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Abstract- Distributed computation of average is essen- average is essential to many distributed tasks such as
tial for many tasks such as estimation, eigenvalue com- estimation, eigenvalue computation for clustering, etc.
putation, scheduling in the context of wireless sensor and [9] and scheduling [10]
ad-hoc networks. The wireless communication imposes the
gossip constraint: each node can communicate with at most A. Setup
one other node at a given time. Recent interest in emerging We are given an arbitrary connected network. Let its
wireless sensor network has led to exciting developments
in the context of gossip algorithms for averaging. Most of gaph be G (V F with* V i node Iitially,,each node z C V begins with itS value xz, C R±. Ifthe known algorithms are iterative and based on certain (i, j) C E then nodes i and j can exchange messages.
reversible random walk on the network graph. Subse-,, ~~ Time, denoted by t C Z+, iS assumed to be slottedquently, the running time of algorithm is affected by the andinn a time-slot two nodes can transmit a number
diffusive nature of reversible random walk. For example, to each other. Let x(t) [xi(t)] be column-vector
they take Q(n2) time to compute average on a simple path of values at n nodes at time t, with x(O)
or ring graph of n nodes. In contrast, an optimal (simple) under some algorithm A. The goal is to compute thecentralized algorithm takes (n) time to compute average T n
in a path. This raises the following questions: is it possible average Xave =x(0)l/n Zi= i/m =x(O) 1/m,
for a distributed algorithm to compute average in 0(n) at all nodes. We wish to design algorithm so as to
time for path graph? is it possible to improve over diffusive minimize the computation time. Specifically, we define
behavior of current algorithms in arbitrary graphs? e-averaging time Ta (c) of an algorithm A as follows:

In this paper, we answer the above questions in affir- letS={x(O) CR+: x(O) 1 1},then
mative. To overcome the diffusive nature of algorithms, we Ta (e) = sup inf{t C Z Pr ( x(s)- Xel 1 > e) < e,
utilize non-reversible random walks. Specifically, we design s
our algorithms by "projecting down" the "lifted" non- Vs > t}.
reversible random walks of Diaconis-Holmes-Neal (2000)
and Chen-Lovasz-Pak (1999). The running time of our where Pr(.) denotes the probability induced by random-
algorithm is square-root of the time taken by correspond- ization of algorithm A. Note that xave = 1/n for x C S.
ing reversible random walk for a large class of graphs Naturally, the above definition applies for deterministic
including path. As a sub-routine, our algorithm uses a
simple distributed maximal matching algorithm that runs algorithms as well We remind ourselves that interest is
in 0(log2 n) time for arbitrary graph, which may be of in gossip algorithms, in which simultaneous transmis-
separate interest. sions in a time-slot form a matching in the network

I. INTRODUCTION graph.
B. Previous Results

With the development of peer-to-peer, sensor, and
B.PeiuRslt

With~~~~~ ~th'eeomn fpert-er esr n The question of averaging has recently received a
wireless ad hoc networks, there has been a lot of recent T oaention of t eer rkcon ributed^ ~~~~~~~~lotof attention. One of the earlier work on distributed
interest in totally distributed algorithms for fault-tolerant averaging was by Tsitsiklis [13]. In that and follow-on
computation. This is primarily due to dynamic nature of work, many considered iterative algorithms where a node
network, lack of infrastructure and limited computation was allowed to exchange information with possibly all
and communication resources. The wireless communi- of its neighbor. Essentially, the x(t) evolved according
cation imposes constraints on simultaneous exchanges. to a linear-dynamics, where x(t + 1) Px(t), with

