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Abstract

Motivated by applications like elections, web-page ranking, revenue maximiza-
tion etc., we consider the question of inferringpopularrankings usingconstrained
data. More specifically, we consider the problem of inferring a probability distri-
bution over the group of permutations using its first order marginals. We first
prove that it is not possible to recover more thanO(n) permutations overn ele-
ments with the given information. We then provide a simple and novel algorithm
that can recover up toO(n) permutations under a natural stochastic model; in this
sense, the algorithm is optimal. In certain applications, the interest is in recov-
ering only the most popular (or mode) ranking. As a second result, we provide
an algorithm based on the Fourier Transform over the symmetric group to recover
the mode under a natural majority condition; the algorithm turns out to be a max-
imum weight matching on an appropriately defined weighted bipartite graph. The
questions considered are also thematically related to Fourier Transforms over the
symmetric group and the currently popular topic ofcompressed sensing.

1 Introduction

We consider the question of determining a real-valued function on the space of permutations of
n elements with very limited observations. Such a question naturally arises in many applications
including efficient web-page rank aggregation, choosing the winner in a sport season, setting odds
in gambling for revenue maximization, estimating popularity of candidates pre-election and the list
goes on (for example, see references [1], [2], [3]). In what follows, we give a motivating example
for the pursuit of this quest.

A motivating example. Consider a pre-election scenario in a democratic country withn potential
candidates. Each person (or voter) has certain ranking of these candidates in mind (consciously or
sub-consciously). For example, letn = 3 and the candidates beA,B andC. Each person believes
in one of the3! = 6 possible ordering of these candidates. For example, let50% of people believe
in A > B > C, 30% of people believe inB > A > C and20% of people believe inC > A > B.
We wish to infer these preferences of population by means of a limited set of questions.

Specifically, suppose we can interview a representative collection (i.e. reasonably large random
collection) of people for this purpose. However, in the interview we may not be able to ask them
their complete ranking of all candidates. This may be because a person may not be able to articulate
it clearly. Or, in situations (e.g. gambling) where there is a financial significance associated with
information of complete ranking, an individual may not be ready to provide that information. In
such a situation, we will have to settle with restricted questions of the following type:what will be
the rank of candidateA in your opinion? or,whom would you rank second?

Given answers to such restricted questions, we would like to infer what fraction of the population
prefers which ordering of candidates. Clearly, such restricted information cannot lead to any useful
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inference of prevalent ordering of candidates in the population if there are too many of them (for
largen). Now, in a real world scenario, it is likely that people decide rankings of candidates based on
a few issues such as war, abortion, economy and gay marriage. That is, an individual will decide the
ranking of the candidates based on the opinions of candidates on these issues. Therefore, irrespective
of the number of candidates, the number of distinct rankings that prevail in the population are likely
to be very few.

In this paper, we are interested in inferring suchfew prevalent rankings of candidates and their
popularity based on the restricted (or partial) information as explained above. Thematically, this
question is similar to the pursuit ofcompressed sensing. However, as we explain in Section 2,
standard compressed sensing does not apply under this setting. We also discuss a natural relation
between the available information and the Fourier coefficients of the Fourier transformation based
on group representation (see Proposition 1). It turns out that the problem we consider is equivalent
to that of recovery of a function over a symmetric group using thefirst order Fourier coefficients.
Thus, our problem is thematically related to the recovery of functions over non-commutative groups
using a limited set of Fourier coefficients. As we show in Section 2, a naive recovery by setting the
unknown Fourier coefficients to zero yields a very bad result. Hence, our approach has potential
applications to yielding a better recovery.

In many applications, one is specifically interested in finding out the most popular ranking (or mode)
rather than all the prevalent rankings. For this, we consider an approximation based on Fourier trans-
formation as a surrogate to find the mode. We establish that under the naturalmajority condition,
our algorithm finds the correct mode (see Theorem 2). Interestingly enough, our algorithm to find
an estimate of the mode corresponds to finding a maximum weight matching in a weighted bipartite
graph ofn nodes.

Organization. We start describing the setup, the problem statement, and the relation to compressed
sensing and Fourier transform based approaches in Section 2. In Section 3, we provide precise
statements of the main results. In the remaining Sections, we prove these results and discuss the
relevant algorithms.

