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Abstract

We study distributed algorithms, also known as gossip algorithms, for information dissem-
ination in an arbitrary connected network of nodes. Distributed algorithms have applications
to peer-to-peer, sensor, and ad hoc networks, in which nodes operate under limited computa-
tional, communication, and energy resources. These constraints naturally give rise to “gossip”
algorithms: schemes in which nodes repeatedly communicate with randomly chosen neighbors,
thus distributing the computational burden across all the nodes in the network.

We analyze the information dissemination problem under the gossip constraint for arbitrary
networks, and find that the information dissemination time of a gossip algorithm is strongly
related to the isoperimetric properties of the underlying graph. This characterization allows us
to formulate the problem of finding the fastest information dissemination algorithm as a concave
maximization problem over the convex set of graph-conformant doubly stochastic matrices.

Next, we use these results for two seemingly unrelated important questions: distributed
averaging and coding based information dissemination. For averaging, we analyze an algorithm
based on a classic result of Flajolet and Martin [7]. Information dissemination based on coding
was introduced by Deb and Médard [6]. They showed the virtue of coding by analyzing a
coding algorithm for a complete graph. Although their scheme generalizes to arbitrary graphs,
the analysis does not. We present an analysis of this algorithm for arbitrary graphs, which
suggests that for a large class of graphs, such as grid-like graphs, coding-based algorithms do
not seem to improve performance.

Finally, we apply our results to several classes of graphs: complete graphs, expander graphs,
and grid graphs.

1 Introduction

With the development of peer-to-peer, sensor, and wireless ad hoc networks, there has been recent
interest in distributed algorithms for information dissemination and fault-tolerant computation.
This is due primarily to the following operational characteristics, which constrain such networks:
(i) the network may not have a centralized entity for facilitating computation, communication, and
time synchronization; (ii) the network topology may not be completely known to the nodes of the
network; (iii) nodes may join or leave the network (even expire), so that the network topology itself
may change; and (iv) in the case of sensor networks, the computational power and energy resources
may be very limited. These constraints motivate the design of simple decentralized algorithms for
computation, in which each node exchanges information with only a few of its immediate neighbors
in a time unit (or round). The goal in this setting is to design algorithms so that the desired
communication and computation are performed as quickly and efficiently as possible.
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We first study the problem of distributed information dissemination: given a network of n
nodes, each node wishes to disseminate its own information to all the other nodes as quickly as
possible via a gossip algorithm. This problem is defined in detail in Section 1.1. We analyze a class
of randomized algorithms, and find that the time required for dissemination of the information is
related to isoperimetric properties, analogous to conductance, of a probability matrix that specifies
the algorithm. This characterization allows us to pose the question of finding an optimal algorithm
as the problem of finding a (graph-conformant) doubly stochastic probability matrix with maximum
conductance. It turns out that this problem involves the maximization of a concave function over
a convex set, and hence it can be solved easily.

We apply these results to analyze two seemingly unrelated gossip algorithms for two different
questions. The first question involves distributed averaging. Distributed averaging arises in many
applications, such as the coordination of autonomous agents, distributed estimation, distributed
data fusion on ad hoc networks, and decentralized optimization. This problem has received a lot of
attention [11, 4]. We analyze an averaging algorithm, suggested in a sequence of previous papers
[5, 3, 16], which is based on a classic result of Flajolet and Martin [7]. In particular, we show that
the averaging time of this algorithm is strongly related to the information dissemination time. We
give an example of a graph on which the distributed averaging algorithm based on [7] is better than
the optimal iterative algorithm of [4, 11].

The second question concerns the problem of information dissemination via network coding.
Recently, Deb and Médard [6] proposed a gossip algorithm for information dissemination using
random linear codes, and showed that for a complete graph the algorithm performs much better
than a randomized gossip algorithm. Their scheme works for arbitrary graphs. However, its
analysis for arbitrary graphs is not so straightforward. Using the insights from our analysis of our
basic information dissemination algorithm, we analyze the coding-based information dissemination
algorithm. Our results show that the coding-based algorithm does not improve performance for
grid-like graphs.

1.1 Setup and model

Information dissemination. We consider the following model for information dissemination in
a network. Let G = (V,E) be a connected graph, with |V | = n nodes. We assume that each node
i ∈ V begins the protocol with a single distinct message, mi. If the edge set E contains an edge
(i, j), then the nodes i and j can exchange information during the algorithm.

The protocol is asynchronous1, and proceeds in a sequence of rounds. A natural model for asyn-
chronous operation is as follows. Each node has an independent clock. The clock ticks according
to a Poisson process of rate 1. When the clock at node i ticks, node i is said to become active.

An alternative characterization of this process involves a single global clock ticking according
to a Poisson process of rate n. A clock tick corresponds to the start of a round. At each tick of the
global clock, exactly one of the nodes is chosen to become active. This choice is made independently
and uniformly at random over V .

When node i becomes active, it chooses one of its neighbors, say j, as a communication partner.
We consider a simple randomized scheme for choosing the communication partner of a node when
it becomes active. On becoming active, node i contacts node j with probability Pij . Thus, an n×n

1All the results of this paper do not change qualitatively if the protocol is assumed to be synchronous. In particular,
the convergence time of algorithm becomes n times faster than that under the asynchronous model.
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matrix P = [Pij ] characterizes the algorithm. When node i contacts j, they exchange messages,
with i sending all2 of its messages to j, and receiving all of the messages that j has.

We are interested in the number of rounds required for every node to receive all of the n
messages. Under the above protocol, the dissemination of a fixed message m is not affected by the
presence of other messages at the nodes that are transmitting m. Hence, we will focus our attention
on the dissemination time of a single message from the initial node to all the other nodes. Now,
for a particular message mi, let St be the set of nodes that have the message after round t of the
protocol. With S0 denoting the initial set of nodes that contain mi at the outset of the protocol,
we have S0 = {i}.

Definition 1. For any ǫ ∈ (0, 1), the ǫ-spreading time of a communication matrix P , denoted by
Tspr(ǫ, P ), is

Tspr(ǫ, P ) = sup
S0={i},

i∈V

inf{t : Pr(|St| < n) ≤ ǫ}.

This definition captures the worst case, over all nodes i, of the number of rounds required for every
other node to receive the message mi that originates at i.

Averaging. The setup is similar to that for information dissemination. In this setting, each node
i has a positive integer xi initially. Let x(0) = (xi) denote the n-dimensional vector containing the
initial values at the nodes. The goal is to compute the average x̄ = 1

n

∑n
i=1 xi at each node. We do

not consider any fixed protocol. The precise protocol of interest will be described in Section 3. In
general, the performance of a protocol is measured by the averaging time Tave, which is defined as
follows.

Definition 2. For any ǫ, δ ∈ (0, 1), the ǫ-averaging time of a protocol, denoted by Tave(ǫ, δ), is
defined as follows. For any x(0), each node i converges to an estimate S(x(0)) in time Tave(ǫ, δ)
with probability at least δ. The estimate, S(x(0)), has the property that

Pr

( |S(x(0)) − x̄|
|x̄| > ǫ

)

≤ ǫ.

Information dissemination via network coding. Again, the setting is very similar to that of
the information dissemination problem. The difference comes from the protocol used to transmit
messages. We give the details of this in Section 4. The performance of a protocol is measured in
terms of the information spreading time.