P1 = 1 and P is graph conformant, i.e. Pij :t 0 only
Motivated by popular interference model, we consider if (i, j) EF. Let A2(P) denote the norm of second
algorithms with the gossip constraints: (a) each node largest eigenvalue of P. Then, it is well-known that
communicates with at most one other node at a given the c-averaging time is of order s(P)-1 logE-1, where
time, (b) nodes lack unique identity and (c) nodes can s(P) 1 - A2(P). In addition, if P > [0] and be a
utilize only local information for computation. Thus, probability transition matrix, then the c-averaging time

becomes the same as c-mixing time, T4X (c) of P definedgossip algorithms are totally distributed. We will con- as follows: let P -, then
sider gossip algorithms for the question of computing
average in a network. Distribution computation of an 'lmiX(s) =sup inf{t E Z+ x(s) - w 1 < c, Vs > t}.
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This previous work required each node to communicate An immediate Corollary of Theorem 1 is as follows:
with multiple nodes in a given time-slot and hence Corollary 2: If G is a path graph of n nodes, then
violating gossip constraints. The natural question was: there exists a deterministic gossip averaging algorithm
is it possible to achieve e-averaging time same as e- A such that for any e =9(1/nk) with positive constant
mixing time under gossip constrained communications? k, T-4 (E) = 0 (n log2 n).
Karp, Schindelhauer, Shenker and Vocking [6] showed Note. A recent gossip algorithm by Mosk-Aoyama
that answer is negative by establishing that e-averaging and Shah [11] for computing separable function can
time Q(log n) for small enough but constant c > 0, be used to compute average with c-averaging time
while P = [1/n] gives T4x(E) = 0(1) for all e > 0 O(E-2r-I(P)). While this is the best known for finite
! Kempe, Dobra and Gehrke [8] showed the existence of c, it becomes very large for e scaling down with n (e.g.
an averaging algorithm with e-averaging time 0 (log n) e= 1 /n). In such regime, the algorithm of this paper will
for e = Q(l/nk) for any finite k in the context of be the most effective. Such high-precision algorithms are
complete graph. The question still remained: how is necessary for many tasks such as wireless scheduling
the e-averaging time for arbitrary graph related to the [10].
e-mixing time? In [2], Boyd, Ghosh, Prabhakar and
Shah established that there are gossip algorithms with e-
averaging time 9(log n+T4Tx (E)) for given matrix P and The rest of the paper is organized as follows. In
e =9(1/nk) for any positive finite k. Implicit in results Section II we prove Theorem 1 by presenting gossip
of [2], authors also establish that the for any randomized algorithm based on Non-reversible random walks (RW)
gossip algorithm, the related matrix P is symmetric or of Diaconis-Holmes-Neal [4] and Chen-Lovasz-Pak [3].
corresponding random walk is reversible. This estab- We will describe [3] for arbitrary graph and specialize
lished equivalence between optimal randomized gossip it to path graph, which is similar to [4]. We note that
averaging algorithm and fastest mixing reversible ran- results of [3] are generalization of [4]. In Section III,
dom walk on graph. Consequently, randomized gossip we describe a distributed maximal matching algorithm.
algorithms are only as fast as mixing of reversible We use this algorithm as a sub-routine in the algorithm
random walks. Now, reversible random walks exhibit of Section II.
diffusive behavior. Precisely, for a large class of graph II. AVERAGING VIA NON-REVERSIBLE RW
(e.g. bounded growth) the spectral gap s(P) scales as
1/D(p)2 where N(P) is the conductance defined as Given graph G conformant matrix P such that P1

1, we describe a gossip algorithm that satisfied claim of

-b(P) mmin ___________ Theorem 1.
Scv,lSIm/2 w(S) A. Non-reversible Q via P

for P where Pw =w7 and 7(S) =ZEjes w-. For Chen-Lovasz-Pak [3] presented construction of a ma-
example, in the context of path graph for any reversible trix Q (not G conformant) by lifting the graph G to a
P, N(P) = Q(1/n) and s(P) Q(1/n2). In contrast, larger graph G, that has mixing time linearly scaling in
a simple centralized deterministic scheme will have 6- 1/7()(P). First, we describe this construction and then
averaging time 9(n). A natural question: is it possible show how it can be projected down on G to obtain
to improve the behavior of gossip averaging algorithm a gossip algorithm with running time proportional to
beyond mixing time of reversible random walk? mixing time of Q.