2 Background and preliminaries

Setup. Let Sn = {σ1, . . . , σN} denote set of all possibleN = n! permutations (orderings) of
n elements.Sn is also known as thesymmetric groupof degreen. Let f : Sn → [0, 1] denote a
mapping from the symmetric group to the interval[0, 1]. We assume that the functionf is normalized
i.e.,‖f‖ℓ1 = 1, where‖·‖ℓ1 denotes theℓ1 norm. Letpk denote the valuef(σk), for 1 ≤ k ≤ N .
Without loss of generality we assume that the permutations are labeled such thatpk ≤ pm for
k < m. We writef(·) to denote the function andf to denote the vector(f(σk))N×1. The set of
permutations for whichf(·) is non-zero will be called thesupportof f(·); also, the cardinality of the
support will be calledsparsityof f and is denoted byK i.e.,K = ‖f‖ℓ0 . Each permutationσ will
be represented by its corresponding permutation matrix denoted byP σ i.e.,P σ

ij = 1{σ(j)=i}, where
1E is the indicator variable of the eventE. For brevity, we writeP σ to mean both then× n matrix
and then2 × 1 vector. We use the terms permutation and permutation matrix interchangeably. We
think of permutations as complete matchings in a bipartite graph. Specifically, we consider ann×n
bipartite graph and each permutation corresponds to a complete matching in the graph. The edges
in a permutation will refer to the edges in the corresponding bipartite matching. For1 ≤ i, j ≤ n,
let

qij :=
∑

σ∈Sn:σ(j)=i

f(σ) (1)

Let Q denote both the matrix(qij)n×n
and the vector(qij)n2×1. It is easy to note thatQ can be

equivalently written as
∑

σ∈Sn
f(σ)P σ. From the definition, it also follows thatQ is a doubly

stochastic matrix. The matrixQ corresponds to thefirst order information about the functionf(·).
In the election example, it is easy to see thatqij denotes the fraction of voters that have ranked
candidatej in theith position.

Problem statement and result.The basic objective is to determine the values of the functionf(·)
precisely, using only the values of the matrixQ. We will first prove, using information theoretic
techniques, that recovery isasymptotically reliable(average probability of error goes to zero as
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n → ∞) only if K = O(n). We then provide a novel algorithm that recovers prevalent rankings and
their popularity exactly under minimal (essentially necessary) conditions; under a natural stochastic
model, this algorithm recovers up toO(n) permutations. In this sense, our algorithm is optimal.

It is often the case that the full knowledge of functional values at all permutations is not required.
Specifically, in scenarios such as ranked elections, interest is in finding the most likely permuta-
tion i.e., arg max f(σ). Theorem 2 proves that the max-weight matching yields the most likely
permutation under naturalmajorityassumption.

2.1 Relation to Fourier Transform

The question we consider is thematically related to harmonic analysis of functions over non-
commutative groups. As we shall show soon, the matrixQ is related to the first two Fourier coef-
ficients of the Fourier Transform of the distribution over the permutation group. Thus, the problem
we are considering can be restated as that of reconstructing a distribution over the permutation group
from its first two Fourier coefficients. Reconstructing distributions over the permutation group from
a limited number of Fourier coefficients has several applications. Specifically, there has been some
recent work onmulti-object tracking(see [4] and [3]), in which they approach the daunting task of
maintaining a distribution over the permutation group by approximating it using the first few Fourier
coefficients. This requires reconstructing the function from a limited number of Fourier coefficients,
where our solution can be potentially applied.

We will now discuss the Fourier Transform of a function on the permutation group, which provides
another possible approach for recovery off . Interestingly enough, thefirst orderFourier transform
of f can be constructed using information based onQ = (qij). As we shall find, this approach fails
to recover sparsef as it has tendency to “spread” the mass on alln! elements givenQ. However,
as established in Theorem 2 this leads to recovery ofmodeor most likely assignment off under
naturalmajoritycondition.

Next, some details on what the Fourier transform (an interested reader is requested to check [5] for
missing details) based approach is, howQ can be used to obtain an approximation off and why it
does not recoverf exactly. The details relevant to recovery of mode off will be associated with
Theorem 2.

Fourier Transform: Definition. We can obtaina solution to the set of linear equations in (8)
using the Fourier Transforms at symmetric group representations. For a functionh : G → R on
groupG, its Fourier Transform at a representationρ of G is defined aŝhρ =

∑

σ h(σ)ρ(σ). The
collection of Fourier Transforms ofh(·) at a complete set of inequivalent irreducible representations
of G completely determine the function. This follows from the following expression for theinverse
Fourier Transform:

h(σ) =
1

|G|

∑

k

dρk
Tr

[

ĥT
ρk

ρk(σ)
]

(2)

where|G| denotes the cardinality ofG, dρk
denotes the degree of representationρk andk indexes

over the complete set of inequivalent irreducible representations ofG. The trivial representation of
a group is the1-dimensional representationρ0(σ) = 1, ∀σ ∈ G. Therefore, the Fourier Transform
of h(·) atρ0 is

∑

σ h(σ).