1.2 Previous results

In this section, we briefly present a summary of previously known results. The questions considered
in this paper have been studied extensively in various contexts. Hence, by no means do we claim
to be complete in presenting all the related previous results.

Information dissemination. This question has been studied in various contexts for more than
two decades. Notably, the results of [9] established that when the graph is complete, the information

2This may require the capacity of links between two nodes to be Θ(n) times the capacity required for a single
message. We will discuss effect of limited capacity links in Section A.
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spreading time is Θ(n log n)3 for ǫ = 1/n. For other related results, we refer the reader to [17, 18,
10, 11]. We take note of the somewhat related recent work of Ganesh, Massoulie, and Towsley [8]
about the spread of epidemics in the network.

Averaging. This question has recently received a lot of attention. Notably, the results of Kempe,
Dobra, and Gehrke [11] showed the existence of an averaging algorithm with optimal averaging
time of Θ(n log n) for ǫ = δ = 1/n for a complete graph. However, their results did not extend
for arbitrary graphs. In [4], Boyd et al. generalized the results for averaging to arbitrary graphs.
They analyzed a large class of averaging algorithms, and found the averaging time to be related to
the mixing time of a random walk related to the algorithm. They also found an optimal averaging
algorithm as a solution to a semidefinite program. Their results on the averaging time also provide
bounds on the information dissemination time (a lot weaker than the results of this paper).

Information dissemination via coding. Network coding has been studied in a number of recent
papers, such as [1, 14, 13, 12]. More recently, Deb and Médard [6] showed that a coding-based
gossip algorithm for information dissemination can spread information faster than the randomized
gossip algorithm of [9] in a complete graph. Their algorithm easily generalizes to arbitrary graphs.
However, their method of analysis does not extend.

1.3 Main results

Consider the following definitions, which are similar to the popular notion of conductance that is
used in the analysis of the mixing times of Markov chains [20].

Definition 3. For a nonempty proper subset S ⊂ V of vertices, the uniform ergodic flow across
the cut (S, Sc), denoted FP (S, Sc), is

FP (S, Sc) =
∑

i∈S,j∈Sc

(Pij + Pji).

Definition 4. The uniform conductance, denoted Φu
P (S), of a nonempty proper subset S ⊂ V is

Φu
P (S) =

FP (S, Sc)

|S| .

Let C be the set of nonempty proper subsets S ⊂ V such that S induces a connected subgraph
on G. We make use of the following two quantities in our analysis.

F k
P = min

S∈C,

|S|=k

FP (S, Sc)

Φk
P = min

S∈C,

|S|≤k

Φu
P (S)

Note that because of the symmetry in the definition of FP , we have FP (S, Sc) = FP (Sc, S) for any
subset S ⊂ V , which implies that F k

P = Fn−k
P . Analogous to the standard notion of conductance

used in the literature [20], we define the uniform conductance of P as Φu
P

△
= Φ

n/2
P .

3The time is evaluated in our model. Since our model is different from the original work, the results stated in this
paper may look different from the original work.
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Information dissemination. The information dissemination algorithm described in Section 1.1,
with the communication matrix P , performs as follows. We use the following notation for vectors,
all of which have dimension n: ~1 has 1 as every entry; bk has the entries bk

k = 1 and bk
i = 0 for

i 6= k; and min{x, y} denotes the element-wise minimum of the two vectors x and y.

Theorem 1. For any ǫ ∈ (0, 1), the ǫ-spreading time, Tspr(ǫ, P ) is bounded as

L(ǫ, P ) ≤ Tspr (ǫ, P ) ≤ µn + 8

√

log ǫ−1µn

F ∗
,

where µn = n
(

∑n−1
k=1 F k

P
−1
)

, F ∗ = n−1 min
⌊n/2⌋
k=1 F k

P , and

L(ǫ, P ) = max
k=1,...,n

min{t : q(t) ≥ (1 − ǫ)~1,when q(0) = bk}

with q(t + 1) = min{
(

I + 1
n

(

P + P T
))

q(t),~1} for all t ≥ 0.

Averaging. As discussed in Section 3, we can use the framework of the information dissemination
algorithm from Section 1.1 to estimate the average of a collection of integers, one at each node in
the network.

Theorem 2. For any 2× 10−3 < ǫ < 1 and δ ∈ (0, 1), there is an asymptotic distributed averaging
algorithm based on matrix P such that

Tave(ǫ, δ) ≤ Tspr(δ/m(ǫ), P ),

where m(ǫ) ∈ [c1ǫ
−3, c2ǫ

−3] for some universal constants 0 < c1 < c2 for all ǫ ∈ (0, 1).

The Section 3.3 shows the implication of the above result with help of an example.

Information dissemination via coding. The coding-based information dissemination algorithm
(described in detail in Section 4) performs as follows.

Theorem 3. For any ǫ ∈ (0, 1) and large enough n, under the gossip algorithm based on Random
Linear Coding (over the finite field Fq), using the matrix P ,

Tspr(ǫ, P ) ≤ µ̂n + 8

√

log ǫ−1µ̂n

Φn−1
P

, where µ̂n = 2

(

1 − 1

q

)−1
(

n−1
∑

k=1

k

Φk
P

)

. (1)

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we analyze the basic information
dissemination gossip algorithm presented in Section 1.1. We characterize the information dissemi-
nation time as closely related to properties of a random walk related to the algorithm. Using this
characterization, we study an optimal information dissemination algorithm in Section 2.3. We use
the results of Section 2 to analyze a distributed averaging algorithm based on the results of [7] in
Section 3. In Section 4, we analyze the network coding based information dissemination algorithm.
In Section 5, we apply our results for three graphs of interest: grid graph, expander graphs, and
complete graphs. Finally, we present our conclusions.
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1.5 Preliminaries on Geometric random variables

Consider a sequence of independent Geometric random variables G1, . . . , Gk with parameters p1, . . . , pk,
where pi, 1 ≤ i ≤ k are small. Now consider independent Exponential random variables X1, . . . ,Xk

where Xi is of rate θi = log(1−pi)
−1. It is straightforward to see that Xi+2 stochastically dominates

Gi and Xi − 1 is stochastically dominated by Gi. Define, Sk = 1
k

∑k
i=1 Gi and Ŝk = 2 + 1

k

∑k
i=1 Xi.

Then, Ŝk stochastically dominates Sk and Ŝk − 3 stochastically dominates Sk. Thus, to obtain
bounds on Pr(Sk > l) it is sufficient obtain bounds on Pr(Ŝk > l). We state the following result.

Lemma 4. For Ŝk as defined above, let µ̂k = E[Ŝk]. By definition,

µ̂k = 2 +
1

k

k
∑

i=1

1

θi
. (2)

Let θ∗ = mini θi. Then,

Pr(Ŝk > (1 + ǫ)µ̂k) ≤ exp

(

−kǫ2θ∗µ̂k

32

)

.

Before we present the proof of Lemma 4, we present a straightforward corollary using above
discussion.

Corollary 5. For Sk as defined above, let µk = E[Sk]. Then, for ǫ > 0 and θ∗ = mini log(1−pi)
−1,

Pr(Sk > (1 + ǫ)(µk + 3)) ≤ exp

(

−kǫ2θ∗µk

32

)

.

