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Abstract

Motivated by applications like elections, web-page ranking, revenue maximiza-
tion etc., we consider the question of inferripgpularrankings usingonstrained

data. More specifically, we consider the problem of inferring a probability distri-
bution over the group of permutations using its first order marginals. We first
prove that it is not possible to recover more tham) permutations overn ele-
ments with the given information. We then provide a simple and novel algorithm
that can recover up t©(n) permutations under a natural stochastic model; in this
sense, the algorithm is optimal. In certain applications, the interest is in recov-
ering only the most popular (or mode) ranking. As a second result, we provide
an algorithm based on the Fourier Transform over the symmetric group to recover
the mode under a natural majority condition; the algorithm turns out to be a max-
imum weight matching on an appropriately defined weighted bipartite graph. The
questions considered are also thematically related to Fourier Transforms over the
symmetric group and the currently popular topicompressed sensing.

1 Introduction

We consider the question of determining a real-valued function on the space of permutations of
n elements with very limited observations. Such a question naturally arises in many applications
including efficient web-page rank aggregation, choosing the winner in a sport season, setting odds
in gambling for revenue maximization, estimating popularity of candidates pre-election and the list
goes on (for example, see references [1], [2], [3]). In what follows, we give a motivating example
for the pursuit of this quest.

A motivating example. Consider a pre-election scenario in a democratic country mvjpotential
candidates. Each person (or voter) has certain ranking of these candidates in mind (consciously or
sub-consciously). For example, let= 3 and the candidates b& B andC. Each person believes

in one of the3! = 6 possible ordering of these candidates. For exampl&p&tof people believe

in A > B > C, 30% of people believe ilB > A > C and20% of people believe i > A > B.

We wish to infer these preferences of population by means of a limited set of questions.

Specifically, suppose we can interview a representative collection (i.e. reasonably large random
collection) of people for this purpose. However, in the interview we may not be able to ask them
their complete ranking of all candidates. This may be because a person may not be able to articulate
it clearly. Or, in situations (e.g. gambling) where there is a financial significance associated with
information of complete ranking, an individual may not be ready to provide that information. In
such a situation, we will have to settle with restricted questions of the following typat will be

the rank of candidatel in your opinion? orwhom would you rank second?

Given answers to such restricted questions, we would like to infer what fraction of the population
prefers which ordering of candidates. Clearly, such restricted information cannot lead to any useful



inference of prevalent ordering of candidates in the poprat there are too many of them (for
largen). Now, in a real world scenario, it is likely that people decide rankings of candidates based on

a few issues such as war, abortion, economy and gay marriage. That is, an individual will decide the
ranking of the candidates based on the opinions of candidates on these issues. Therefore, irrespective
of the number of candidates, the number of distinct rankings that prevail in the population are likely

to be very few.

In this paper, we are interested in inferring su'felv prevalent rankings of candidates and their
popularity based on the restricted (or partial) information as explained above. Thematically, this
guestion is similar to the pursuit @fompressed sensing. However, as we explain in Section 2,
standard compressed sensing does not apply under this setting. We also discuss a natural relation
between the available information and the Fourier coefficients of the Fourier transformation based
on group representation (see Proposition 1). It turns out that the problem we consider is equivalent
to that of recovery of a function over a symmetric group usingfitis¢ order Fourier coefficients.

Thus, our problem is thematically related to the recovery of functions over non-commutative groups
using a limited set of Fourier coefficients. As we show in Section 2, a naive recovery by setting the
unknown Fourier coefficients to zero yields a very bad result. Hence, our approach has potential
applications to yielding a better recovery.

In many applications, one is specifically interested in finding out the most popular ranking (or mode)
rather than all the prevalent rankings. For this, we consider an approximation based on Fourier trans-
formation as a surrogate to find the mode. We establish that under the matjegity condition,

our algorithm finds the correct mode (see Theorem 2). Interestingly enough, our algorithm to find
an estimate of the mode corresponds to finding a maximum weight matching in a weighted bipartite
graph ofn nodes.

