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Abstract— The impact of process variation in deep-submicron
technologies is especially pronounced for SRAM architectures
which must meet demands for higher density and higher per-
formance at increased levels of integration. Due to the complex
structure of SRAM, estimating the effect of process variation
accurately has become very challenging. In this paper, we address
this challenge in the context of estimating SRAM timing vari-
ation. Specifically, we introduce a method called loop flattening
that demonstrates how the evaluation of the timing statistics in
the complex, highly structured circuit can be reduced to that
of a single chain of component circuits. To then very quickly
evaluate the timing delay of a single chain, we employ a statistical
method based on importance sampling augmented with targeted,
high-dimensional, spherical sampling. Overall, our methodology
provides an accurate estimation with 650X or greater speed-up
over the nominal Monte Carlo approach.

I. INTRODUCTION

The performance evaluation of circuit designs, SRAM in
particular, is becoming an increasingly difficult task due to the
process variation in deep-submicron technologies. The com-
plex structure of SRAM—which is an assembly of multiple
components (memory cells, sense amplifiers, delay chains)
at different rates of repetition—makes it very challenging
to estimate the effect of process variation on critical circuit
properties, such as the timing delay.

In such scenarios, the analytical distribution of the perfor-
mance metrics is not known. As a consequence, any statistical
simulation method unavoidably resorts to numerical solvers
such as SPICE. Classical approaches like the Monte Carlo
methods require too many iterations of such SPICE evaluations
because of the circuit complexity and extremely low tolerable
failure probabilities of individual components (10~% and be-
low). Thus, the primary challenges to any statistical simulation
method are: (a) dealing with the structural complexity of the
timing delay evaluation problem, and (b) estimating timing
delay statistics to a very high accuracy. In this paper, we shall
overcome these two challenges for the timing delay analysis of
SRAM by means of two proposed methods of Loop flattening
and Spherical Importance Sampling, respectively.

Prior work. A lot of exciting recent work has made important
progress towards the eventual goal of designing generically
applicable, efficient simulation methodologies for circuit per-
formance evaluation. However, this line of work uniformly
falls short in addressing the above stated challenges regarding
the evaluation of timing delays of integrated SRAMs.

To begin with, in [1] and [2] authors have developed
efficient sampling based approaches that provide significant
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speedup over the Monte Carlo. However these works do not
deal with the interconnection complexity, i.e., do not address
the challenge (a) stated above. And hence, as is, they suffer
from the curse of dimensionality that results from a very large
number of transistors in relevant circuit applications.

As noted earlier, the main bottleneck for efficient simulation
is the utilization of a circuit solver like SPICE, as this approach
is necessitated by the lack of an exact analytic description
of the variation of performance metrics. In [3], by modeling
the bitline signal and the sense amplifier offset (and the
timer circuit) with Gaussian distributions, the authors are
able to come up with a linearized model for the read path.
As this model can be simulated in MATLAB, the SRAM
structure can be emulated and the evaluation time can be
significantly improved. This approach, though interesting, is
very limited since an exact analytic description is unlikely
to be known in general, or even considered as a truthful
approximation of reality. It is then only reasonable to look
for a generic simulation method that can work with any form
of distributions implied by the circuit solver such as SPICE.

Finally, in [4] the authors have extended upon the con-
ventional worst-case approach to SRAM design in which
the largest offset sense amplifier is required to support the
weakest memory cell. Their proposed method requires that an
underlying Gaussian distribution models the bitcell current—
particularly in the extreme tails of the distribution—in order
to enable the numerical convolution of a Gumbel distribution
of the worst-case read current with the sense amplifier offset.
Nevertheless their work does not put forth an unambiguous
approach as it requires the designer to heuristically allocate
margin between memory cells and sense amplifiers.

Our contributions. As the main result of this paper, we
put-forth a statistical methodology to quickly and accurately
evaluate timing delay in an SRAM. The two key aspects of
our methodology are: (i) the Loop flattening method and (ii)
the Spherical Importance Sampling.

