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Abstract—In this paper, we consider the problem of designing a
scheduling algorithm for input queued switches, that is both fair
as well as throughput optimal. Most of the existing literature on
input-queued switch fairness criteria concentrates on flow-based
fairness. Since a large fraction of network traffic is about “short-
flows”, there is a need for packet-based fairness criterion. The
significant body of literature developed over the past two decades
for packet-based scheduling algorithms is primarily concerned
with throughput and delay, but not fairness. One of the reasons
for such a state of affairs is the lack of a proper definition for
packet-based fairness. The difficulty in defining fair stems from
the fact that any reasonable notion of fairness must combine
the well-known notion of fairness for a single-queue with the
scheduling constraint of an input queued switch in an appropriate
manner.

As one of the main results of this paper, we define a notion of
packet-based fair scheduling by identifying it as the selection
of a winner in the following ranked election: packets are
voters; schedules are candidates and each packet ranks different
schedules based on their priorities. Drawing upon the seminal
work of Goodman and Markowitz (1952) on ranked elections,
we obtain a unique characterization of the fair schedule.

Another important contribution of this paper is proving
that the thus obtained fair scheduling algorithm is throughput
optimal. There is no a priori reason why this should be true,
and we introduce some non-standard proof techniques to prove
the result. Our results suggest a framework for defining fair
scheduling algorithm for a constrained packet network; a non-
standard method to prove throughput stability for algorithms,
such as ours, that are not based on queue-sizes.

I. INTRODUCTION

We consider the problem of designing fair scheduling
algorithms in constrained packet networks. Specifically, we
consider this question in the context of scheduling in a switch.

The primary function of a switch, residing in an Internet
router, is to transfer packets from ingress (input) ports to
appropriate egress (output) ports through a switch fabric
Throughout the paper, we will consider an N -port switch, with
N input and N output ports, denoted as an N × N switch.
The time is assumed to be slotted, all packets are of unit size
and line-speeds are normalized so that at most one packet can
arrive (depart) to (from) an input (output) port in a time-slot.
Input-queued (IQ) switch: Here buffers are placed only at the
input ports and the switch fabric is a cross-bar and hence, in a
given time-slot (a) each input can send out at most one packet
and (b) each output can receive at most one packet.
Output-queued (OQ) switch: Here buffers are placed at the
output ports. All packets arriving at input ports are immedi-
ately transferred to their respective output ports.
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Combined input-output queued (CIOQ) switch: Here, there are
buffers at both the input and output ports so that the switch
fabric operates at a speedup S > 1: that is, upto S packets are
transferred from each input and upto S packets are received
by each output in a time-slot.

In an OQ switch, a packet contends for bandwidth only
with packets buffered at the same output port. Therefore,
the notion of fair bandwidth allocation in an OQ switch is
equivalent to that for a queue with a single server. In the
context of a single queue, fair scheduling has been widely
studied, since the early 1990s. In one of the earlier works by
Demers, Keshav and Shenker [1], the authors proposed the
notion of Weighted Fair Queueing (WFQ) and its packetized
implementation. Parekh and Gallager [2], [3] analyzed the
performance of this packetized implementation and showed it
to be a good approximation of Generalized Processor Sharing
(GPS). Shreedhar and Varghese [4] designed a computation-
ally efficient version of weighted fair queuing called Deficit
Weighted Round Robin (DWRR). There has been work on
fair queueing algorithms by means of designing packet-drop
mechanisms for Internet routers such as RED [5], CHoKe [6]
and AFD [7].