C. Our Contribution Construction of [3] (Lifting P - Q). We describe
We answer the above question in affirmative. Specif- lifting of P to Q as in [3], but somewhat differently for

ically, given matrix P, we device deterministic gossip ease of exposition (for more details, we refer interested
algorithm that have E-averaging time scaling proportional to [3]). The graph G of n nodes is lifted to graph G

, \ . V~~~~~~~~~~~~~',E) of upto n3nodes by making L() < n2copiesto 1/J)(P). We state our precise result as follows. of upto n3 desoby aking ). i does
Theorem 1: Let A be maximum vertex degree of f e i 1 i e aT

network-graph G = (V, E). Given a graph conformant F are such that: (1) (ip,iX) C E iff (i,j) C F; (2) for
P, such that P1 = 1, we obtain a deterministic aver- any 1 < p < q < L(i), (in, iq) C E only if p 1; (3)
aging algorithm A such that for e = 9(1/n) for any for p < L(i),q < L(j), (ip,jq) C E only if (i, j) C E
finite k, and if (ip, jq) C E then (ip, jr) , E for all 1 < r <

TA Aklog2in L(j), r q. In [3], a G conformant probability matrix
ave(c}) y NPq()J Q is defined that has the following property.
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Lemma 3: Q admits a unique stationary distribution 2A iterations that shared a vertex with e. But maximum
on G. Let Q(r or, then fore = 9(1/nk) with finite k, degree being A, this is not possible. U

L(i) Now, we have E = U21Ak, where all edges of rlk
ZJi=. I and TQ (e) = (log2n) (1) are different (and possibly some rlk 0). This takes
p=1 n i@ (Q) O(A log n) iterations w.h.p. as established in Section

Lemma 3 is proved in [3]. Now, we use the Q to compute III-A.
average over G. Let m VI and y (t) C R? be vector Now, for simulation each node i C V creates virtual
of values at nodes of G under the following dynamics: nodes il ...... iL(i) of G and maintains yi (t), 1 < p <
y(O) = [yi] where Yv xi if v = 4' and 0 otherwise. L(i). For t = 0, each i knows yi1(°) = xi and yip (O) =
For t C Z+, 0, p :t 1. Inductively, we assume that each node i C V

y(t+ 1) = Qy(t) (2) knows yi,(t), 1 < p < L(i). Now we'll show how each
i C V can compute yi,(t + 1),1 < p < L(i) via a

Define corresponding vector of values of nodes in G, gossip algorithm in 2A + 1 time-slots, 0 < k < 2A.
x(t) = [xi(t)] E Rn ,t G Z+ as In k = oth slot, each iP sends yip(t)Qiqip to node iq,

1 < p,q < L(i). This can be done at node i itself
L(i) as all i' are maintained at i itself. In kth time-slot,

x (t) Yt). (3) 1 < k < 2A, communications are done according to
P=- matching Ilk (thus satisfying gossip constraint of G). If

Note that x(O)= [xi] as defined by (3). (i,j) rlk, then for all (ip,jq) c E send yip(t)Qjqip
Lemma 4: For t > TQ_(c), from it to node jq and send Yjq(t)Qipjq from jq to

x(t)-Xavel 111it. All these transmissions can be done simultaneously
x(t)e. xavel 1along edge (i, i) as nodes i and j have access to required

nxave f information as well as these can be packaged together inProof:- Proof sketch iS as follows: without loss ofasigemsg'.Athenofll2 Itm-lt,generality, assume lx(0)lI1 1. Using Lemma 3 and a single message'. At the end of all 2A\ + 1 time-slots,
triangular inequality forx we obtain assign yip (t + 1) as the sum of all received values at

node ti. By definition,
x(t) -xavel 1 bx(t)-1 L(j)

nxv n L()yip (t + 1) = EE Qip2q jqv(t) (S)n n ~~~~~~~~~~~~~~~j=1q=1
S x /(t)-/n 5E yi5 -7ip The (5) is identical to (2). Thus, we have showed how to

i<lly(t)-(71 ii '= simulate one-step of (2) via a gossip algorithm in 0(A)
. - b (4) time-steps. Putting all the above discussion together, we