The loop flattening approach addresses the added difficulty
of the timing delay estimation caused by the complex structure
of SRAM. We show that, surprisingly, the naive adaptation
of the classical critical path methodology—in which a Monte
Carlo simulation of a chain of component circuits (such
as row driver, memory cell, and sense amplifier) disregards
the relative rate of replication—produces an estimate that is
always conservative and highly accurate. Namely, if the loop
flattening based approach indicates that the delay exceeds



130ps with probability 10~°, then the actual delay will exceed
130ps with probability less than or equal to 107°. More
importantly, unlike the worst-case estimation, this conservative
approach is increasingly accurate at lower failure levels.
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Fig. 1. The conventional Monte Carlo (nested sampling) estimation and
the proposed loop flattening technique are compared in a simplified read
path example in MATLAB. The delays associated with the two curves for
a common level of failure tightly converge with the decreasing failure rate.
High accuracy is achieved at relevant (low) levels of failure.

The reduction obtained by loop flattening still leaves us with
the problem of evaluating the probability density function (pdf)
of a single chain of SRAM components (a single memory
cell and a single sense amplifier), to a very high accuracy.
This problem requires sampling a 12-parameter distribution,
wherein a standard Monte Carlo is clearly not useful. The
importance sampling -based approach in the recent work [2]
utilizes ‘uniform sampling,’ and as such does not scale to
higher dimensionality (12 dimensions in the case of interest).
To cope with the dimensionality, we use a spherical sampling
based approach that samples space in an adaptive manner.

The combination of these two methods, loop flattening and
Spherical Importance Sampling, yields an efficient and an
accurate approach for estimating the timing delay in SRAM.
As a representative application of our method, consider Fig. 1.
Given a specific setup (1mwv/ps bitline discharge with standard
deviation of 10%, 20mV of sense amplifier offset, and 256
cells per bitline), the curves of sense amplifier timing (X-axis)
versus the probability of incorrect sense amplifier output (Y-
axis) are shown for: 1) exhaustive Monte Carlo (solid red), 2)
the worst-case estimation (dashed gray) and 3) our approach
(dashed blue). We make the following observations based on
this figure. First, our estimation is always conservative, as ex-
pected. Second, it becomes highly accurate for low probability
of error, which is the regime of interest. For example, for
the probability of error of 107> of a single memory column,
the timing delay prediction of our method is off by 1.9%
compared to the Monte Carlo approach. This corresponds
to the 99% yield of a modest 512kb memory. Third, the
worst-case estimation—in which the weakest memory cell
must overcome the largest sense amplifier offset—is far too
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Fig. 2. A simplified critical path for small-signal sensing.

conservative for this probability of error. Even in MATLAB,
the exhaustive Monte Carlo simulation took over six hours;
whereas, the loop flattened curve was obtained instantaneously
as it arises from the sum of two Gaussians. In the experimental
results that follow, our approach exhibits 650X or greater
speedup over a Monte Carlo approach, while still using the
more generally applicable SPICE solver.

Organization. The remainder of the paper is organized as
follows. Section II introduces our approach based on loop
flattening and Spherical Importance Sampling. Section III
provides details on its application to the SRAM. Finally,
Section IV presents conclusions and directions for future work.

II. OUR APPROACH

We describe our approach in the context of analyzing timing
variation in SRAM. However, as the reader will notice, it is
likely to be widely applicable due to its generality.

Setup. Fig. 2 shows a simplified critical path for small-signal
sensing in a memory column. Each memory column has R
memory cells and a sense amp. Fig. 3 displays a transistor
level schematic of the standard memory column with R = 128.
In an SRAM, there are M such memory columns. We are
interested in the probability of incorrect output for a given
strobe time setting, 7'. Specifically we want F'(T') = Pr(S <
0) where S is the worst-case value of the difference between
the amount of signal produced by a memory cell and the
amount of offset in its supporting sense amplifier. The amount
of signal produced by a memory cell scales proportionally to
the allowed strobe timing, 7". We describe our approach via the
two main ingredients: first, the loop flattening approximation
and second, Spherical Importance Sampling.