Proof of Lemma 4. Consider the following. Let δ = λθ∗ > 0 and t > µk,

Pr(Ŝk > t) = E[1{kŜk−kt}]

≤ E[exp(δ(kŜk − kt))]

≤ exp(−δkt)
k
∏

i=1

E[exp(δ(Xi + 2))]

= exp(−δk(t − 2))
k
∏

i=1

E[exp(δXi)]

= exp(−δk(t − 2))

k
∏

i=1

(

1 − δ

θi

)−1

, (3)

where the last equality follows from the well-known fact that for an Exponential random variable,

X, of rate θ the E[exp(δX)] =
(

1 − δ
θ

)−1
. For δ really small compared to each θi, for 1 ≤ i ≤ k,

we obtain that

k
∏

i=1

(

1 − δ

θi

)−1

= exp

(

−
k
∑

i=1

log(1 − δ/θi)

)

(a)

≤ exp

(

(1 + 0.25ǫ)
k
∑

i=1

δ/θi

)

= exp(kδµ̂k + 0.25kδǫµ̂k − 2kδ − 0.5kǫδ), (4)
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where (a) uses log(1−x) ≥ −(1+0.25ǫ)x for x ≤ ǫ/8. Hence, it is sufficient to have δ/θ∗ = λ = ǫ/8.
From (3) and (4), we obtain

Pr(Ŝk > t) ≤ exp(−kδt + kδµ̂k(1 + 0.25ǫ) − 0.5kδǫ). (5)

Hence, for t = (1 + ǫ)µ̂k, we obtain

Pr(Ŝk > (1 + ǫ)µ̂k) ≤ exp(−0.75kδǫµ̂k + 0.5kδǫ). (6)

Since, µk > 1 we obtain

Pr(Ŝk > (1 + ǫ)µ̂k) ≤ exp(−0.25kδǫµ̂k). (7)

Replacing δ = λθ∗ = ǫθ∗/8, we obtain

Pr(Ŝk > (1 + ǫ)µ̂k) ≤ exp

(

−kǫ2θ∗µ̂k

32

)

. (8)

2 Information dissemination

In this section, we present analysis of the information dissemination gossip algorithm presented in
Section 1.1, and prove Theorem 1 (Lemmas 6 and 8). We also give an additional upper bound on
the information dissemination time that is based on graph structure (see Lemma 7 below).

2.1 Upper bounds

We study two basic approaches to providing upper bounds on the information dissemination time.
The first one uses the uniform ergodic flow property of the communication matrix P (see Lemma
6). The second one is based on an analysis of paths that a message can take as it spreads across
the nodes in the network (see Lemma 7).

2.1.1 Flow-based bound

We prove the following lemma, which gives the same bound as Theorem 1.

Lemma 6. For any ǫ ∈ (0, 1),

Tspr(ǫ, P ) ≤ µn + 8

√

log ǫ−1µn

F ∗
,

where µn = n
(

∑n−1
k=1 F k

P
−1
)

and F ∗ = n−1 min
⌊n/2⌋
k=1 F k

P .

Proof. Consider the dissemination of a fixed message m through the network. Let St denote the
set of nodes containing m after round t. As the algorithm proceeds, the size of St increases, from
|S0| = 1 to n. Under the asynchronous protocol, by definition |St+1| − |St| ∈ {0, 1}. That is, the
increase in |St| is a Bernoulli random variable.

7



Consider a particular time t. The size of St increases in round t + 1 if a node i ∈ St becomes
active and chooses a node j ∈ Sc

t as its communication partner, or vice versa. This happens with

probability P (St)
△
=

∑

i∈St,j∈Sc
t
(Pij+Pji)

n . If |St| = k, then, from the definitions above,

P (St) =
FP (St, S

c
t )

n

≥ F k
P

n

△
= pk. (9)

Thus, the probability that |St| increases in round t+1 is at least pk when k = |St|. Since F k
P = Fn−k

P ,
pk = pn−k.

Define T = inf{t : |S(t)| = n}. From the above discussion, we obtain that T is stochastically
dominated by the random variable T̂ =

∑n−1
k=1 Gk, where the Gk are independent Geometric random

variables with corresponding parameters pk. Now,

E[T ] ≤ E[T̂ ] =
n−1
∑

k=1

1

pk
= n

(

n−1
∑

k=1

F k
P
−1

)

. (10)

To obtain an upper bound on T that holds with probability 1 − ǫ, we apply Corollary 5. Let
p∗ = minn

k=1 log(1 − pk)
−1. From Corollary 5, for λ > 0, we have

Pr
(

T̂ > (1 + λ)(E[T̂ ] + 3)
)

≤ exp

(

−λ2p∗E[T̂ ]

32

)

. (11)

For the choice of λ =
√

32 log ǫ−1

p∗E[T̂ ]
, we obtain from (11) that

Pr



T̂ > E[T̂ ] +

√

32 log ǫ−1E[T̂ ]

p∗
+ 3 +

√

288 log ǫ−1

p∗E[T̂ ]



 ≤ ǫ. (12)

It follows from (9)-(12) and the fact that E[T̂ ] = Ω(n) that for large enough n,

Pr



T̂ > E[T̂ ] + 8

√

log ǫ−1E[T̂ ]

p∗



 ≤ ǫ. (13)

Finally, observe that p∗ = minn−1
k=1 log(1−pk)

−1 ≥ minn−1
k=1 pk = min

⌊n/2⌋
k=1 pk = min

⌊n/2⌋
k=1 (F k

P /n) = F ∗.
Hence, (13) implies the statement of Lemma 6.

2.1.2 Path-based bound

Define the graph GP = (V,EP ) by the edge set EP = {(i, j) ∈ E : Pij + Pji > 0}. For any edge
e = (i, j) ∈ EP , let p(e) = (Pij + Pji)/n and w(e) = 1/p(e). For two nodes i and j, let Qij denote
the set of simple paths between i and j in GP . Now, consider a path Q = (e1, . . . , eℓ) ∈ Qij . Let

w(Q) =
∑ℓ

k=1 w(ek) and ŵ(Q) = w(Q)+40
√

log nw(Q)(maxℓ
k=1 w(ek)). We present a second upper

bound on the ǫ-spreading time of the information dissemination algorithm described in Section 1.1.
This approach is based on the path structure of GP , and yields the following result.
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Lemma 7. Under the information dissemination process with the communication matrix P , let

Q∗ = arg max
i,j∈V,i6=j

min
Q∈Qij

ŵ(Q).

Then, Tspr

(

1
n , P

)

≤ ŵ(Q∗).

Proof. Under the information dissemination algorithm, any edge e = (i, j) ∈ EP is chosen for
communication in any round with probability p(e) = (Pij + Pji)/n. We focus our attention on a
message originating at node i. For another node j 6= i, let Tij be the time it takes for the message
to be transmitted from i to j.