Clearly, these approaches provide a definition of fair
scheduling, and algorithms to realize them in an OQ switch.
However, it does not immediately extend for the case of IQ
or CIOQ switch due to scheduling constraints. Therefore,
one approach is to emulate the performance of such an
unconstrained OQ switch by means of a CIOQ switch with
minimal speedup. This approach was taken by Prabhakar and
McKeown [8] and Chuang, Goel, McKeown and Prabhakar
[9] where they showed that, essentially a speedup of 2 is
necessary and sufficient for emulating an OQ switch where
OQ switch can be operating under various policies like FIFO,
WFQ, DWRR, strict priority, etc. Equivalently, if an IQ switch
is loaded upto 50% of its capacity and the notion of fairness
is defined by policies like FIFO, WFQ, DWRR, strict priority,
etc., then by emulating an OQ switch with these policies, it is
possible to have fair scheduling for the IQ switch. However,
for higher loading this approach will fail due to inability of
emulating OQ switch.

This necessitates the need for defining an appropriate no-
tion of fairness that cleverly and in a reasonable manner
combines the preferences of packets based on some absolute
notions along with the scheduling constraints. In principle, this
question is very similar to the question answered by utility
maximization based framework for bandwidth allocation in a
flow network. In fact, most of the existing literature on fair
scheduling algorithms for input-queued switches is concerned
with the notion of flow-based fairness (see for example [10],
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[11] and [12]). Next, we explain why such an approach is
inappropriate for packet scheduling.

To address the issue of fairness in network, Kelly, Maullo
and Tan [13] proposed a flow-level model for the Internet.
Under this model, the resource allocation that maximizes the
global network utility provides a notion of fair rate allocation.
We refer an interested reader to survey-style papers by Low
[14] and Chiang et.al. [15] and the book by Srikant [16] for
further details. We take a note of desirable throughput property
of the dynamic flow-level resource allocation model (see
for example, [17], [18]). This flow-based resource allocation
approach does not work for our setup for the following two
primary reasons: (a) our unit of data is packet which can either
be served or not served, in contrast a flow can be allocated
any continous amount of rate; and (b) packets have priorities
and they lack explicit utility functions.

We also note that packetized algorithms can be made to
mimic flow-based algorithms with arbitrary precision. But,
network traffic predominantly contains “short-flows” and ar-
bitrary precision algorithms applied to short-flows can lead to
two issues: (a) flow-based approach requires existence of ever-
lasting flows and hence can induce huge delays when applied
naively; and (b) implementation of such an approach would
require large amount of complex data structures, which would
be difficult to maintain and update at high speeds (e.g. 10
Gbps). In summary, our question is inherently combinatorial
which requires dealing with hard combinatorial constraints
unlike the resource allocation in a flow network which deals
with soft capacity constraints in a continuous optimization
setup.

A. Our contribution

Having identified the need for packet-based fair scheduling
algorithm, we will propose a notion of packet-based fairness
and an algorithm to determine the schedule. Some significant
contributions of this paper are:

• A notion of packet-based fairness criterion using a novel
analogy between scheduling and ranked-election process.

• An algorithm to determine the fair schedule.
• A proof of throughput optimality of the algorithm by

introducing non-traditional techniques that may be ex-
tended to the analysis of non-queue based weighted
algorithms.

We will now briefly explain the analogy between switch
scheduling and ranked-election process. As noted earlier, the
OQ emulation based approach, though provides an immediate
way to define fairness for an IQ switch, leads to a reduction
in effective capacity. In order to fully utilize the IQ switch
capacity, we need to define a notion of fairness for queues in
contention. Inherently, each queue prefers to be served. Thus,
each queue has preferences over all feasible schedules. We
obtain relative order of preferences between various queues
with the help of a shadow OQ switch (with exactly the
same arrival process) with appropriate policy, running in the
background (such policy, e.g. FIFO or WFQ at the output
queue of OQ decide the departure times of the packets).

Here, a packet has higher preference than another packet if its
departure time from the shadow OQ switch is earlier than that
of the other packet. Since we can use any cardinal preferences
to implement the ranked-election algorithm, choice of OQ
departure times might seem arbitrary. Intuitively, this choice
enables us to leverage the well studied notion of packet-based
fairness for single queues.