Definition of T9 (E), (4) imply the Lemma 4. * obtain the following (which implies Theorem 1).
Lemma 4 suggests that it is sufficient to simulate the Theorem 6: The above described simulation of (2)

dynamics of (2) in graph G via gossip algorithm. We do and (3) gives a deterministic gossip algorithm A, such
that next. that for e = 9(1/nk) for finite k,
Gossip simulation of (2) (Projecting Down Q). We (A log2n
will show that a y(t + 1) can be computed via a gossip Tave(E) y (P)
algorithm given y(t) in 0(A) steps. For this, decompose Non-reversible Q for path. We explicitly describe non-
edges E of G into collection of matchings with disjoint reversible RW of [4] for path of n nodes: for each
edges as follows. Initially, set Eo = E, Go = G and node 1 < i K< n, create two copies (i, +) and (i, -).
iteration k = 0. In iteration k, run distributed maximal Intuitively, + is right direction and - is left direction.
matching algorithm RMA (described in Section III-A) to The transition matrix Q on these 2n nodes is defined as
obtain matching Ik. Set E1 Ek-IEk, kEk + 1 follows: (1) Q(i,+)(i+l,+) =1 /-/n, for 1 < i K< n, (2)
If Ek = 0 stop, else repeat. Q(i1+)(i+/i-)= l/n, for 1 < i K< n, (3) Q(=,-)(i,-)
Lemma 5: Due to property of RMA that it finds max- 1 - 1/n, for 1 < i .< n, (4) Q( )( ',) = /in,

imal matching, the algorithm stops within 2A iterations.
Proof: We sketch the proof in interest of space: if 'It is contentious to assume the possibility of all upto

Lemma is not true then there is an e C E, that is not max{L(i), L(j)} numbers transmitted together as one message. We
chose by 2iteation The due o proertyof maimalallow this in our model. If computed separately, the complexity canchose by2\Iteatlo. The due o prpertyof malmalincrease at most by maxi L(i). For path graph, the construction of [4]

matching there must be 2A\ other edges chosen in first has L(i) =0(1).
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for 1 < i < n, (5) Q(n,+)(n,-) = 1 - 1/n, (6) (ii) If a vertex, say vl, becomes left, it requests
Q(n,+)(n,+) 1/n, (7) Q(1,-)(1,+) = - 1/n, and (8) to one of its unmatched neighbor uniformly at

1/n. As shown in [4], the TQx(/ k) =random.
0(nlogn) for finite k. (iii) If a vertex, say vr, becomes right, on receiving

requests from one or more left neighbors, it
III. DISTRIBUTED MAXIMAL MATCHING chooses one of them uniformly at random, say