Now, let Q = (e1, . . . , eℓ) be a simple (acyclic) path between i and j in the graph GP . At any
point during the dissemination process, j will have the message if all of the edges on Q have been
chosen in the order e1, . . . , eℓ. Next, we consider the number of rounds needed for this event to
occur, which we will denote by TQ. Then, TQ is stochastically dominated as

TQ ≤
ℓ
∑

k=1

G(k)
△
= T̂ , (14)

where the G(k) are independent Geometric random variables with corresponding parameters p(ek).
From (14),

E[TQ] ≤ E[T̂ ] =
ℓ
∑

k=1

w(ek). (15)

To obtain an upper bound on the information dissemination time that holds with high proba-
bility, we use Corollary 5. Let p∗ = minℓ

k=1 log(1 − p(ek))
−1 ≥ minℓ

k=1 p(ek). Now, from Corollary
5, we can obtain that

Pr



T̂ > E[T̂ ] + 40

√

log nE[T̂ ]

p∗



 ≤ n−4. (16)

From the definition of ŵ(Q), (14) and (16), we obtain

Pr (TQ ≥ ŵ(Q)) ≤ n−4. (17)

The inequality in (17) holds for all Q ∈ Qij . Hence, for Qij = arg minQ∈Qij
ŵ(Q),

Pr
(

Tij ≥ ŵ(Qij)
)

≤ n−4. (18)

Let Q∗ = arg maxi,j∈V,i6=j ŵ(Qij). Then, using the union bound for all O(n2) node pairs, we
obtain that for T = supij Tij ,

Pr (T ≥ ŵ(Q∗)) ≤ n−2. (19)

This completes the proof of Lemma 7.
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2.2 Lower bound

We obtain the following lower bound on Tspr(ǫ, P ), as claimed in Theorem 1.

Lemma 8. Let L(ǫ, P ) be as defined in Theorem 1. Then, for any ǫ ∈ (0, 1), Tspr(ǫ, P ) ≥ L(ǫ, P ).

Proof. As before, we examine the dissemination of a message m that starts at one node k. Let
r(t) = [ri(t)] be vector of size n, with ri(t) denoting the probability that node i has the message
after t rounds. Initially, r(0) = bk. Consider a particular node i. After round t + 1, the node i will
have m if it had m after t rounds, or if in round t + 1 it communicates with a node j that had m
after t rounds. This leads to the following equation for ri(t + 1), in which we use the assumption
that Pjj = 0 for all j ∈ V .

ri(t + 1) = ri(t) + (1 − ri(t))

(

1

n

∑

j∈V

Pijrj(t) +
∑

j∈V

1

n
rj(t)Pji

)

By dropping the (1 − ri(t)) factor, we obtain an upper bound on the probability that node i has
the message after t + 1 rounds.

ri(t + 1) ≤ ri(t) +
1

n

∑

j∈V

(Pij + Pji)rj(t)

This upper bound may be rewritten in vector form as follows. Throughout this work, we adopt
the convention that an inequality x ≤ y involving two n-dimensional vectors x and y means that
xi ≤ yi for all i = 1, . . . , n.

r(t + 1) ≤
(

I +
1

n

(

P + P T
)

)

r(t) (20)

Separately, r(t + 1) is a probability vector. Hence,

r(t + 1) ≤ ~1. (21)

In light of bounds (20) and (21), define vector q(·) as follows. For t ≥ 0,

q(t + 1) = min

{(

I +
1

n

(

P + P T
)

)

q(t),~1

}

, q(0) = bk,

where the minimum is taken element-wise. That is, for two vectors x and y of dimension n, the
vector z = min{x, y} is defined by zi = min{xi, yi} for all i = 1, . . . , n. Now, the inequality in
(20)-(21) implies that if q(0) = r(0) = bk, then

r(t) ≤ q(t). (22)

By definition, for t ≥ Tspr(ǫ, P ), r(t) ≥ (1− ǫ)~1. Hence, by definition of L(ǫ, P ) and (22) we obtain
that Tspr(ǫ, P ) ≥ L(ǫ, P ).
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2.3 Information dissemination: optimization

Recall Theorem 1. It suggests that information dissemination time is upper bounded by quantity
O((n log n)/Φu

P ). Thus, as the conductance Φu
P increase by changing P , the upper bound decreases.

Based on this, we make the following assumption.

Assumption 1. Information dissemination time is monotonically decreasing function of conduc-
tance, Φu

P , of probability matrix P related to the algorithm.

Under Assumption 1, the minimization of information dissemination time is equivalent to maxi-
mization of conductance Φu

P over probability matrices P . Define Q = 1
2

(

P + P T
)

. Then, Φu
Q = Φu

P

by definition. Hence, we can restrict our attention towards maximizing conductance over set of
doubly stochastic matrices. Next, we claim the following (this may be very well-known, however
we could not find a reference).

Lemma 9. The conductance, Φu
Q, is concave as function of doubly stochastic matrix Q.

Proof. Consider any two doubly stochastic matrices, Q1 6= Q2. For α ∈ (0, 1), let Q = αQ1 + (1 −
α)Q2. Let S1, S2 and S be subset of size ≤ n/2 such that

Φu
Q1

= Φu
Q1

(S1), Φu
Q2

= Φu
Q2

(S2) and Φu
Q = Φu

Q(S).

Now consider the following.

αΦu
Q1

+ (1 − α)Φu
Q2

= αΦu
Q1

(S1) + (1 − α)Φu
Q2

(S2)

(a)

≤ αΦu
Q1

(S) + (1 − α)Φu
Q2

(S)
(b)
= Φu

αQ1+(1−α)Q2
(S)

= Φu
Q, (23)

where (a) and (b) follow from definition. The (23) proves the Lemma 9.

Now, set of doubly stochastic matrices is convex and bounded. Hence, from Lemma 9, the
maximization of conductance is equivalent to maximization of a concave function over a bounded
convex set. It is well-known that it can be solved easily by methods like simple gradient methods.
Further, such optimization can be easily done in a distributed manner. Thus, under Assumption
1, optimal information dissemination algorithm can be easily found.

3 Averaging

We now consider the application of our analysis to the problem of computing the average of a set of
positive integers via a distributed algorithm. Suppose that each of the n nodes in the network has a
single positive integer, and our goal is to calculate the average of these values. Boyd et al. analyze
a randomized gossip algorithm that iteratively computes the average of values at the nodes of a
network [4]. The approach for averaging that we study here is a variant of an algorithm by Flajolet
and Martin for estimating the number of distinct elements in a multiset [7]. It was suggested by
several groups of authors [5, 3, 16], although the running time of this algorithm in a setting such
as the one considered in this work was not analyzed.

Our goal is to estimate the sum of the integers, which we will denote by S, and n, the number
of nodes in the network. The ratio of these quantities will then serve as an estimate of the average
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of the integer values, which can be expressed as x̄ = S/n. For a fixed ǫ ∈ (2 × 10−3, 1), we seek an
estimate x̂ of the average that is in the closed interval [(1 − ǫ)x̄, (1 + ǫ)x̄] (the lower bound on the
accuracy of the estimate arises from properties of the analysis of the counting algorithm that we
employ).

To this end, suppose that we obtain estimates Ŝ and n̂ of S and n, respectively, such that
Ŝ ∈ [(1 − ǫ1)S, (1 + ǫ1)S] and n̂ ∈ [(1 − ǫ1)n, (1 + ǫ1)n], where ǫ1 > 0. Then, the estimate x̂ = Ŝ/n̂
of the average will be in the interval [x̄(1 − ǫ1)/(1 + ǫ1), x̄(1 + ǫ1)/(1 − ǫ1)]. We set ǫ1 = ǫ/3,
which ensures that an estimate in this interval will also be in the interval [(1 − ǫ)x̄, (1 + ǫ)x̄] when
ǫ < 1. Since estimating the number of nodes is a special case of estimating the sum when all the
integers are 1, we focus our attention on the following task: given integers x1, . . . , xn at the n nodes,
compute an estimate of the sum S =

∑n
i=1 xi at all the nodes.