Organization. We start describing the setup, the problem statement, and the relation to compressed
sensing and Fourier transform based approaches in Section 2. In Section 3, we provide precise
statements of the main results. In the remaining Sections, we prove these results and discuss the
relevant algorithms.

2 Background and preliminaries

Setup. Let S, = {o1,...,0n} denote set of all possibl& = n! permutations (orderings) of

n elements.S,, is also known as theymmetric groupf degreen. Let f: S,, — [0,1] denote a
mapping from the symmetric group to the interjgall]. We assume that the functigiis normalized

i.e., || flle, = 1, where||-||¢,, denotes thé; norm. Letp, denote the valug (o), for1 < k < N.
Without loss of generality we assume that the permutations are labeled sugh, thatp,,, for

k < m. We write f(-) to denote the function anfl to denote the vectdif(ox))nx1. The set of
permutations for whiclf(-) is non-zero will be called theupportof f(-); also, the cardinality of the
support will be calledsparsityof f and is denoted by i.e., K = || f]|¢,- Each permutation will

be represented by its corresponding permutation matrix denotéd k., P = 1, ()=}, Where

1 is the indicator variable of the eveht For brevity, we writeP? to mean both the x n matrix

and then? x 1 vector. We use the terms permutation and permutation matrix interchangeably. We
think of permutations as complete matchings in a bipartite graph. Specifically, we consideran
bipartite graph and each permutation corresponds to a complete matching in the graph. The edges
in a permutation will refer to the edges in the corresponding bipartite matching. €of, j < n,

let
Qij ‘= Z f(o) (1)

cESy:0(j)=i

Let @ denote both the matrikg;;), ., and the vecto(g;;), .. ,. Itis easy to note tha) can be
equivalently written a5 f(o)P?. From the definition, it also follows thap is a doubly

stochastic matrix. The matrig@ corresponds to thirst orderinformation about the functiogf(-).
In the election example, it is easy to see thgtdenotes the fraction of voters that have ranked
candidatej in thei™" position.

Problem statement and result.The basic objective is to determine the values of the functigh
precisely, using only the values of the matéx We will first prove, using information theoretic
techniques, that recovery @symptotically reliable(average probability of error goes to zero as



n — oo) only if K = O(n). We then provide a novel algorithm that recovers prevalent rankings and
their popularity exactly under minimal (essentially necessary) conditions; under a natural stochastic
model, this algorithm recovers up €@(n) permutations. In this sense, our algorithm is optimal.

It is often the case that the full knowledge of functional values at all permutations is not required.
Specifically, in scenarios such as ranked elections, interest is in finding the most likely permuta-
tion i.e., argmax f(o). Theorem 2 proves that the max-weight matching yields the most likely
permutation under naturadajority assumption.

2.1 Relation to Fourier Transform

The question we consider is thematically related to harmonic analysis of functions over non-
commutative groups. As we shall show soon, the mariis related to the first two Fourier coef-
ficients of the Fourier Transform of the distribution over the permutation group. Thus, the problem
we are considering can be restated as that of reconstructing a distribution over the permutation group
from its first two Fourier coefficients. Reconstructing distributions over the permutation group from

a limited number of Fourier coefficients has several applications. Specifically, there has been some
recent work ormulti-object tracking(see [4] and [3]), in which they approach the daunting task of
maintaining a distribution over the permutation group by approximating it using the first few Fourier
coefficients. This requires reconstructing the function from a limited number of Fourier coefficients,
where our solution can be potentially applied.

We will now discuss the Fourier Transform of a function on the permutation group, which provides
another possible approach for recoveryfofinterestingly enough, thi&st order Fourier transform

of f can be constructed using information based)# (g;;). As we shall find, this approach fails

to recover spars¢ as it has tendency to “spread” the mass omaklements giver)). However,

as established in Theorem 2 this leads to recovemadieor most likely assignment of under
naturalmajority condition.

Next, some details on what the Fourier transform (an interested reader is requested to check [5] for
missing details) based approach is, h@vean be used to obtain an approximationfaind why it

does not recovef exactly. The details relevant to recovery of modefokill be associated with
Theorem 2.