Under this setup, the problem of fair scheduling is one of
choosing a fair “socially” preferred schedule. This is equiv-
alent to the ranked-election problem: packets (or queues) are
voters, schedules are candidates and each packet has a ranking
of all the schedules. The question of ranked-election is very
well-studied in the economics literature (also called theory
of social choice). In our setup, the preferences of packets
over schedules are naturally quantitative. When preferences
over candidates are quantitative (or cardinal in language of
economics literature), Goodman and Markowitz [19] prove
that under certain socially-desirable postulates(detailed in Sec-
tion III-A), a simple function of those preferences will give
a uniquely preferred outcome. Following this, we show that
the preferred schedule is equivalent to a maximum weight
matching where the weights are related to preference levels.

Thus, we obtain a definition of fair scheduling by com-
bining the preferences of packets derived from a virtually
running shadow OQ switch along with the ranked election
algorithm. We establish that such an algorithm is throughput
optimal under standard stochastic model of a switch. To prove
throughput optimality (rate stability to be precise), we use
an appropriate quadratic Lyapunov function. However, we are
unable to use the standard stability proof technique based on
Foster’s criterion, as the Lyapunov function is not a function
of queue-size, but is function of preferences derived from OQ
switch. This makes the analysis rather non-trivial.

To explain the consequences of our algorithm on fair emula-
tion, we present simulations for algorithms based on FIFO OQ
switch. Intuitively, our fair algorithm should be able to reduce
the queue-size (or delay) as well as get rid of starvation caused
by well-known throughput optimal algorithm. Our simulation
results clearly confirm this intuition.

In summary, our work provides a framework for designing
fair scheduling algorithms for constrained packet networks
while achieving high-performance. We establish this claim
in the context of an input queued switch. In this paper we
restrict ourselves to only throughput analysis and centralized
algorithm design. Further, understanding of fairness property
as well as decentralized algorithm design will be natural next
steps of research.

II. MODEL AND NOTATION

We consider an N ×N switch operating in discrete slotted
time, which is indexed by n. There are N2 queues: at each
input port i, there is a seperate queue for each output port
j, called virtual output queue (VOQ) whose size is denoted
by Qij(n), 1 ≤ i, j ≤ N at the begining of time n. We
assume that switch starts empty at time n = 0, i.e. Qij(0) = 0
for all i, j. At each input i, at most one packet arrives in

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

916



each time slot. Let Aij(n) ∈ {0, 1} denote the number of
packets arriving at input i for output j at the end of time
slot n. By definition, we have

∑N
k=1 Aik(n) ∈ {0, 1}. We

assume that arrival process is Bernoulli i.i.d with rate matrix
λ = [λij ]. That is, P(Aij(n) = 1) = λij for all n and
Aij(·) form an i.i.d. sequence of random variables. Note that
Aij(n) and Aij′(n) are dependent for j �= j′; Aij(n) and
Ai′j′(n) are independent for i �= i′. Further, A(n) = [Aij(n)]
is independent of A(n′), for n �= n′. An arrival rate matrix,
λ is called strictly admissible if the following holds: for all
1 ≤ i, j ≤ N

N∑
k=1

λik < 1,
N∑

k=1

λkj < 1.

We assume that the switch is running at a speedup of 1. Thus,
in each time slot, at most one packet can be served from each
queue and at most one packet can be received at each output.
Let S(n) = [Sij(n)] ∈ {0, 1}N×N denote the schedule matrix
at time n with the understanding that Sij(n) = 1 only if
the queue is served at time n. By definition of scheduling
constraint we have that for all 1 ≤ i, j ≤ N ,

N∑
k=1

Sik = 1,

N∑
k=1

Skj = 1

Thus, each schedule corresponds to a permutation matrix
in this notation. Call this set as M. We will also use the
following alternative notation: schedule S ∈ M is equivalent
to permutation σ ∈ M where σ maps i to σ(i) if and only if
Siσ(i) = 1, for 1 ≤ i ≤ N .