3.1 Algorithm: FMA

We describe the Flajolet-Martin Algorithm (FMA) [7] in this section. They introducted the idea of
stochastic averaging, which is applied to this setting. Assume that all integers can be represented
using L bits, so that each integer is in the range (0, 2L). Each node maintains m bitmaps B1, . . . , Bm

of length L + 1, where m is a parameter to be set below. Furthermore, we assume that the nodes
have access to a random hash function h : {0, 1, . . . , 2L − 1} → {0, 1, . . . , 2L − 1}, which, for any
input, produces an output distributed uniformly at random over the integers 0, 1, . . . , 2L − 1.

Consider a node i with integer xi. For all k = 1, . . . , xi, the node generates a random integer
Yk, which is independent of all other random variables and distributed uniformly at random over
{0, 1, . . . , 2L − 1}. Let rk = h(Yk) mod m and qk = ⌊h(Yk)/m⌋. We write qk(ℓ) to denote bit ℓ in
the binary representation of qk, adopting the convention that bits are numbered from 0, so that 0
is the least-significant bit and L−1 is the most-significant bit. The function ρ is defined as follows.

ρ(q) =

{

min{ℓ ≥ 0 : q(ℓ) = 1}, if q > 0
L, if q = 0

Note that ρ(q) is the index of the least-significant bit set to 1 in the binary representation of q
when q > 0. The node i initializes its bitmaps by setting all of the bits in the m bitmaps to 0. For
k = 1, . . . , xi, it sets bit ρ(qk) in the bitmap Brk , which we denote by Brk(ρ(qk)), to 1.

Now, the nodes in the network use the basic randomized information dissemination protocol
with a communication matrix P to compute the bitwise OR of the bitmaps. Because the number
of bitmaps m may potentially be large and it is desirable for the algorithm to execute each round
in constant time, we assume that in every round the OR of two bitmaps is computed. That is,
when a node i with bitmaps B1

i , . . . , Bm
i contacts a node j with bitmaps B1

j , . . . , Bm
j in any round,

each node sets bitmap k to Bk
i ∨Bk

j for one value k ∈ {1, . . . ,m}, where ∨ denotes the bitwise OR
operation on the two bitmap operands. We assume that the value k is chosen to be k = t mod m+1,
where t is the round number.

After all nodes have computed the OR of all m bitmaps, they calculate an estimate of S, denoted
as S′, as follows. Given a bitmap B, let ZB = {ℓ ≥ 0 : B(ℓ) = 0}. Define a function R (that maps
a bitmap to an integer in {0, . . . , L}) as

R(B) =

{

minZB , if ZB 6= ∅
L, if ZB = ∅

12



Then, an estimate S′ of the sum S is

S′ =
m

ϕ

(

2

∑m
k=1 R(Bk)

m

)

,

where ϕ ≈ 0.77351 is a constant defined in [7].

3.2 Analysis

We prove the following result about FMA, which implies Theorem 2.

Lemma 10. For any δ ∈ (0, 1) and ǫ ∈ (2 × 10−3, 1), the FMA algorithm, based on matrix P ,
computes S′, an estimate of S, such that S′ ∈ [(1−ǫ/2)S, (1+ǫ/2)S] with probability at least 1−ǫ/4;
and the algorithm takes time Tspr(δ/m,P ) with probability at least 1 − δ where m ∈ [c1ǫ

−3, c2ǫ
−3]

for some universal constants 0 < c1 < c2.

Proof. The algorithm FMA stops when all nodes have computed the OR of all the m bitmaps. This
is the same as the time it takes for m independent information dissemination process to complete.
Let these random times be T1, . . . , Tm. By definition,

Pr (Ti > Tspr(δ/m,P )) ≤ δ/m. (24)

Hence, by union-bound and (24), we obtain

Pr

(

m
sup
i=1

Ti > Tspr(δ/m,P )

)

≤ δ. (25)

The (25) implies that the algorithm FMA computes estimate S′ by the time Tspr(δ/m,P ) with
probability at least 1 − δ. Thus, to prove Lemma 10, we need to show that for m ∈ [c1ǫ

−3, c2ǫ
−3],

the S′ ∈ [(1 − ǫ)S, (1 + ǫ)S].
In [7], authors showed that for the expectation E(S′) and the standard deviation σ(S′) of S′

satisfy the following relationships when S is sufficiently large.

∣

∣

∣

∣

E(S′)

S
− (1 + α(m))

∣

∣

∣

∣

< 10−5 and

∣

∣

∣

∣

σ(S′)

S
− β(m)

∣

∣

∣

∣

< 10−5 (26)

The functions α(m) and β(m) are such that there exist universal constants a1, a2 such that

α(m) ∈ [a1/m, a2/m], and β(m) ∈ [a1/
√

m,a2/
√

m].

In view of the bias in the estimate S′, for simplicity of proof, we consider a new estimate Ŝ =
S′/(1 + α(m)). Then, for m ≥ 8a2/ǫ and α(m) ≥ 0,

S′ ∈
[

(1 − ǫ/4)Ŝ, (1 + ǫ/4)Ŝ
]

. (27)

That is, S′ and Ŝ are roughly the same for large m. Now, we bound probability of error in Ŝ. Let
ǫ1 = ǫ/4. By definition,

Ŝ 6∈ [(1 − ǫ1)S, (1 + ǫ1)S] ⇒ |S′ − (1 + α(m))S| > ǫ1(1 + α(m))S. (28)
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Now, (28) and (26) implies the following.

|S′ − E(S′)| ≥ |S′ − (1 + α(m))S| − |(1 + α(m))S − E(S′)|
≥ [ǫ1(1 + α(m)) − 10−5]S. (29)

Recall that by choice of ǫ1 = ǫ/2 > 10−3, the RHS of (29) is positive. Again, using (26),

S ≥ σ(S′)

β(m) + 10−5
. (30)

Now, using Chebyshev’s inequality along with (28)-(30), we obtain

Pr(Ŝ 6∈ [(1 − ǫ1)S, (1 + ǫ1)S]) ≤ Pr

(

|S′ − E(S′)| >
ǫ1(1 + α(m)) − 10−5

β(m) + 10−5
σ(S′)

)

(31)

≤
(

β(m) + 10−5

ǫ1(1 + α(m)) − 10−5

)2

. (32)

Now, β(m) ≤ a2/
√

m. Then, for m ≥ 64a2
2ǫ

−3 (≥ 4a2ǫ
−1 required for (27)), β(m) ≤ ǫ−1.5/8.

Further, α(m) > 0 and ǫ > 2 × 10−3 ⇒ 10−5 < ǫ1.5/8. Combining this with (32), we obtain

Pr(Ŝ 6∈ [(1 − ǫ1)S, (1 + ǫ1)S]) ≤ ǫ/4. (33)

From (25), (33) and recalling that ǫ1 = ǫ/4, for m ≥ 64a2
2ǫ

−3

Pr(S′ 6∈ [(1 − ǫ/2)S, (1 + ǫ/2)S]) ≤ ǫ/4. (34)

Appropriate selection of constants c1, c2 yields the Lemma 10.