Ingredient 1. Loop Flattening. Let S; be the worst-case
signal in the kth memory column. Let S = min;<g<as Si. It
is reasonable to model each S}, as independent and identically



distributed. Therefore, to evaluate F'(T'), we have
F(T) = Pr(S<0) = 1-Pr(S>0)
= 1-Pr(S; >0
= 1—(1-Pr(S; <on™M.
We may focus on evaluating Pr(S; < 0) for a single memory
column. As shown in Fig. 2, let X; be the rate of signal

development by the ¢th memory cell of the column, and let Y
be the sense amplifier offset. Then,

where Z; =T - X; — Y. Therefore, using the standard union
bound [5],
F(T) = Pr(S;1<0)
= Pr(Ufl,{Z <0})
R'PI‘(Z] S 0) = R fl(T)7
where f1(T) = Pr(Z; < 0). Putting the above into the context

of M independent memory columns,

F(T) < 1-(1-RAMDHM.

IN
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Further, for T large enough, i.e., for f;(7") small enough
(which is indeed the case of interest), Rf1(7") is small, and
we obtain an approximation (using 1 — x =~ e~ % for small x)

F(T) < 1—e MEAM ~ MRf(T). 2)

Equation (2) suggests that F(T) ~ MRf(T). We call this
the loop flattening approximation—it is conservative as the
above derivation shows. It can be shown to be asymptotically
correct, i.e.,

F(T)
MRf(T)

when X;,Y have reasonable distributions such as Gaussian.
Intuitively, the approximation (2) says that a large delay
primarily happens due to only one of the cells, that is, multiple
cells are unlikely to simultaneously induce a large delay. In
Fig. 1 R = 256, X; is a Gaussian with the mean of 1mV/ps
and relative standard deviation of 10%, and Y is a zero-mean
Gaussian with 20mV of standard deviation. The evaluation of
these parameters show that the convergence of (3) is very tight
at practical strobe timings.

1
lim — log

T—oo T 07 (3)

Ingredient 2. Spherical Importance Sampling. Equation (2)
suggests that we need to evaluate f1(7T) = Pr(Z; < 0) for
T > 0. To do so, we propose an importance sampling based
approach with spherical sampling. We quickly recall the basics
of the importance sampling in the context of our setup.
Variable Z; = T - X; — Y is determined by the 12
parameters, say Ay, 1 < ¢ < 12, that correspond to the random
threshold voltage variation of transistors in the critical path
(drawn in dark lines) of Fig. 3. To capture process variation in
SRAM, these variables are typically modeled as independent
Gaussians with means pp,1 < ¢ < 12, and variances af, 1<
¢ < 12. Since the relationship between A,’s and Z; is
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Fig. 3. Transistor level schematic of a representative memory column with
128 cells per bitline and additional multiplexing of 4 columns per sense
amplifier. Precharge devices are not shown for clarity.

described via an implicit function in SPICE, a simulation-
based approach is a de facto method for determining f; (7)) =
Pr(Zy, > T). However, for large T, i.e., when f;(T") is small,
the standard Monte Carlo approach would require too many
samples. Fortunately, importance sampling provides a way
to speed up such a simulation [6]. In a nutshell, one draws
values for Ay, 1 < ¢ < 12 as per Gaussian distributions with
means iy + s¢,1 < ¢ < 12, and variances, 07,1 < ¢ < 12,
where s;,1 < ¢ < 12 are cleverly chosen mean shifts
so that Pr(Z; > T) becomes likely under the new shifts.
Under these shifted variables, one estimates Pr(Z; > T)
highly accurately, while using only a few samples, say N.
(The explicit transformation between the original and the new
sampling domains reverts this estimate back to the original
domain at no additional cost). Precisely, for 1 < ¢ < 12, let
the values of Ay for these N samples be ay(n),1 <n < N.
Let x(n) = 1 if Z1(n) > T, and 0 otherwise. Here Z;(n)
is the excess signal observed in a SPICE simulation that is
fed values as(n),1 < ¢ < 12. Then, the importance sampling
estimator of f1(7') based on the shifts s = (s);2, is given
by