Fourier Transform: Definition. We can obtaira solution to the set of linear equations in (8)
using the Fourier Transforms at symmetric group representations. For a fuhcti@n— R on
groupG, its Fourier Transform at a representatjoof G is defined as, = 3°_ h(o)p(0). The
collection of Fourier Transforms éf(-) at a complete set of inequivalent irreducible representations
of G completely determine the function. This follows from the following expression fointrerse
Fourier Transform:

W)= & i Ty [ pi(o)] @)

where|G| denotes the cardinality a¥, d,, denotes the degree of representagigrandk indexes
over the complete set of inequivalent irreducible representatio6s dhe trivial representation of
a group is thel-dimensional representation(c) = 1, Vo € G. Therefore, the Fourier Transform
of h(-) atpgis > h(o).

Fourier Transform: Approximation. The above naturally suggests approximationbased on a
limited number ofFourier coefficientsvith respect to a certain subset of irreducible representations.
We will show that, indeed, the information matrgx corresponds to the Fourier coefficient with
respect to thdirst-order representation of the symmetric groSp. Therefore, it yields a natural
approximation.

It is known that [5] thefirst order permutation representatiaf S,,, denoted byr, has a degree

n and maps every permutatiento its corresponding permutation mati#3¢. In other words, we
haver;(c) = P°. Thus,f(c) = Y ves, f(@)m1(0) = Q. Reconstruction of requires Fourier
Transforms at irreducible representations. Even thaygh not an irreducible representation, it is
known that [5] that every representation of a group is equivalent to the direct sum of irreducible rep-
resentations. In particular; can be decomposed intp = py @ p1; wherep is the aforementioned
trivial representation of degrdeandp, is an irreducible representation of degree 1. It is worth
pointing out to a familiar reader that what we cajlis more appropriately denoted by, _; 1) in



the literature; but we will stick t@, for brevity. Thus( is related to the Fourier Transforms of the
irreducible representationg andp;. We now have the following proposition:

Proposition 1. Consider a functionf : S,, — R. Suppose thaljf|;, = 1 and we are given
its corresponding?. Then, its natural Fourier approximation obtained by looking at the Fourier
coefficients of the relevant irreducible representations is given by the fungtios}, — R defined

as:
r <Q7PU> n—2

R 3)
for o € S, with N = nl, || flle, = | flle, andY, cs, f(0)P7 = Q.
Proof. We have:
Q=> flo)ym=">Y f(O) 0@ 1) = Fr® fo- @)
oSy ocESy
Therefore,
(Q.P7) =Tr [QTP7) =Tx | (f1 @ F1) (po(0) @ pa(0))] (5)
SinceTr is independent of the basis, choosing an appropriate basis we can write:
(Q, P7) ="Tr { ApTopo(U)] + Tr { Epl(a)] =1+Tr { A,JTlpl(U)} (6)

(6) is true becausgy (o) = 1, Vo € S,,, and|| fl¢, = 1.

f is obtained by truncating the Inverse Fourier Transform expression to the first two terms. Thus,
from (2), it follows that:

~ 1 r1a»

f0) =5 [Fo(@) + (0 =1 1 (0)] @)

Using the fact thapy (o) = 1 Vo € S, fpo = 1, and plugging (6) into (7) gives the result of the
proposition. O

Summary. Thus, the Fourier Transform technique yieldsolution to the problem. Unfortunately,

the solution is not sparse and the “mass” is distributed over all the permutations yielding values
of O(1/N) for all permutations. In summary, a naive approach to the reconstruction of a sparse
distribution gives unsatisfactory results and requires a different approach.

2.2 Relation to Compressed Sensing

Here we discuss the relation of the above stated question to the recently popular tapipoéssed
sensing. Indeed, both share the commonality in the sense that the ultimate goal is to recover a sparse
function (or vector) based on few samples. However, as we shall show, the setup of our work here
is quite different. This is primarily because in the standard compressed sensing setup, samples are
chosen as “random projections” while here samples are highly constrained and provide information
matrix Q. Next, we provide details of this.