To see how Lemma 10 implies the proof of Theorem 2, consider the following. In the special
case that all the integers at the nodes are 1, we obtain an estimate n′ of the number of nodes n
such that Pr(n′ 6∈ [(1 − ǫ/2)n, (1 + ǫ/2)n]) ≤ ǫ/4 as well. These two inequalities yield an upper
bound on the probability that x̂ = S′/n′ is not in the interval [(1 − ǫ)x̄, (1 + ǫ)x̄].

Pr(x̂ 6∈ [(1 − ǫ)x̄, (1 + ǫ)x̄]) ≤ Pr(S′ 6∈ [(1 − ǫ/2)S, (1 + ǫ/2)S]) + Pr(n′ 6∈ [(1 − ǫ/2)n, (1 + ǫ/2)n]) ≤ ǫ.

3.3 Implication

To show the strength of the result, we consider a simple circle graph: n nodes are placed on a
circle with each node connected to two other nodes, one on the left and the other on the right. The
second largest eigenvalue on this graph is 1−Θ(n−2). Hence, the optimal averaging algorithm based
on [4] will require Ω(n3 log ǫ−1) time to estimate the average within precision ǫ for any ǫ ∈ (0, 1).
However, the above algorithm will require O(n2ǫ−3 +n log δ−1) ≈ O(n2) time. Thus, the algorithm
based on [7] improves performance over the optimal algorithm of [4] by an order of magnitude. It is
easy to see that Ω(n2) is the minimal time required for communicating even a piece of information
from one end to the other end of the ring graph under the asynchronous time model. Thus, in this
sense, the averaging algorithm based on [7] is absolutely optimal.
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4 Information dissemination via coding

Recently, Deb and Médard [6] have shown that the use of random linear coding can help in efficiently
spreading messages in a complete graph. However, in the arbitrary graph topology it is not clear
how the coding-based algorithm performs. The analysis methods of [6] are specialized for complete
graphs, and do not extend to arbitrary graphs. In this section, we present an analysis of the coding-
based scheme of [6] for arbitrary graphs. The remainder of the section is organized as follows: first,
we present a coding-based gossip scheme for information dissemination over an arbitrary graph. It
is a natural modification of the scheme presented in [6] for complete graphs. Then, we present a
bound on the time required to spread information under this scheme.

4.1 Coding based gossip algorithm

The coding-based gossip algorithm using a communication matrix P is a natural extension of the
basic gossip algorithm described in Section 1.1. As in the setting of Section 1.1, each node starts
with its unique message with the goal of spreading its message to all the other nodes.

The algorithm is asynchronous and runs in rounds. In any round, exactly one of the nodes is
chosen to become active. This choice is made uniformly at random over V , and independently of all
the other random choices. When node i becomes active, it contacts one of its neighbors, say j, with
probability Pij . Both nodes, i and j, transmit a code based on their current information to each
other, according to the random linear coding (RLC) protocol explained below. When each node
has received ”enough” coded messages, they can decode (see below) them to obtain all n original
messages.

Random Linear Coding (RLC) Protocol. This is exactly the same setup as in [6]. Each
message is a vector over a finite field, Fq of size q ≥ n. Let each message be a vector of size r ∈ Z.
In particular, let the initial message at node i be mi ∈ Fr

q, for 1 ≤ i ≤ n. We assume that all
the n messages, {mi : 1 ≤ i ≤ n}, are linearly independent. Let M = {m1, . . . ,mn} denote the
set of n message vectors. During the execution of the gossip algorithm, each node collects linear
combinations of message vectors in M . When each node has n linearly independent such vectors,
it can recover all the messages in M successfully.

Now, consider a round, say t, during the execution of gossip algorithm. Suppose that node
i becomes active and contacts node j in this round. Let Si(t) and Sj(t) be the set of all coded
messages at nodes i and j at the beginning of round t. By definition, for fl ∈ Si(t), 1 ≤ l ≤ |Si(t)|,
fl ∈ Fr

q and

fl =

n
∑

k=1

alkmk, alk ∈ Fq. (35)

The protocol ensures that node i knows the coefficients alj (see [6] for details). Similarly, let
Sj(t) = {g1, . . . , g|Sj(t)|}. Now as part of the protocol, node i transmits a random coded message
with payload eij ∈ Fr

q, where

eij =
∑

fl∈Si(t)

βlfl, βl ∈ Fq, and Pr(βl = β) =
1

q
, ∀β ∈ Fq. (36)
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The message eij can be re-written as follows.

eij =
∑

fl∈Si(t)

βlfl =
∑

fl∈Si(t)

βl

n
∑

k=1

alkmk =

n
∑

k=1





∑

1≤l≤|Si(t)|

alk



mk =

n
∑

k=1

θkmk, (37)

where θk =
∑

1≤l≤|Si(t)|
alk ∈ Fq. For the purpose of decoding, along with eij , node i transmits

(θ1, . . . , θn) to node j. Analogous to eij, node j transmits to i a random coded message with
payload eji ∈ F r

q and the associated n scalars for decoding purposes. Next, we recall the following
key result, which will be used crucially in our analysis.

Lemma 11 (Lemma 2.1, [6]). Let Si(t)
− and Sj(t)

− denote the subspaces spanned by the code-
vectors Si(t) and Sj(t) respectively. Let Si(t)

+ and Sj(t)
+ be subspaces spanned by code-vectors

Si(t) ∪ {eji} and Sj(t) ∪ {eij}. Then,

Pr
(

dim(Si(t)
+) > dim(Si(t)

−)|Sj(t)
− ⊆/Si(t)

−
)

≥ 1 − 1

q
.

4.2 Analysis

The performance of the gossip algorithm presented in the previous section is described by Theorem
3. Next, we present the proof of Theorem 3.

Proof of Theorem 3. We first present some definitions and notations. Let t ∈ Z+ denote the round
number of algorithm.
Message space. The subspace spanned by messages at node i in the beginning of time t is denoted
by Si(t)

− and that at the end of round t is denoted by Si(t)
+. Note that, Si(t)

+ = Si(t + 1)−.

Type. Two nodes, i and j, are called of the same type at time t, if Si(t)
− = Sj(t)

−, that is, the
subspace spanned by the messages at nodes i and j are identical. For example, if both nodes have
message sufficient to decode all n messages, then subspace spanned by both of them will be the
same, that is they are of the same type.

Maximal type-size. Now, consider any type. All the nodes are divided into different equivalent
type-class. At time t, let Y (t) be the size of the largest type class, also denoted by maximal
type-size.

Dimension increase. When a node i transmits random linear code to node j such that Si(t)
− ⊆

/Sj(t)
−, from Lemma 11, dim(Sj(t)

+) ≥ dim(Sj(t)
−)+1 with probability 1−1/q. Now, suppose at

time t, two nodes i and j are not of the same type. Then it must be that either (a) Si(t)
− ⊆/Sj(t)

− or
(b) Sj(t)

− ⊆/Si(t)
−. Thus, when two nodes of different type contact each other, at least dimension

of one node increases by 1 with probability 1 − 1/q.
Stopping condition. The information spreading time is equivalent to min{t : dim(Si(t)

−) =
n, ∀i}. Initially, at t = 0 dim(Si(0)

−) = 1 ∀i. Thus, information spreads to all nodes when overall
dimension increase is n(n− 1). Let Dk be the smallest time such that net dimension increase is at
least k. By definition, D0 = 0 and information spreading time is the same as Dn(n−1).