N 12 [ spag(m)—2pp—sy)
ﬁ@@ﬁ(ZMm62“< K >>w®

n=1
The non-triviality lies in finding an appropriate mean shift
vector s so that the estimate f1(7,s) converges quickly—that



is, in very few samples IN. The overall cost of estimating
f1(T) is then the sum of (i) the number of samples required
to discover a good shift s, and (ii) the number of samples
required to obtain a convergent estimate fi (T, s) based on the
shift s.

To minimize this overall sampling cost we devise an ap-
proach, which we call Spherical Importance Sampling. Math-
ematically speaking, the objective is to identify a mean-shift
vector s such that this vector corresponds to the point on
the pass-fail boundary closest in quadratic distance to the
nominal operating point, cf. Fig. 4. Such a point corresponds
to the most likely failure mechanisms as recognized in Large
Deviations Theory [7] and in the field of robust mechanical
system engineering [8], [9].

For a uniform characterization of such an estimator, we
employ a figure of merit (FOM) that ensures a predetermined
level of confidence and accuracy [2].

We now outline the main steps of the overall procedure.

Step 1. Perform spherical search.

Given the initial tolerable failure floor pgoor from a
user (e.g., 10~12) initialize the algorithm parameters: Rhign
=201 —Paoor), Riow = 0, and Ny = 0. ¢(+) is the normal
CDE.

For the allocated complexity parameter Ny, set L and U as
the lower and upper bounds on the target number of fails. A
good design choice is U = 0.5N; and L = 1.

(a) While My ¢ [L,U] :

e Set Ry := 1/2(Rlow + Rhigh)

o Sample the radius-R; spherical shell N times, and

record the total number of failures, M.

o If Mf > U, set Rhigh =Ry

o If Mf < L, set Ry : = R

o Niter : = Niger + 1.

(b) Record the final number of iterations as Bi = Njer.
Average over the direction vectors associated with all the
failing vectors in the last iteration in step (a). Initialize s;
with this average as the starting mean-shift for Step 2. Record
the quadratic norm of this shift as the current minimum norm,
minNorm = norm(s,).

Step 2. Perform local exploration.

Let Ny be the allocated complexity of this step. Set
runCount = 0, initialize Ry = Ry /2, and o = (0.05/Ry) ¥z.
The latter parameter governs how the resolution of local
exploration will gradually try to zoom in.

While runCount < Ns:

o Sample uniformly from a spherical distribution of radius
R, around the point s;. Call this point s,.
o If norm(s;) < minNorm,

— Set runCount : = runCount + 1.

— Run a SPICE simulation with s, as its input. If the
simulation results in a failure, record the displace-
ment d = norm(s; —s;) and then update the mean
shift vector : s; = s,. Otherwise d = 0.
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Fig. 4. Illustration of Spherical Importance Sampling Algorithm. In Step
1, samples on spherical shells quickly find a good starting direction enabling
the local exploration in Step 2 to gravitate to the mean shift of minimum
quadratic norm.

— Geometrically shrink Ry, while factoring in the
displacement:

Ry :=aRs + (1 —a)d

Step 3. Run the off-the-shelf importance sampler.

This step is done as per (4) with s = s;.
Record N3 as the number of steps it takes the
estimator to reach the FOM value of 0.1, corresponding
to the accuracy and confidence of 90% each.

The key idea is that Step 1 quickly gives a coarse sense of
direction of the appropriate mean-shift vector, and that Step 2
fine-tunes the vector selection across the local neighborhood
in the parameter space, see Fig. 4.

The overall cost of the proposed approach is then Nypq; =
N1 X By + Ny + N3. In the next section we shall see how
the proposed procedure can be effectively applied to SRAM
circuit design.