Our problem can be formulated as a solution to a set of linear equations by defining asnasrix
then? x N matrix with column vectors aB°*, 1 < k < N. Then,f is a solution to the following
set of linear equations:

Ax =Q (8)

Candes and Tao (2005) [6] provide an approach to solve this problem. They require thefwiector
be sparse i.e]|f|l,, = pN, for somep > 0. As discussed earlier, this is a reasonable assumption
in our case because: (a) the total number of permutaflonan be very large even for a reasonably
sizedn and (b) most functiong(-) that arise in practice are determined by a small (when compared
to N) number of parameters. Under a restriction on the isometry constants of the maftandes

and Tao prove that the solutighis the unique minimizer to the LP:

min||z|l, St Az=Q 9)



Unfortunately, the approach of Candes and Tao cannot betlglisgaplied to our problem because
the isometry constants of the matrilxdo not satisfy the required conditions.

We now take a closer look at the isometry constantsiof Gaussian random matrices form an
important class of matrices with good isometry constants. Unfortunately, neither is our mhatrix
random nor is there a straightforward random formulation of our problem. To see why the matrix
A has bad isometry constants, we take a simple example. Fat anyt consider the followingt
permutationsioy = id, oo = (12), 03 = (34) andoy = (12)(34). Here,id refers to the identity
permutation and the permutations are represented using the cycle notation. It is easy to see that:

Pt + P79t = P72 4 P75 (10)

For any integerl < S < N, the S restricted isometry constant of is defined as the smallest
guantity such thatlrc obeys:

(1= ds)llcllz, < I Azell?, < (1+ ds)llell?, (11)

v T C {1,2,...,N} of cardinality at mostS and all real vectors. Here, Arc denotes

> ke ceP7%. From this definition and (10), it follows thaly = 1V .S > 4. Theorem 1.4 re-
quiresds < 1 for perfect reconstruction of whenl|| ||, < S. Therefore, the compressed sensing
approach of Candes and Tao does not guarantee the unique reconstrugtion of,, > 4.

3 Main results

Exact recovery. The main result of this paper is about the exact recovery &fom the given
constrained information matri = (g;;) under the hypothesis thgtis sparse or has smallf||, .

We provide an algorithm that recovefexactly if the underlying support and probabilities have the
following two properties:

Property 1 (P1). Suppose the functiofy-) is K sparse. Leby,po, ..., px be the function values.
The following is true:

Sopi#Y pi VAT C{L2,. . K}stInJ =0

JjE€J jeJ’

Property 2 (P2). Let{o1,09,...,0K} be the support of (). Foreachl <i < K,3anl <n; <
n such thato;(n;) # o;(n;) V j # 4. In other words, each permutation has at least one edge that is
different from all the others.

When properties P1 and P2 are satisfied, the equétionA f has a unique solution and can indeed
be recovered; we will provide an algorithm for such recovery. The following is the formal statement
of this result and will be proved later.

Theorem 1. Consider a functiory: S,, — [0, 1] such that||f|l¢, = L, ||flle, = 1, and the func-
tional values and the support possess properties P1 and P2. Then, iasigufficient to recon-
struct f(-) precisely.

Random model, Sparsity and Theorem 1.

Theorem 1 asserts that when properties P1 and P2 are satisfied, exact recovery is possible. However,
it is not clear why they are reasonable. We will now provide some motivation and prove that the
algorithm is indeed optimal in terms of the maximum sparsity it can recover.

Let’s go back to the counter-example we mentioned before: Fonanyl consider thel permuta-
tionso; =id, o2 = (12),03 = (34) andoy = (12)(34). We haveP?' 4 P4 = P2 + P?3. Now,
consider4 valuesp, p2, p3 andp,. Without loss of generality suppose that < ps andps < ps.
Using the equatio®* + P?+ = P?2 + P?3, we can write the following:
Q =p1P7 +paP? +p3P? + ps P7*
= (p1 +p2)P7" + (p1 +p2) P7* + (p3 — p2) P
= (p1 +p2)P7 + (p1 +p3) P + (pa — p1) P7*.