Now, define tk = min{t : Y (t) ≥ k} and Tk = min{j : Dj = tk}. In words, tk is the first time
when any maximal type-size becomes at least k and Tk is the net dimension increase at time tk.
By definition, T1 = 0. We state the following result.

Lemma 12. For any 1 ≤ k ≤ n, Tk ≥ k(k − 1).
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Proof. Consider time tk when the first time any maximal type-size becomes k. At this time, there
is a type such that corresponding type class has k nodes. Let they be, i1, . . . , ik. Since they are of
the same type, it must be that Si1(tk)

− = · · · = Sik(tk)
−. By definition, mil ∈ Sil(t)

−, for all t ≥ 0.
Hence, for all 1 ≤ l ≤ k, span(mi1 , . . . ,mik) ⊆ Sil(tk)

−. That is, dim(Sil(tk)
−) ≥ k for 1 ≤ l ≤ k.

Thus, net dimension increase is k(k − 1) by time tk. That is, Tk ≥ k(k − 1). This completes the
proof of Lemma 12.

We note that, Tn = n(n − 1) and is the time when all nodes have received enough message to
decode the original messages.

Probability of dimension increase. Consider at time t. Let there be nodes of l ≤ n types. Let
these type classes be C1(t), . . . , Cl(t). Now consider one of these l type classes, say C1(t). The
probability of a node in C1(t) exchanging a code with a node not in C1(t) is given by

P (C1(t)) =
1

n





∑

i∈C1(t);j /∈C1(t)

Pij + Pji



 =
|C1(t)|

n
Φu

P (C1(t)). (38)

For t ∈ [tk, tk+1), for k ∈ Z+, |Cr(t)| ≤ k for 1 ≤ r ≤ l. Hence, (38) can be bounded below as,

P (C1(t)) ≥ |C1(t)|
n

Φk
P . (39)

The (39) is true for all Cr(t), 1 ≤ r ≤ l. Hence, we obtain that probability of a pair of nodes from
different type sets exchange codes at time t ∈ [Tk, Tk+1) is given by

P k ≥
l
∑

r=1

P (Cr(t)) ≥
l
∑

r=1

|Cr(t)|
n

Φk
P = Φk

P . (40)

Now, when nodes from different type exchange code, as noted before, with probability 1 − 1/q
net dimension increase at least by 1. Thus, when in the time interval [tk, tk+1), the dimension
increase by 1 can be upper bounded an independent Geometrical random variable with parameter

pk
△
=
(

1 − 1
q

)

Φk
P . When the net dimension increase is n(n− 1), all the nodes have received enough

coded message. That is, the information spreading time Tspr can be stochastically upper bounded

as Tspr ≤ ∑n(n−1)
l=1 Gl. where Gl are independent Geometric random variables with parameter pk

when l ∈ [Tk, Tk+1). By definition, pk is monotonically decreasing in k. Hence, the smaller the
Tk values are, the worse the stochastic upper bound above on Tspr is. Using Lemma 12, the worst
upper bound on Tspr is as follows:

Tspr ≤
n−1
∑

k=1

2k
∑

l=1

Gl(k)
△
= T̂ , (41)

where Gl(k) are independent Geometrical random variables with parameter pk. From (41), it is
straightforward that

E[Tspr] ≤ E[T̂ ] = 2

(

1 − 1

q

)−1 n−1
∑

k=1

k

Φk
P

. (42)
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To obtain the bound with probability 1 − ǫ, we use Corollary 5. Let p∗ = minn−1
k=1 log(1 − pk)

−1 ≥
minn−1

k=1 pk = minn−1
k=1

(

1 − 1
q

)

Φk
P . By definition, Φk

P is monotonically decreasing in k. Hence,

p∗ =

(

1 − 1

q

)

Φn−1
P . (43)

Now, from Corollary 5, for λ > 0,

Pr
(

T̂ > (1 + λ)(E[T̂ ] + 3)
)

≤ exp

(

−λ2p∗E[T̂ ]

32

)

. (44)

The (44) suggests that for the choice of λ =
√

32 log ǫ−1

p∗E[T̂ ]
, we obtain

Pr



T̂ > E[T̂ ] +

√

32 log ǫ−1E[T̂ ]

p∗
+ 3 +

√

288 log ǫ−1

p∗E[T̂ ]



 ≤ ǫ. (45)

From (45) and E[T̂ ] = Ω(n2), we obtain that for large enough n,

Pr



T̂ > E[T̂ ] + 8

√

log ǫ−1E[T̂ ]

p∗



 ≤ ǫ. (46)

Now, (41)-(43) and (46) immediately imply the statement of Theorem 3.

5 Applications

We study here the application of our preceding results to several types of graphs. In particular,
we consider complete graphs, constant-degree expander graphs, and grid graphs. To obtain upper
bounds on the time required to disseminate all the messages in the network to all the nodes, we
study the communication matrix P that describes the natural random walk on each of these graphs.
That is, the probability Pij that node i contacts a node j 6= i when i becomes active is 1/di, where
di is the degree of i. In addition, we apply the lower bound on the information dissemination time
to the case of doubly stochastic communication matrices.

As a general tool, we use the following corollary of Lemma 6.

Corollary 13. For any ǫ ∈ (0, 1), Tspr(ǫ, P ) = O

(

n
(

log n+
√

log ǫ−1 log n
)

Φu
P

)

.

Proof. From Lemma 6, we have the upper bound µn = n
(

∑n−1
k=1 F k

P
−1
)

on the expected number

of rounds needed to transmit the message to all the nodes. Using the fact that F k
P = Fn−k

P , we

obtain µn ≤ 2n
(

∑⌊n/2⌋
k=1 F k

P
−1
)

.

For any subset S ⊂ V of vertices with |S| = k ≤ n/2, we can bound the uniform ergodic flow
across the cut (S, Sc) in terms of the uniform conductance Φu

P .

FP (S, Sc) =
∑

i∈S,j∈Sc

(Pij + Pji) = k
∑

i∈S,j∈Sc

Pij + Pji

|S| = kΦu
P (S) ≥ kΦu

P
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This implies that F k
P ≥ kΦu

P , and so F ∗ = n−1 min
⌊n/2⌋
k=1 F k

P ≥ Φu
P /n. The lower bound on F k

P leads
to an upper bound on µn.

µn ≤ 2n





⌊n/2⌋
∑

k=1

F k
P
−1



 ≤ 2n





⌊n/2⌋
∑

k=1

1

kΦu
P



 =
2n

Φu
P





⌊n/2⌋
∑

k=1

1

k



 ≤ 2nH⌊n/2⌋

Φu
P

We now obtain from Lemma 6 the following upper bound on the ǫ-spreading time of the infor-
mation dissemination algorithm.

Tspr(ǫ, P ) ≤ 2nH⌊n/2⌋

Φu
P

+ 8

√

2 log ǫ−1n2H⌊n/2⌋

Φu
P

2 =
2nH⌊n/2⌋

Φu
P

+
8n

Φu
P

√

2 log ǫ−1H⌊n/2⌋

As the harmonic number H⌊n/2⌋ satisfies H⌊n/2⌋ = Θ(log n), we have Tspr(ǫ, P ) = O(n(log n +
√

log ǫ−1 log n)/Φu
P ).