Fourier Transform: Approximation. The above naturally suggests anapproximationbased on a
limited number ofFourier coefficientswith respect to a certain subset of irreducible representations.
We will show that, indeed, the information matrixQ corresponds to the Fourier coefficient with
respect to thefirst-order representation of the symmetric groupSn. Therefore, it yields a natural
approximation.

It is known that [5] thefirst order permutation representationof Sn, denoted byτ1, has a degree
n and maps every permutationσ to its corresponding permutation matrixP σ. In other words, we
haveτ1(σ) = P σ. Thus,f̂(σ) =

∑

σ∈Sn
f(σ)τ1(σ) = Q. Reconstruction off requires Fourier

Transforms at irreducible representations. Even thoughτ1 is not an irreducible representation, it is
known that [5] that every representation of a group is equivalent to the direct sum of irreducible rep-
resentations. In particular,τ1 can be decomposed intoτ1 = ρ0⊕ρ1; whereρ0 is the aforementioned
trivial representation of degree1 andρ1 is an irreducible representation of degreen − 1. It is worth
pointing out to a familiar reader that what we callρ1 is more appropriately denoted byρ(n−1,1) in
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the literature; but we will stick toρ1 for brevity. Thus,Q is related to the Fourier Transforms of the
irreducible representationsρ0 andρ1. We now have the following proposition:

Proposition 1. Consider a functionf : Sn → R. Suppose that‖f‖ℓ1 = 1 and we are given
its correspondingQ. Then, its natural Fourier approximation obtained by looking at the Fourier
coefficients of the relevant irreducible representations is given by the functionf̃ : Sn → R defined
as:

f̃(σ) = (n − 1)
〈Q,Pσ〉

N
−

n − 2

N
(3)

for σ ∈ Sn, with N = n!, ‖f‖ℓ1 = ‖f̃‖ℓ1 and
∑

σ∈Sn
f̃(σ)P σ = Q.

Proof. We have:

Q =
∑

σ∈Sn

f(σ)τ1 =
∑

σ∈Sn

f(σ)(τ0 ⊕ τ1) = f̂ρ0
⊕ f̂ρ1

. (4)

Therefore,

〈Q,Pσ〉 = Tr
[

QT P σ
]

= Tr
[(

f̂T
ρ0

⊕ f̂T
ρ1

)

(ρ0(σ) ⊕ ρ1(σ))
]

(5)

SinceTr is independent of the basis, choosing an appropriate basis we can write:

〈Q,Pσ〉 = Tr
[

f̂T
ρ0

ρ0(σ)
]

+ Tr
[

f̂T
ρ1

ρ1(σ)
]

= 1 + Tr
[

f̂T
ρ1

ρ1(σ)
]

(6)

(6) is true becauseρ0(σ) = 1, ∀σ ∈ Sn, and‖f‖ℓ1 = 1.

f̃ is obtained by truncating the Inverse Fourier Transform expression to the first two terms. Thus,
from (2), it follows that:

f̃(σ) =
1

N

[

f̂T
ρo

ρ0(σ) + (n − 1)f̂T
ρ1

ρ1(σ)
]

(7)

Using the fact thatρ0(σ) = 1 ∀σ ∈ Sn, f̂ρ0
= 1, and plugging (6) into (7) gives the result of the

proposition.

Summary. Thus, the Fourier Transform technique yieldsa solution to the problem. Unfortunately,
the solution is not sparse and the “mass” is distributed over all the permutations yielding values
of O(1/N) for all permutations. In summary, a naive approach to the reconstruction of a sparse
distribution gives unsatisfactory results and requires a different approach.

2.2 Relation to Compressed Sensing

Here we discuss the relation of the above stated question to the recently popular topic ofcompressed
sensing. Indeed, both share the commonality in the sense that the ultimate goal is to recover a sparse
function (or vector) based on few samples. However, as we shall show, the setup of our work here
is quite different. This is primarily because in the standard compressed sensing setup, samples are
chosen as “random projections” while here samples are highly constrained and provide information
matrixQ. Next, we provide details of this.