Thus, under the above setup, there is no unique solutiGhto Af. In addition, from the last two
equalities, we can conclude that even sparsessolution is not unique. Hence, there is no hope of
recoveringf given only@ in this setup.

The question we now ask is whether the above counter example is contrived and specially con-
structed, or is it more prevalent. For that, we consider a random model which puts a uniform mea-
sure on all the permutations. The hope is that under this model, situations like the counter example
occur with a vanishing probability. We will now describe the random model and then state important

results on the sparsity gfthat can be recovered fro@.

Random ModelUnder the random model, we assume that the funcfievith sparsityK is con-
structed as follows: Choog€ permutations uniformly at random and let them have any non-trivial
real functional values chosen uniformly at random from a bounded interval and then normalized.

We call an algorithm producing an estimeftf f as asymptotically reliable iPr {f # f} =e(n)
wheres(n) — 0 asn — oo. We now have the following two important results:

Lemma 1. Consider a functiory: S,, — R with sparsityKX. Given the matrixQ) = Af, and no
additional information, the recovery will be asymptotically reliable onlif< 4n.

First note that a trivial bound dfn — 1)? can be readily obtained as follows: Sineis doubly
stochastic, it can be written as a convex combination of permutation matrices [7], which form a
space of dimensiom — 1)2. Lemma 1 says that this bound is loose. It can be proved using standard
arguments in Information Theory by consideriAgas a channel with input and output).

Lemma 2. Consider a functiory: S,, — R with sparsityK constructed according to the random
model described above. Then, the support and functional valuepodsess properties P1 and P2
with probability1 — o(1) as long ask < 0.6n.

It follows from Lemma 2 and Theorem 1 th@tcan be recovered exactly frof if the sparsity
K = O(n). Coupled with Lemma 1 we conclude that our algorithm is optimal in the sense that it
achieves the sparsity bound©fn).

Recovery of Mode.As mentioned before, often we are interested in obtaining only limited informa-
tion aboutf(-). One such scenario is when we would like to find just the most likely permutation.
For this purpose, we use the Fourier approximatidief. Proposition 1) in place of: that is, the
mode off is estimated as mode ¢f The following result states the correctness of this approxima-
tion undemajority.

Theorem 2. Consider a functiory : S,, — [0, 1] such that| f||,, = L and|| f||,, = 1. Suppose the
majority condition holds, that imax,ecs, f(o) > 1/2. Then,

arg max f(o) = arg max f(o) = argmax (P°, Q).
oES, S o€Sy,

The mode off, or maximizer of P?, Q) is essentially the maximum weight matching in a weighted
bipartite graph: consider a complete bipartite grépk: ((V1, V%), E) with vV, =V, = {1,...,n}

andE = V; x V, with edge(i, j) € E having weighty;;. Then, weight of a matching (equivalently
permutatiorr) is indeed(P?, Q). The problem of finding maximum weight matching is classical.

It can be solved inD(n?) using algorithm due to Edmond and Karp [8] or max-product belief
propagation by Bayati, Shah and Sharma [9]. Thus, this is an approximation that can be evaluated.

4 Theorem 1: Proof and Algorithm

Here, we present a constructive proof of Theorem 1. Specifically, we will describe an algorithm to
determine the function values fro@ which will be the originalf as long as properties P1 and P2
are satisfied.

Letpy, po, ..., pr denote the non-zero functional values. ketos, . .., o denote the correspond-
ing permutations i.e.f(o;) = pr. Without loss of generality assume that the permutations are
labeled such that; < p; fori < j. Letqi, ga, ..., qn, WhereM = n?, denote the values of matrix

@ arranged in ascending order.