If Sij(n) = 1 and Qij(n) > 0 then a packet departs from
Qij(·). Let Dij(n) denote cumulative departure process, i.e.

Dij(n) =
∑
m≤n

Sij(m)1{Qij(m)>0}.

We call a system rate stable or simply stable in this paper if
following holds with probability 1: for all i, j

lim
n→∞

Dij(n)
n

= λij .

To understand when one can even design a rate stable algo-
rithm, it is important to understand the scheduling constraints.
Note that the convex hull, denoted by S, of the set of all sched-
ules M is precisely the set of all doubly stochastic matrices.
This follows from the Birkhoff-Von Neumann’s result that the
extreme points of the set of doubly stochastic matrices are
precisely the permutation matrices. By definition, each strictly
admissible arrival rate matrix is strictly doubly sub-stochastic
matrix. Therefore, there is a simple Time-Division Multi-
Access (TDMA) scheme (based on convex decomposition of
λ) that can allocate rates to each queue strictly higher than the
arrival rate and thus have system rate stable.

Such algorithm is not myopic in the sense that it depends
on knowledge of λ. In their seminal work, Tassiulas and
Ephremides [20] (and independently obtained by McKeown et.
al. [21]) showed that the maximum weight schedule algorithm

is rate stable, which chooses schedule S∗(n) so that

S∗(n) ∈ arg max
S∈M

N∑
i,j=1

Qij(n)Sij .

Since these results, there has been a significant work on
designing high-performance, implementable packet scheduling
algorithms that are derivatives of maximum weight scheduling,
where weight is some function of queue-sizes. All of these
algorithms are designed to optimize network utilization as
well as minimize delay (for example, see recent work by
Shah and Wischik [22]). However, these algorithms ignore the
requirement of fairness. Specifically, it has been observed that
the maximum weight based algorithm can lead to unwanted
starvation or very unfair rate allocation when switch is over-
loaded (for example, see work by Kumar, Pan and Shah [23]).

III. FAIR SCHEDULING ALGORITHM

In this section, we describe our fair scheduling algorithm.
First, we describe the standard problem of ranked election and
some relevant background. Then, we describe fair algorithm
that is derived from ranked elections by establishing equiv-
alence between the question of fair scheduling and ranked
election.

A. Ranked election

Definition 1 (Ranked election): There are M voters that
vote for C candidates. Vote of each voter consists of a ranking
(or permutation) of all C candidates. These votes can addition-
ally carry quantative values associated with their preferences.
Let amc denote the value voter m gives to candidate c, for
1 ≤ m ≤ M, 1 ≤ c ≤ C. The goal of the election is
to relative order all the C candiates as well as produce the
ultimate winner in a manner that is consistent with the votes.
The key for a good election lies in defining consistency of the
outcome of election with votes. The following are canonical
postulates that are used in the literature on ranked election:

P1. Between any two candidates c and c′, suppose that none
of the M voters prefers c′ to c and at least one voter
prefers c to c′. Then c′ should not be ranked higher than
c in the output of the election. This property corresponds
to the economic notion of weak Pareto optimality.

P2. Suppose the voters are renumbered (or renamed) while
keeping their votes the same. Then the outcome of
election should remain the same. In other words, the
election outcome is blind to the identity of the voters,
that is election outcome is symmetric.

P3. Now, consider the setup when the votes are cardinal (i.e.,
quantitative). Suppose candidate c is preferred to c′ by
the election. Then, by adding the same fixed constant
to all amc and amc′ for 1 ≤ m ≤ M , the relative
order of candidates c and c′ should not change. This
makes sense because what matters is the difference in
preference levels for the two candidates, not the actual
values.
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In the absence of cardinal (or quantitative) preferences, the
question of ranked election with postulates P1, P2 (and some
additional postulates) was first studied by Arrow [24]. In
his celebrated work, he established the (then) very surprising
impossibility of the existence of any election scheme that
satisfies P1 and P2 simultaneously. We note that this result
has been an important corner stone in the field of theory of
social choice.