Our problem can be formulated as a solution to a set of linear equations by defining a matrixA as
then2 × N matrix with column vectors asP σk , 1 ≤ k ≤ N . Then,f is a solution to the following
set of linear equations:

Ax = Q (8)

Candes and Tao (2005) [6] provide an approach to solve this problem. They require the vectorf to
be sparse i.e.,‖f‖ℓ0 = ρN , for someρ > 0. As discussed earlier, this is a reasonable assumption
in our case because: (a) the total number of permutationsN can be very large even for a reasonably
sizedn and (b) most functionsf(·) that arise in practice are determined by a small (when compared
to N ) number of parameters. Under a restriction on the isometry constants of the matrixA, Candes
and Tao prove that the solutionf is the unique minimizer to the LP:

min‖x‖ℓ1 s.t. Ax = Q (9)
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Unfortunately, the approach of Candes and Tao cannot be directly applied to our problem because
the isometry constants of the matrixA do not satisfy the required conditions.

We now take a closer look at the isometry constants ofA. Gaussian random matrices form an
important class of matrices with good isometry constants. Unfortunately, neither is our matrixA
random nor is there a straightforward random formulation of our problem. To see why the matrix
A has bad isometry constants, we take a simple example. For anyn ≥ 4 consider the following4
permutations:σ1 = id, σ2 = (12), σ3 = (34) andσ4 = (12)(34). Here,id refers to the identity
permutation and the permutations are represented using the cycle notation. It is easy to see that:

P σ1 + P σ4 = P σ2 + P σ3 (10)

For any integer1 ≤ S ≤ N , the S restricted isometry constant ofA is defined as the smallest
quantity such thatAT c obeys:

(1 − δS)‖c‖2
ℓ2

≤ ‖AT c‖2
ℓ2

≤ (1 + δS)‖c‖2
ℓ2

(11)

∀ T ⊆ {1, 2, . . . , N} of cardinality at mostS and all real vectorsc. Here, AT c denotes
∑

k∈T ckP σk . From this definition and (10), it follows thatδS = 1 ∀ S ≥ 4. Theorem 1.4 re-
quiresδS < 1 for perfect reconstruction off when‖f‖ℓ0 ≤ S. Therefore, the compressed sensing
approach of Candes and Tao does not guarantee the unique reconstruction off if ‖f‖ℓ0 ≥ 4.

3 Main results

Exact recovery. The main result of this paper is about the exact recovery off from the given
constrained information matrixQ = (qij) under the hypothesis thatf is sparse or has small‖f‖ℓ0 .
We provide an algorithm that recoversf exactly if the underlying support and probabilities have the
following two properties:

Property 1 (P1). Suppose the functionf(·) is K sparse. Letp1, p2, . . . , pK be the function values.
The following is true:

∑

j∈J

pj 6=
∑

j∈J ′

pj ∀ J, J ′ ⊆ {1, 2, . . . ,K} s.tJ ∩ J ′ = ∅

Property 2 (P2). Let{σ1, σ2, . . . , σK} be the support off(·). For each1 ≤ i ≤ K, ∃ an1 ≤ ηi ≤
n such thatσi(ηi) 6= σj(ηi) ∀ j 6= i. In other words, each permutation has at least one edge that is
different from all the others.

When properties P1 and P2 are satisfied, the equationQ = Af has a unique solution and can indeed
be recovered; we will provide an algorithm for such recovery. The following is the formal statement
of this result and will be proved later.

Theorem 1. Consider a functionf : Sn → [0, 1] such that‖f‖ℓ0 = L, ‖f‖ℓ1 = 1, and the func-
tional values and the support possess properties P1 and P2. Then, matrixQ is sufficient to recon-
structf(·) precisely.

Random model, Sparsity and Theorem 1.

Theorem 1 asserts that when properties P1 and P2 are satisfied, exact recovery is possible. However,
it is not clear why they are reasonable. We will now provide some motivation and prove that the
algorithm is indeed optimal in terms of the maximum sparsity it can recover.