In this section, we describe and analyze a randomized u. Set vertices vr and u as matched and they
distributed maximal matching algorithm. We believe that inform all of their unmatched neighbors about
it will be of great interest in many other applications in- it.
cluding other gossip algorithm and wireless scheduling. (3) Set i = i + 1. Repeat from (2) till no more edge
The algorithm, we believe, is certainly well known in can be added.
some version. However, the analysis of this algorithm is
new. Matchings are extremely well-studied combinato-
rial objects and there are a large number of different Theorem 7: For any graph G, the RMA algorithm
algorithms to find different types of matching. Here, finds a maximal matching in O(log2n) iterations with
we recall some of the well-known distributed matching probability at least 1-0(1/me), for any finite T. For
algorithms. Karp, Upfal, Wigderson [7] and Mulmu- complete graph with n nodes, the algorithm RMA takes
ley, Vazirani, Vazirani [12] gave randomized distributed Q(logn) iterations to compute maximal matching with
algorithms to find maximum size matching that take probability 1 - 0(1/n2).
0(poly(log n)) running time with O(nm35) processors. Proof: We present the proof of Upper bound. The
In contrast, our model has O(n) processors (i.e. n nodes lower bound of the algorithm follows by studying its
of graph). In the context of maximum weight match- behavior for complete graph. We will skip the proof of
ing, Bertsekas [1] gave distributed auction algorithm, lower bound in the interest of space.
which may take upto O(n) iterations to converge. For
maximal matching, there is a well known (and rather Upper bound. Given X, let C be a constant satisfying
obvious) distributed algorithm: pick edges one by one (2 + 2e 4)C <e-2. We show that for any graph G,
in arbitrary fashion maintaining matching structure till the RMA finds maximal matching in 0 (log2 n) iterations
one can. Though very simple, best known bound on the with probability at leat1(-O (logn/n). To prove this,
performance of such algorithm is O(n). A randomized we divide the first C(log )(1 + loge) iterations of
algorithm (somewhat more complicated that ours) by RMA into 1 + logn stages, each stage consisting of
Israeli and Itai [5] was shown to take 0 (log2 n) iterations C log n iterations. Thus, iterations { (k - 1) (C log n) +
on average. However, it does not have such performance 1, , k(C log n)} correspond to stage 1 < k < 1 +
with probability 1 - 0(1/n) for any finite k. We need log n. Let i

A
(k-1)(C log n)+1 and i+ k(C log n)

such high probability guarantee, which will be proved During the execution of algorithm RMA, the degree of
for algorithm described next. unmatched vertices decrease as the matched vertices and

edges incident on them are subsequently removed. Also,
A. Algorithm and Analysis if a vertex is matched, we say that the vertex has degree
We consider randomized version of the above stated 0. In this setup, let Ak denote the event that at the end

naive maximal matching algorithm with O(n) proces- of stage k, all vertices of G have degree at most n . We
sors. In contrast to the above results, we find that the claim the following.
algorithm finds maximal matching in 0(log2 n) time w. Claim 8: For k = 1, 2,..., 1 + log n,
h. p. for arbitrary graph. First, we state algorithm.

Algorithm RMA. Pr[A1kA] 1 - 1
Pr[AlA-l > 1nf+l

(1) Initially, iteration i = 1 and all vertices are un- Proof: Note that Pr[Ao] = 1. Now, consider k >
matched. 1. We wish to evaluate Pr[AkOAkl1. Given Akl, all

(2) In iteration i, do the following: vertices have degree < 2k-1 for i > i . Let v be a vertex
with - < deg(v) < 2k-1 at the beginning of the stage(i) Each unmatched vertex having at least one k, where deg(v) denotes the degree of vertex v. For

unmatched neighbor decided to be left or right (k- 1)(C log n)+1 . i . k(Clogn), let Bv, be the event
with probability 1/2 independently, that after iteration i, deg(v) > 2k. Now, by definition
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Ac C U i-<i<i+ Bv,i. Hence, IV. CONCLUSION
Motivated by applications peer-to-peer, wireless sen-

Pr[Ak Aki] <kPr [Uv O-<j<z+ B Ak i] sor and ad-hoc networks, we study gossip algorithms for
< J Pr [n0. <<+BVBi Akh1 averaging. Most of the previously known iterative algo-

_k -] rithms suffered from the diffusive nature of reversible

-= 3 Pr(Bv- IAk-) 1 1 Pr [Bv,iBvi; Ak-i] random walk. The algorithm of [11], based on prop-
k i-<i<i+ erty of exponential distributions, improves upon these

k - k algorithms but has poor scaling in the error-parameter.
<ZE JH Pr[Bv,iJBv,i_;Ak-1] To overcome this, we presented deterministic gossip

V k algorithm that utilizes non-reversible random walk. As
(1+e-4IClo gn a result, for a large class of graphs the time to compute