For ǫ = n−c, where c is a positive constant, Corollary 13 gives the upper bound Tspr(n
−c, P ) =

O((n log n)/Φu
P ) on the ǫ-spreading time, and as a result every node receives every message in

O((n log n)/Φu
P ) time with high probability.

5.1 Complete graph

On a complete graph, the natural random walk corresponds to the transition matrix P with Pii = 0
for i = 1, . . . , n, and Pij = 1/(n− 1) for j 6= i. This regular structure allows us to directly evaluate
the uniform conductance of any nonempty subset S ⊂ V with |S| = k ≤ n/2.

Φu
P (S) =

FP (S, Sc)

|S| =

∑

i∈S,j∈Sc(Pij + Pji)

|S| =
|S||Sc|

(

2
n−1

)

|S| =
2|Sc|
n − 1

≥ 2
(

n
2

)

n − 1
=

n

n − 1

This implies that Φu
P ≥ n/(n − 1). Applying Corollary 13, we obtain Tspr(ǫ, P ) = O(n(log n +

√

log ǫ−1 log n)), and Tspr(n
−c, P ) = O(n log n) when c > 0 is a constant. We conclude that every

node receives every message in O(n log n) time with high probability, an upper bound that matches
the results of [9].

5.2 Expander graph

Expander graphs have been used for numerous applications, and explicit constructions are known
for constant-degree expanders [19]. We consider here an undirected graph in which the maximum
degree of any vertex is d, where d is a constant. Suppose that the edge expansion of the graph is

min
S⊂V,

1≤|S|≤n/2

|C(S, Sc)|
|S| = α,

where C(S, Sc) is the set of edges in the cut (S, Sc), and α > 0 is a constant.

Since the degree of each node in the graph is bounded, the transition matrix P for the natural
random walk on this expander satisfies Pij ≥ 1/d for all i 6= j. For a nonempty subset S ⊂ V of
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vertices with |S| = k ≤ n/2, the uniform conductance of S can be bounded from below in terms of
α.

Φu
P (S) =

FP (S, Sc)

|S| =

∑

i∈S,j∈Sc(Pij + Pji)

|S| ≥ 2|C(S, Sc)|
d|S| ≥ 2α

d

Thus, Φu
P ≥ 2α/d. Corollary 13 now implies the same asymptotic upper bound as in the

case of the complete graph, Tspr(ǫ, P ) = O(n(log n +
√

log ǫ−1 log n)). This suggests that the
expansion properties of a constant-degree expander are sufficient to ensure that information can
be disseminated in an expander as rapidly as in a complete graph, in an asymptotic sense. An
interesting question for further study is whether expanders in which the degree is not constant,
such as random graphs generated according to the preferential connectivity model [15], have ǫ-
spreading times of the same asymptotic order.

5.3 Grid

We now consider a d-dimensional grid graph on n nodes, where k = n1/d is an integer. Each node in
the grid can be represented as a d-dimensional vector x = (xi), where xi ∈ {1, . . . , k} for 1 ≤ i ≤ d.
There is one node for each distinct vector of this type, and so the total number of nodes in the
graph is kd = (n1/d)d = n. For any two nodes x and y, there is an edge (x, y) in the graph if and
only if, for some i ∈ {1, . . . , d}, |xi − yi| = 1, and xj = yj for all j 6= i.

In [2], it is shown that the isoperimetric number for this grid graph is

min
S⊂V,

1≤|S|≤n/2

|C(S, Sc)|
|S| = Θ

(

1

k

)

= Θ

(

1

n1/d

)

.

By the definition of the edge set, the degree of each node in the graph is at most 2d. This gives a
lower bound of Pij ≥ 1/(2d) on the transition probability of the natural random walk for i 6= j.

As in the case of expander graphs, we obtain a lower bound on the uniform conductance of any
nonempty subset of vertices S ⊂ V in terms of the isoperimetric number.

Φu
P (S) =

FP (S, Sc)

|S| =

∑

i∈S,j∈Sc(Pij + Pji)

|S| ≥ 2|C(S, Sc)|
2d|S| = Ω

(

1

dn1/d

)

This implies that Φu
P = Ω(1/(dn1/d)). Applying Corollary 13, we obtain that, for the transition

matrix P corresponding to the natural random walk on a d-dimensional grid graph with n nodes,
Tspr(ǫ, P ) = O(dn(1+1/d)(log n +

√

log ǫ−1 log n)).

5.4 Application of lower bound

We now consider applying the lower bound in Lemma 8 to a class of communication matrices P .
Specifically, we obtain a lower bound on the ǫ-spreading time for a doubly stochastic matrix P .

First, we note that the vector q(·) defined in the proof of Lemma 8 satisfies q(t) ≤ Atq(0) for
t ≥ 1, where the matrix A is defined as follows.

A = I +
1

n
(P + P T )
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This implies that ‖q(t)‖ ≤ ‖A‖t‖q(0)‖ = ‖A‖t, where ‖A‖ denotes the spectral norm of the matrix
A. Since P is doubly stochastic, ‖P‖, ‖P T ‖ ≤ 1, and so we can use the triangle inequality to obtain
an upper bound on the norm of A.

‖A‖ ≤ ‖I‖ +
1

n
‖P + P T ‖ ≤ 1 +

1

n
(‖P‖ + ‖P T ‖) ≤ 1 +

2

n

By the definition of the ǫ-spreading time Tspr(ǫ, P ) and the analysis in the proof of Lemma 8,
for t ≥ Tspr(ǫ, P ) we must have q(t) ≥ (1 − ǫ)~1, which implies that ‖q(t)‖ ≥ (1 − ǫ)

√
n. On the

other hand, substituting the upper bound above on ‖A‖ into the upper bound on ‖q(t)‖ yields

‖q(t)‖ ≤
(

1 +
2

n

)t

≤ exp

(

2t

n

)

.

For t < n log(n(1 − ǫ)2)/4, then, we have ‖q(t)‖ < (1 − ǫ)
√

n. We conclude that Tspr(ǫ, P ) =
Ω(n log(n(1 − ǫ)2)) for all doubly stochastic matrices P .

6 Conclusion

In this paper, we considered the question of information dissemination via gossip algorithms. We
found that the information dissemination time of the randomized gossip algorithms that we consid-
ered is strongly related to the isoperimetric properties of the probability matrix that describes the
algorithm. This characterization led to the formulation of an optimal information dissemination
algorithm as a solution to a concave optimization problem over a convex set.

We applied these results to two applications. First, we used these results to analyze an aver-
aging algorithm based on a classic result of [7]. This allowed us to conclude that, in some cases,
this averaging algorithm better by an order of magnitude better than other averaging algorithms
considered recently [11, 4]. Second, we used a similar method to analyze a coding-based gossip
algorithm for arbitrary graphs, and obtain a tight performance bound. This shows that coding-
based gossip is not useful (nor harmful) for grid-type graphs. Finally, we evaluated our results in
the context of various graphs of interest.
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A Relation between Tspr and link-capacity

The analysis of Tspr assumes that when two nodes i and j communicate with each other during the
course of algorithm, they can instantly exchange all information of each other. This requires link
capacity of Θ(n) between node-pairs. However, capacity of link between node can be constrained.
In such a situation, one can translate the above results in a straightforward manner as follows: let
each link have capacity of C. Then, the information dissemination time, T c

spr, is upper bounded by
the uncapacitated information dissemination time, Tspr, as

T c
spr ≤ O(n/c)Tspr.
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