Given this sorted version, we hayg < ¢; fori < j. Lete; denote the edgéu,v) such that
gi = ¢e, = Quv, Where recall that

Quv = Z f(Jk) = Z Pk-

kiog(u)=v kiok(u)=v

Let Ay denote the set of edges corresponding to permutation. < k < L. Thatis, Ay =
{(u,01(w)) : 1 < u < n}. The algorithm stated below will itself determide and (A, pr)1 <
k < L using information?). The algorithm works when properties P1 and P2 are satisfied.

Algorithm:

initialization: po = 0,k(0) = 0 andA; = 0,1 < k < M.
for i=1to M
if ¢=3c,p; for someJC{0,1,... k(i —1)}

k(i) =k(i—1)
Aj:AjU{ei} V jed
else
kE(i))=k(i—1)+1
Pr@G) = 4
Ap) = Ary U {ed}
end if
end for

OutputL = k(i) and(pg, Ag),1 <k < L.

By property P2, there exists at least apesuch that it is equal tey, for eachl < k& < L. The
property P1 ensures that wheneyge= py(;), the condition in the “if” statement of the pseudocode
is not satisfied. Therefore, the algorithm correctly assigns values to eachpgfd¢he

Note that the condition in the “if” statement being true implies that edgs present in all the
permutationsr; such thatj € J. Property P1 ensures that suchi af exists, is unique. Therefore,
when the condition is satisfied, the only permutations that containegdgeos;, j € J.

When the condition in the “if” statement fails, again from properties P1 and P2 it follows that edge
e; is contained only in permutatiar), ;). From this discussion we can conclude that at the end of the
iterations, each of thd,’s contain complete information about their corresponding permutations.

The algorithm thus completely determines the functign. Finally, note that the algorithm does
not require the knowledge dff||¢, -

5 Theorem 2: Proof and Algorithm

Here, our interest is in finding the mode 6f The algorithm we have proposed is use the mode of
f, as an estimate of mode ¢f We wish to establish that whenax,cg, f(o) > 1/2 then

5* = o*, where &* = argmax f(0); o* = arg max f(o).
o€ESy oESy

Since we have assumed tho*) > 1/2 and| f|,, = 1, we should have_ . f(0) < 1/2,
whereS C S,, such that* ¢ S. Therefore, there is exactly one entry in each column of m&prix
that is> 1/2, and the corresponding edge should be a past*ofThus, keeping only those edges
(i,7) such thatQ); ; > 1/2, we should the matching*. It is clear from the construction that'
indeed has the maximum weight of all the other matchings. The result now follows.

6 Conclusion

In summary, we considered the problem of inferring popular rankings from highly constrained in-
formation. Since raking data naturally arises in several diverse practical situations, an answer to this
guestion has wide ranging implications.



Specifically, we considered the problem of inferring a spamenalized function on the symmetric
group using only thdirst order information about the function. In the election example this first
order information corresponds to the fraction of people who have ranked candiatbe ;1
position. We provide a novel algorithm to precisely recover the permutations and the associated
popularity under minimal, and essentially necessary, conditions. We provide justification to the
necessity of our assumptions and consider a natural random model to quantify the sparsity that can
be supported.

We also provide an algorithm, based on Fourier transform approximation, to determine the most
popular ranking (mode of the function). The algorithm is essentially a max-weight matching with
weights as the . values. Under a natural majority assumption, the algorithm finds the correct mode.

The question considered is thematically related to harmonic analysis of functions over the symmet-
ric group and also the currently popular topic of compressed sensing. The problem we consider can
be restated as the reconstruction of a function usiniiréisorder Fourier representation, which has
several applications particularly in the multi-object tracking problem. On the other hand, the paral-
lels to the to the standard compressed sensing setup are limited because the available information is
highly constrained. Thus, the existing approaches of compressed sensing cannot be applied to the
problem.

Next Steps. We concentrated on the recovery of the distribution from its first order marginals. A
possible next step would be to consider recovery under different forms of partial information. More
specifically, practical applications motivate considering the recovery of distribution from pair-wise
information: probability of candidateébeing ranked above candidate Another natural practical
consideration would be to address the presence of noise in the available information. Understanding
recovery of distributions with the above considerations are natural next steps.
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