< Z 2 ) (6) average becomes square-root of the time taken by algo-
V rithms based on reversible random walk. For example,

< n x -(f+2)logn < (7) the time to average on a path graph becomes O(n log2 n)
instead of 0(n2 log n) for algorithm based on reversible

where justification for (6) is provided next. Note that, (7) random walk.
completes the proof of Claim 8. Now, if vertex v gets As a sub-routine of our algorithm, we developed a
matched in iteration i, then Bv,i does not hold. Next, new distributed maximal matching algorithm which finds
we show that given Bv,i- n Ak-1, v gets matched with maximal matching in any graph in 0(log2 n) time. This

probability 1- '+'-24 This will imply the bound used algorithm will be of separate interest in the context of
in (6). scheduling and other gossip algorithms.

Given Bv, _1nAk-1, i becomes right with probability REFERENCES
1/2. When it becomes right, the (conditional on event
Bv,i- 1 n Ak- 1) probability that it does not get matched, [1] D. Bertsekas. The auction algorithm: A distributed relaxation
denoted by is upper bounded as

method for the assignment problem. Annals of operationsdenoted by j,i,1S upper bounded as research, 1988.
[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algo-

- . dz (degeg( (1) ) - 2k-1 A rithms: Design, analysis and applications. In Proceedings ofIEEE
Pv,i <_ E I.- INFOCOM 2005, 2005.

j=0 2 in [3] F. Chen, L. Lovasz, and I. Pak. Lifting markov chains to speed
up mixing. In Proceedings of the seventeenth annual ACM

( 2k-2)de(v) 1 symposium on Theory of computing, pages 275-281, 1999.
< e 4. (8) [4] P. Diaconis, S. Holmes, and R. Neal. Analysis of a nonreversible

n markov chain sampler. The Annals of Applied Probability,

From aove dscusson an (8) te boud in 6) folows. 10(3):726-752, 2000.
From above discussion and (8) the bound in (6) follows. [5] A. Israeli and A. Itai. A fast randomized parallel algorithm for

* maximal matching. Inform. Process. Lett., 22(2):77-80, 1986.
Next, we use the Claim 8 to complete the proof of [6] R. Karp, C. Schindelhauer, S. Shenker, and B. Vcking. Random-

Theorem 7 as follows. A implies that all nodes ized rumor spreading. In Proc. Symposium on Foundations ofT r 7 foAi±iog n implies that all nodes Computer Science. IEEE, 2000.
have degree < 1, that is, 0. Thus algorithm finds a [7] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect
maximal matching of G if A1+1ogm holds. Now, matching is in random NC. In In Proceedings of the seventeenth

annual ACM symposium on Theory of computing, 1985.
[8] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computationrA1+1ogn] > Pr LA1+1ogn Alogn] Pr LAlogn] () of aggregate information. In Proc. Conference on Foundations

of Computer Science. IEEE, 2003.Using the above argument repeatedly, we obtain ofCoptrSineIE,203Using the aboveargument repeatedly, we obt 91 D. Kempe and F. McSherry. A decentralized algorithm for

1+1og n spectral analaysis. In Symposium on Theory of Computing. ACM,
Pr[Ai±iogn] . (1+i Pr[AkAh l]) x Pr [Ao] [lO] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput

k=1 in wireless networks via gossip. Submitted, 2005.
1 logn [11] D. Mosk-Aoyama and D. Shah. Distributed computation of

> 1- 1I -O(n '),(10) separable function. Submitted, 2006.
[12] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy

as matrix inversion. In Proceedings of the nineteenth annual
where we used the fact that Pr[Ao] =1. This completes ACM conference on Theory of computing, 1987.
the proof of upper bound. We note (rather straight- [13] J. N. Tsitsiklis. Problems in Decentralized Decision Making and
forward) that probability of bad event happening can be Computation. PhD thesis, MIT, 1984.
bounded above by any l/poly(in) by selecting appropri-
ate constant C. a

71