Subsequent to Arrow’s impossibility result, many
economists started looking for positive results. Among
many other celebrated results, the result that is relevant to
this paper is that of Goodman and Markowitz [19]. They
showed that if voters have cardinal preferences, as in our
setup, then there is a unique ordering of candidates that
satisfies P1-P2-P3 simultaneously. To describe their result,
consider the following: let the net score of a candidate c
be sc =

∑M
m=1 amc. Goodman and Markowitz obtained the

following remarkable result.
Theorem 1: Suppose the scores of all candidates are dis-

tinct. Rank candidates as follows: candidate c has higher
ranking than c′ if and only if sc > sc′ . This ranking satisfies
postulates P1-P2-P3. Further, this is the only such ranking.
For a proof of this result, we refer a reader to [19].

B. Fair scheduling = ranked election

Now, we shall establish a natural connection between se-
lection of a fair schedule for a switch and the problem of
ranked election. We want the reader to pay attention to the fact
that, the equivalence used here between fair scheduling and
ranked election easily extends to a general network scheduling
problem.

To define a fair scheduling algorithm, we will use a shadow
output queued switch. Specifically, a copy of every packet
arriving to the IQ switch is fed to a virtual shadow OQ switch.
That is, (copy of) a packet arriving at input i for output j in
the IQ switch immediately joins queue at output j in the OQ
switch. The departure from the queues at outputs in OQ switch
happens according to an appropriate fair scheduling policy,
say P , such as strict priority scheme, last-in-first-out or simply
first-in-first-out applied at the output queues of OQ switch. Let
dk

ij be the departure time of kth packet arrived at input i for
output j from the OQ switch. Clearly, these departure times are
dependent on the policy P used in the switch. If OQ emulation
was possible, the IQ switch would like to send out the packets
at exactly the same times as (dk

ij)i,j,k. However, at speedup 1 it
is not possible to emulate OQ perfectly as shown by Chuang et.
al. [9]. Thus, the whole challenge is to respect the scheduling
constraints of the IQ switch, while letting packets depart from
the switch so that they are as faithful to the departure times
obtained from shadow OQ as possible.

Now, the scheduling problem can be viewed as that of
choosing one of the N ! possible schedules from M every
time. At each input, there are various packets waiting, possibly
in different VOQs, to depart from it. Let us assume that, in
a VOQ, packets are ordered in the increasing order of their
departure times from the corresponding shadow OQ. Thus, for

k �= k′ if dk
ij > dk′

ij then k′ is ahead of k in the VOQij . Thus,
the most urgent packet as per the shadow OQ is the Head-Of-
Line (HOL) packet in a queue. In what follows, queues will
have preferences over schedules given by the departure times
of the HOL packets. Therefore, for the purpose of selecting
a fair schedule, it will be sufficient to consider such HOL
packets. For the following discussion, assume that all N2

queues are non-empty in a switch and hence have a HOL
packet. Later, we will deal with empty queues appropriately.
Let dij(n) be the departure time w.r.t. the shadow OQ, of the
HOL packet in VOQij at time n.

Now, each HOL packet (or queue) prefers being served and
hence prefers all the schedules that serve it (i.e. when queue
containing it is part of the schedule) over all those schedules
that do not. Further, among those schedules that do serve it, the
packet is indifferent. Similarly, it is indifferent to all schedules
that do not serve it. Thus, each of the N2 HOL packets have a
preference list over the N ! schedules or matchings. Consider
a schedule σ ∈ M: it matches input i to output σ(i) for
1 ≤ i ≤ N . Now, when a queue at input i for output j
is served, it should provide a value that is higher if dij(n)
is smaller and vice versa. Specifically, we assign the value
−dij(n) to the serving queue at input i for output j. Therefore,
net value of a schedule σ at time n is given as:

value(σ)(n) = −
N∑

i=1

diσ(i)(n).