III. APPLICATION TO SRAM CIRCUIT DESIGN

The circuit in Fig. 3 is simulated in a generic 45nm
technology [10] with High-k Metal Gate 45nm PTM models
[11] at the nominal process corner. Based on the measurement
data in [12] the local random variation of transistor threshold
voltage is modeled as:

1.8mV
oy, = ————.
v Vv WCHLCH

Furthermore, the memory cell has been designed and laid out
to exhibit a read instability probability of less than 107°.
The layout of this 6T memory cell in the freePDK 45nm
technology is shown in Fig. 5; the layout gives the bitline
capacitance of 0.24 fF'/um and, it also gives the physical cell
dimensions of 1.54pum x 0.38um. The sense amplifier and
column multiplexer devices were sized to occupy the area of
roughly eight memory cells.

The waveforms of a nominal Monte Carlo simulation with
an aggressive timing are shown in Fig. 6. About 40mV of
highly variable bitline signal (BLT - BLC) interacts with the
sense amplifier offset to produce a logic level on the output of
the sense amplifier (SAT - SAC). A larger strobe time setting,
tsTr, allows more bitline signal to develop and therefore
reduces the probability of incorrect output. The complex nature
of the waveforms shows how no suitable performance metric
can be defined to facilitate analytical modeling or even the
formulation of numerical derivatives in the space of variation
parameters. Therefore, techniques based on sensitivity anal-
ysis [13], hypersphere or directional cosine searches [9], or
approximations for simplified Monte Carlo simulation [3] will
significantly compromise accuracy.

On the other hand, the processing of the read path sim-
ulation results leads unambiguously to a binary indicator of
pass/fail, and, in general, the formulation of a binary indicator
is feasible for arbitrary circuits. In order to evaluate the
probability of incorrect read-out versus strobe time setting, the
proposed Spherical Importance Sampling algorithm is applied
directly to this complicated simulation as it requires nothing
more than a binary simulation output—1 if the sense amplifier
output is incorrect and 0 otherwise.

Shown in Fig. 7 is the evolution of the failure probability
estimate versus simulation run index for both the importance
sampling stage (step 3) of the proposed algorithm and nominal
Monte Carlo. The strobe time setting of 40ps results in a path
failure probability of 1.01-10~% which, by the loop-flattening
technique described in Section II, results in a column failure
of 5.2-1072 = 128 -4-1.01 - 10~* . The raw speed-up of
step 3 is 1800X, and taking into consideration the cost of
step 1 and step 2, the total speedup is 650X. This reflects a
4.3X speedup over the work in [2] at the same level of failure
probability, and with twice the dimensionality—I12 instead of
6. The specific algorithm parameters used for all runs were:
Pfloor = 10712, N7 = 500, Ny = 500.

Shown in Table I is a summary of simulation results for
four strobe time settings. One million Monte Carlo runs takes
seven days on one Linux workstation utilizing 1 Intel 3.2GHz
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Fig. 5. The layout of the 6T memory cell in the freePDK 45nm technology.
Extraction from layout reveals 0.24fF/um of bitline capacitance.

CPU with 16GB of RAM; therefore, verification with a SPICE
Monte Carlo benchmark for failure probabilities of 1075 or
lower is infeasible as it requires ten million or more runs. For
strobe timings of 50ps, 65ps, 80ps, the speed-up is compared
against a projected number of required Monte Carlo runs
with the expression 100/ppath. As additional verification, the
Spherical Importance Sampling algorithm was verified at these
failure levels with a linear function in MATLAB and the
step 3 importance sampling run was extended 3X beyond
the required number of runs to verify stable convergence of
the failure estimate. Table I shows how the simulation cost
gradually increases with exponentially lower levels of failure
probability, achieving a speed-up of over twenty million at
Ppath = 1.91-1077.