Let’s go back to the counter-example we mentioned before: For anyn ≥ 4 consider the4 permuta-
tionsσ1 = id, σ2 = (12), σ3 = (34) andσ4 = (12)(34). We haveP σ1 + P σ4 = P σ2 + P σ3 . Now,
consider4 valuesp1, p2, p3 andp4. Without loss of generality suppose thatp1 ≤ p4 andp2 ≤ p3.
Using the equationP σ1 + P σ4 = P σ2 + P σ3 , we can write the following:

Q = p1P
σ1 + p2P

σ2 + p3P
σ3 + p4P

σ4

= (p1 + p2)P
σ1 + (p1 + p2)P

σ4 + (p3 − p2)P
σ3

= (p1 + p2)P
σ2 + (p1 + p3)P

σ3 + (p4 − p1)P
σ4 .
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Thus, under the above setup, there is no unique solution toQ = Af . In addition, from the last two
equalities, we can conclude that even thesparsestsolution is not unique. Hence, there is no hope of
recoveringf given onlyQ in this setup.

The question we now ask is whether the above counter example is contrived and specially con-
structed, or is it more prevalent. For that, we consider a random model which puts a uniform mea-
sure on all the permutations. The hope is that under this model, situations like the counter example
occur with a vanishing probability. We will now describe the random model and then state important
results on the sparsity off that can be recovered fromQ.

Random Model.Under the random model, we assume that the functionf with sparsityK is con-
structed as follows: ChooseK permutations uniformly at random and let them have any non-trivial
real functional values chosen uniformly at random from a bounded interval and then normalized.

We call an algorithm producing an estimatef̂ of f as asymptotically reliable ifPr
[

f 6= f̂
]

= ε(n)

whereε(n) → 0 asn → ∞. We now have the following two important results:

Lemma 1. Consider a functionf : Sn → R with sparsityK. Given the matrixQ = Af , and no
additional information, the recovery will be asymptotically reliable only ifK ≤ 4n.

First note that a trivial bound of(n − 1)2 can be readily obtained as follows: SinceQ is doubly
stochastic, it can be written as a convex combination of permutation matrices [7], which form a
space of dimension(n−1)2. Lemma 1 says that this bound is loose. It can be proved using standard
arguments in Information Theory by consideringA as a channel with inputf and outputQ.

Lemma 2. Consider a functionf : Sn → R with sparsityK constructed according to the random
model described above. Then, the support and functional values off possess properties P1 and P2
with probability1 − o(1) as long asK ≤ 0.6n.

It follows from Lemma 2 and Theorem 1 thatf can be recovered exactly fromQ if the sparsity
K = O(n). Coupled with Lemma 1 we conclude that our algorithm is optimal in the sense that it
achieves the sparsity bound ofO(n).

Recovery of Mode.As mentioned before, often we are interested in obtaining only limited informa-
tion aboutf(·). One such scenario is when we would like to find just the most likely permutation.
For this purpose, we use the Fourier approximationf̃ (cf. Proposition 1) in place off : that is, the
mode off is estimated as mode of̃f . The following result states the correctness of this approxima-
tion undermajority.

Theorem 2. Consider a functionf : Sn → [0, 1] such that‖f‖ℓ0 = L and‖f‖ℓ1 = 1. Suppose the
majority condition holds, that ismaxσ∈Sn

f(σ) > 1/2. Then,

arg max
σ∈Sn

f(σ) = arg max
σ∈Sn

f̃(σ) = arg max
σ∈Sn

〈P σ, Q〉 .

The mode off̃ , or maximizer of〈P σ, Q〉 is essentially the maximum weight matching in a weighted
bipartite graph: consider a complete bipartite graphG = ((V1, V2), E) with V1 = V2 = {1, . . . , n}
andE = V1 × V2 with edge(i, j) ∈ E having weightqij . Then, weight of a matching (equivalently
permutationσ) is indeed〈P σ, Q〉. The problem of finding maximum weight matching is classical.
It can be solved inO(n3) using algorithm due to Edmond and Karp [8] or max-product belief
propagation by Bayati, Shah and Sharma [9]. Thus, this is an approximation that can be evaluated.

4 Theorem 1: Proof and Algorithm

Here, we present a constructive proof of Theorem 1. Specifically, we will describe an algorithm to
determine the function values fromQ which will be the originalf as long as properties P1 and P2
are satisfied.

Let p1, p2, . . . , pL denote the non-zero functional values. Letσ1, σ2, . . . , σL denote the correspond-
ing permutations i.e.,f(σk) = pk. Without loss of generality assume that the permutations are
labeled such thatpi ≤ pj for i < j. Let q1, q2, . . . , qM , whereM = n2, denote the values of matrix
Q arranged in ascending order.
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Given this sorted version, we haveqi ≤ qj for i < j. Let ei denote the edge(u, v) such that
qi = qei

= quv, where recall that

quv =
∑

k:σk(u)=v

f(σk) =
∑

k:σk(u)=v

pk.