The postulates P1-P2-P3 translate into the following postulates
for the switch scheduling.

P1’. Between any two matchings σ1 and σ2, suppose that
none of the N2 HOL packets prefer σ2 to σ1 and at least
one HOL packet prefers σ1 to σ2. Then, we should not
choose σ2.

P2’. For given HOL packets, let σ be the outcome of the
election as per the above preferences for schedules.
Then, by renumbering queues while retaining the same
HOL preferences, the outcome of election should be
only renumbered σ. In other words, the election does
not give unfair priority to any port and thus is symmetric
in its inputs.

P3’. Suppose matching σ1 is preferred to σ2 by the election.
By adding fixed constant to −dij(n) for all i, j, the
outcome of the election should remain unchanged.

The election algorithm of Goodman and Markowitz suggests
that the following schedule S∗(n) should be chosen:

S∗(n) ∈ arg max
σ∈M

−
N∑

i=1

diσ(i)(n).

Thus, the algorithm is the maximum weight schedule (MWS)
where weight is given by −dij(n) at time n.

Algorithm. We call the above algorithm as the most urgent
cell first (MUCF). We will explicitly denote the dependence of
the algorithm on policy, P , used in the shadow OQ switch for
scheduling at the output queues. That is, we call it algorithm
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MUCF(P). Now, using postulate P3’, we use weights of non-
emtpy VOQij as n − dij(n). Call it urgency of VOQij at
time n, denoted by Uij(n). Now we define urgency for empty
queue. Let VOQij be empty at time n. Then define Uij(n) as
−max{0,−min{i′j′:Qi′j′ (n) �=0} Ui′j′(n)}. Thus, the MUCF
algorithm chooses schedule S∗(n) at time n where

S∗(n) ∈ arg max
σ∈M

N∑
i=1

Uiσ(i)(n).

IV. MUCF(P ) ALGORITHM: THROUGHPUT

The previous section described how we arrived at MUCF
algorithm as a fair algorithm based on preferences obtained
from a shadow output queued switch. As established in the
previous section, Theorem 1 implies that MUCF is the only
algorithm that satisfies the desirable postulates P1’-P2’-P3’.
In this section, we state and prove the throughput optimality
property of the MUCF algorithm. The proof of the algorithm
is non-traditional and requires new techniques that may be
of interest for analysis of such non-queue based weighted
algorithms.

Theorem 2: Any N ×N switch operating under MUCF(P)
algorithm with Bernoulli i.i.d. arrival process with arrival rate
matrix being strictly admissible is rate stable when P is FIFO.

A. Proof of Theorem 2

Here, we present a proof of Theorem 2 for FIFO policy. The
proof is some what involved and uses non-traditional methods
for proving the result.

Notation. First, some uesful notation. Consider the packet that
is HOL for VOQij at time n: let aij(n) be its time of arrival
at VOQij ; as before dij(n) be the time of its departure from
the shadow OQ switch; Uij(n) be its urgency as defined above
and Wij(n) be its waiting time (i.e. n− aij(n)). Also, define
∆ij(n) = Wij(n)− Uij(n). We note that if VOQij is empty,
then Wij(n) = 0 and Uij(n) is as defined above. Hence,
∆ij(n) is always non-negative. Let Qj(k) denote the length
at the end of time slot k, of the output queue j of the shadow
Output Queued switch.

Fact (Birkhoff-Von Neumann). Any strictly admissible ar-
rival rate matrix λ can be decomposed as follows: for some
β ∈ (0, 1),

λ ≤
N2∑
k=1

αkπk; αk ≥ 0,
∑

k

αk = 1 − β, πk ∈ M.