The increasing cost comes from needing more runs in step 1
to find a suitable sampling shell radius, and from needing more
runs in step 3 to achieve the desired level level of confidence.
Generally, no more than two radius trials were required to
get a useful direction to initialize the local exploration in
step 2. As an example, Table II shows the evolution of the
mean shift after completing spherical sampling (s1) and then
after completing local exploration (s), when evaluating the
strobe timing of 80ps. The first row shows how the spherical
sampling gets a coarse direction correct along a few key
dimensions (1, 3, 4, 8) and then the local exploration greatly
improves the accuracy of the shift both in terms of magnitude
and direction. The resulting shift, s in the second row matches
circuit insight: 1) the column multiplexer devices have little
influence; 2) devices associated with the non-discharging side
(BLC) in Fig. 6 have small magnitude; 3) the read stack
in the memory cell (10,12) is significantly weakened; 4) the
mismatch between NMOS devices (3,4) in the sense amplifier
is most critical. Going from s; to s, the mean shift for
the importance sampling run, took only 500 trials with an
initial exploration radius of 5.25 tapering down to 0.06. As
discussed in section II, the local exploration radius can at
most shrink down to a magnitude of 0.05. The actual value
of the final radius being close to 0.05, indicates that most of
the local exploration runs resulted in a small displacement. A
larger final radius would have suggested the need for a larger
complexity parameter No.

IV. CONCLUSION

In this paper we presented two techniques—Iloop flattening
and Spherical Importance Sampling—and a method to syn-



Sense Amplifier Col. Mux Memory Cell
shift | AV | AVya AVis | AVig | AVis | AVie | AVir | AVyg AVig | AViio | AViin | AViia | La norm
S1 -0.89 -1.45 -3.61 5.59 0.03 -0.93 -3.29 0.19 -3.58 6.27 -0.53 -0.28 10.55
s -0.65 0.35 -3.60 3.27 0.20 0.00 -0.02 0.08 -0.13 0.69 0.18 3.24 5.90
TABLE II

EVOLUTION OF MEAN SHIFT VECTOR AFTER SPHERICAL SAMPLING (STEP 1) AND LOCAL EXPLORATION (STEP 2) FOR STROBE TIMING OF 80ps.
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Fig. 6. Operational waveforms of the read column illustrate the pronounced
effect of device variation and the difficulty in defining a performance metric
conducive to analytical modeling or even the formulation of numerical
derivatives.

tSTR Ppath cost Speed_up Pcol

40ps | 1.01-10~% | 1534 | 6.50-107 | 5.2-102

50ps | 9.08-10-° | 1660 | 6.63-10%t | 4.6-10~3

65ps | 1.33-10—7 | 2214 | 3.40-10°t | 6.8-10°°

80ps | 1.91-107Y | 2423 [ 2.16-107t | 9.8-10~7
TABLE I

SUMMARY OF S-IS SIMULATION RESULTS ON SPICE SIMULATION OF THE
READ COLUMN IN FIG. 3. THE PATH FAILURE PROBABILITY IS
MULTIPLIED BY 512 = 128 - 4 TO PRODUCE THE OVERALL COLUMN
FAILURE. SPEED-UP OVER NOMINAL MONTE CARLO IS 650X OR HIGHER.
VALUES MARKED WITH tARE PROJECTIONS ON THE NUMBER OF MONTE
CARLO RUNS USING THE RULE OF THUMB 100/ppath.

thesize them to reduce the statistical analysis of an SRAM
block to an Importance Sampling simulation of a chain of
component circuits. The key challenge of searching for the
most likely failure mechanism in a high dimensionality (12
in this work) parameter space is addressed by a two-stage
process in which a coarse direction is obtained first, followed
by a local sampling of increasing resolution.

As a contrast to prior SRAM yield analysis, the consider-
ation of intermediate metrics (bitline signal, sense amplifier
offset) has been replaced by a full-scale SPICE simulation
requiring only the indication of pass or fail. As future work,
this method can be extended to the complete, global row and
column path of large embedded SRAM, in addition to other
highly structured circuits such as adders, FIR filters, and FFT
accelerators.
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