed due to ”ρ” part. In this case, part
(i) also forms some queue-size, which from Theorem 1 are on
average:

E[Q1] =
Nλ

2(1− λ)
(16)

The additional queue-size formed due to (ii) are exactly same as
the queue-size on input side, which on average is bounded above
by Theorem 2, as

E[Q2] =
Nλ

(1− λ)
(17)

Thus, by argument similar to Lemma 1, we obtain that the net
queue size for such a virtual OQ is bounded above by:

E[Qv
OQ] ≤ E[Q1] + E[Q2]

=
Nλ

2(1− λ)
+

Nλ

(1− λ)

=
3Nλ

2(1− λ)
(18)

Next notice the following two facts: (i) by construction of the
arrival process, the virtual OQ switch has more packets coming
to output side compared to the original CIOQ switch, and (ii)
the output side of CIOQ switch and this virtual OQ switch are
identical.

This leads us to the following theorem:

Theorem 3. Let the net queue size at the input and output of
an CIOQ switch be R(t) at time t. Let the arrival traf£c be
Bernoulli i.i.d. with traf£c rate matrix Λ with row and col-
umn loaded with load λ as described before. Then under any
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maximal matching with speedup 2 the average of R(t) can be
bounded above as

E[R(t)] ≤
5Nλ

2(1− λ)
.

Proof. From above discussion, Theorem 2 and Theorem 1the
statement of the theorem follows immediately.

A. Discussion

B. CIOQ v/s OQ

From Theorem 3 and Theorem 1 the comparison suggests:

E[Y (t)] ≤ E[R(t)] ≤ 5E[Y (t)] (19)

Thus, the CIOQ switch with maximal matching algorithm (for
example, iSLIP) has at most 5 times larger queues compared to
an OQ switch on average under Bernoulli i.i.d. traf£c.

B.1 CIOQ, MWM and OQ

As proved in [3], [7], the bound on average queue-size under

MWM are of order O
(

λN2

(1−λ)

)

. As noted above the bound for

maximal-speedup 2-CIOQ or OQ of order O
(

λN
(1−λ)

)

. Thus

bound on MWM is O(N) times weaker than that for CIOQ or
OQ. This suggests the weakness of bounds on MWM. Certainly
this does not suggest that actually MWM is too poor, but shows
the weakness of currently known results.

B.2 Arrival distribution

To prove above results we assumed the Bernoulli i.i.d. as-
sumption. We can extend this to any re-generative/markovian
traf£c and can obtain similar qualitative results. That is, the av-
erage queue-sizes for a CIOQ switch running at speedup 2 with
maximal matching is of the same order as that of for an OQ
switch.

IV. CONCLUSIONS

In this paper we have analyzed the average queue size for a
CIOQ switch running at speedup 2 under any maximal match-
ing under Bernoulli i.i.d. arrival traf£c. We obtained upper
bound and lower bound for the average queue sizes. These
bounds differ from each other by a constant factor (independent
of switch size or other parameters). This suggests that CIOQ
switch with any maximal matching at speedup 2 performs as
good as any switch architecture (including OQ architecture) for
any Bernoulli i.i.d. arrival traf£c. Thus simple algorithms like
iSLIP on a CIOQ switch running at speedup 2 performs as good
as an OQ switch in terms of throughput and delay.
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