Let Ak denote the set of edges corresponding to permutationσk, 1 ≤ k ≤ L. That is,Ak =
{(u, σk(u)) : 1 ≤ u ≤ n}. The algorithm stated below will itself determineL, and(Ak, pk)1 ≤
k ≤ L using informationQ. The algorithm works when properties P1 and P2 are satisfied.

Algorithm:

initialization: p0 = 0, k(0) = 0 andAk = ∅, 1 ≤ k ≤ M .
for i = 1 to M

if qi =
∑

j∈J pj for some J ⊆ {0, 1, . . . , k(i − 1)}

k(i) = k(i − 1)
Aj = Aj ∪ {ei} ∀ j ∈ J

else
k(i) = k(i − 1) + 1
pk(i) = qi

Ak(i) = Ak(i) ∪ {ei}
end if

end for
OutputL = k(i) and(pk, Ak), 1 ≤ k ≤ L.

By property P2, there exists at least oneqi such that it is equal topk, for each1 ≤ k ≤ L. The
property P1 ensures that wheneverqi = pk(i), the condition in the “if” statement of the pseudocode
is not satisfied. Therefore, the algorithm correctly assigns values to each of thepk’s.

Note that the condition in the “if” statement being true implies that edgeei is present in all the
permutationsσj such thatj ∈ J . Property P1 ensures that such aJ , if exists, is unique. Therefore,
when the condition is satisfied, the only permutations that contain edgeei areσj , j ∈ J .

When the condition in the “if” statement fails, again from properties P1 and P2 it follows that edge
ei is contained only in permutationσk(i). From this discussion we can conclude that at the end of the
iterations, each of theAi’s contain complete information about their corresponding permutations.

The algorithm thus completely determines the functionf(·). Finally, note that the algorithm does
not require the knowledge of‖f‖ℓ0 .

5 Theorem 2: Proof and Algorithm

Here, our interest is in finding the mode off . The algorithm we have proposed is use the mode of
f̃ , as an estimate of mode off . We wish to establish that whenmaxσ∈Sn

f(σ) > 1/2 then

σ̃∗ = σ∗, where σ̃∗ = arg max
σ∈Sn

f̃(σ); σ∗ = arg max
σ∈Sn

f(σ).

Since we have assumed thatf(σ∗) > 1/2 and‖f‖ℓ1 = 1, we should have
∑

σ∈S f(σ) < 1/2,
whereS ⊂ Sn such thatσ∗ /∈ S. Therefore, there is exactly one entry in each column of matrixQ
that is> 1/2, and the corresponding edge should be a part ofσ∗. Thus, keeping only those edges
(i, j) such thatQi,j > 1/2, we should the matchingσ∗. It is clear from the construction thatσ∗

indeed has the maximum weight of all the other matchings. The result now follows.

6 Conclusion

In summary, we considered the problem of inferring popular rankings from highly constrained in-
formation. Since raking data naturally arises in several diverse practical situations, an answer to this
question has wide ranging implications.
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Specifically, we considered the problem of inferring a sparsenormalized function on the symmetric
group using only thefirst order information about the function. In the election example this first
order information corresponds to the fraction of people who have ranked candidatei in the jth

position. We provide a novel algorithm to precisely recover the permutations and the associated
popularity under minimal, and essentially necessary, conditions. We provide justification to the
necessity of our assumptions and consider a natural random model to quantify the sparsity that can
be supported.

We also provide an algorithm, based on Fourier transform approximation, to determine the most
popular ranking (mode of the function). The algorithm is essentially a max-weight matching with
weights as theq.. values. Under a natural majority assumption, the algorithm finds the correct mode.

The question considered is thematically related to harmonic analysis of functions over the symmet-
ric group and also the currently popular topic of compressed sensing. The problem we consider can
be restated as the reconstruction of a function using itsfirst orderFourier representation, which has
several applications particularly in the multi-object tracking problem. On the other hand, the paral-
lels to the to the standard compressed sensing setup are limited because the available information is
highly constrained. Thus, the existing approaches of compressed sensing cannot be applied to the
problem.

Next Steps.We concentrated on the recovery of the distribution from its first order marginals. A
possible next step would be to consider recovery under different forms of partial information. More
specifically, practical applications motivate considering the recovery of distribution from pair-wise
information: probability of candidatei being ranked above candidatej. Another natural practical
consideration would be to address the presence of noise in the available information. Understanding
recovery of distributions with the above considerations are natural next steps.
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