The proof of Theorem uses the following Lemmas. We will
present the proofs of Lemmas after completing proof of
Theorem 2 for FIFO policy.

Lemma 3: Let L(n) =
∑

ij W 2
ij(n)λij . Then, under

MUCF(FIFO) algorithm with λ being strictly admissible, there
exists ε > 0 such that

E [L(n + 1) − L(n)] ≤ −εE

[∑
ij

Wij(n)

]
+2E

[∑
ij

∆ij(n)

]
+K,

for some constant K.

Lemma 4: Let Mj(n) denote max0≤k≤n Qj(k). Then, un-
der the FIFO policy and strictly admissible λ, the following
is true for all n,

E[Mj(n)] ≤ O(log n)

Proof of Theorem 2. We first note that, if VOQij is non-empty

∆ij(n) ≤ max
0≤k≤n

Qj(k) (1)

This is true because ∆ij(n) denotes the waiting time in the
output queued switch of the HOL packet at VOQij and hence
cannot be more than the size of the queue at the end of the
time slot it arrived. Since ∆ij(n) corresponds to a packet that
arrived before the time n, the inequality we claim should be
true.

Therefore, from lemma 4 it follows that:

E [∆ij(n)] ≤ O(log n) (2)

If VOQij is empty, then either ∆ij(n) = 0 or ∆ij(n) =
di′j′(n) − n, where VOQi′j′ is non-empty. Since, ∆lk ≥ 0
∀l, k, we have from (2) that E[∆ij(n)] ≤ E[∆i′j′(n)] ≤
O(log n). Hence, (2) is valid even for empty queues and it
follows that:

E

∑
ij

∆ij(n)

 ≤ O(log n) (3)

From lemma 3 and (3), we obtain the following:

E [L(n + 1) − L(n)] ≤− εE

∑
ij

Wij(n)


+ O(log n) + K,

(4)

Telescopic summation of (4) from 1, . . . , n, we obtain (after
cancellations),

E [L(n + 1)] ≤ E[L(0)] − εE

[
n∑

m=1

|W (m)|
]

+ O(n log n) + nK,

(5)

where |W (m)| =
∑

ij Wij(m) represents the �1-norm of
matrix W (m). Now switch starts empty at time 0. Therefore,
E[L(0)] = 0. Further, L(·) is non-negative function. Therefore,
(5) gives us

εE

[
n∑

m=1

|W (m)|
]

≤ O(n log n) + nK. (6)

Dividing both sides by εn log n, we obtain

E

[
1

n log n

n∑
m=1

|W (m)|
]

≤ O(1) (7)

Let Xn = 1
n

∑n
m=1 |W (m)| and Zn = Xn

log n . From (7), we
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have E[Zn] ≤ O(1) < ∞ for all n. Now, we claim that

Pr
(

lim
m

1
m
|W (m)| = 0

)
= 1. (8)

The proof of (8) is presented later. Before that, we use it to
complete the proof of rate stability of the algorithm. Now,
at time n the waiting time of HOL packet of VOQij is
Wij(n). Under FIFO policy and due to at most one arrival
per input port, we have that the queue-size of VOQij at time
n, Qij(n) ≤ Wij(n). From (8), we have that

lim
n→∞

Qij(n)
n

= 0, with probability 1. (9)

Now, Qij(n) observes the following dynamics:

Qij(n) = Qij(0) +
∑
m≤n

Aij(n) − Dij(n), (10)

where the second term on RHS is the cumulative arrival to
VOQij till time n while the third term is cumulative departure
from VOQij till time n. By strong law of large numbers
(SLLN) for Bernoulli i.i.d. process we have that

lim
n→∞

1
n

∑
m≤n

Aij(n) = λij .

Using this along with (9) and (10), we obtain

lim
n→∞

Dij(n)
n

= λij , with probability 1, ∀i, j.

This completes the proof of Theorem 2 with the remain claim
(8), which we prove next.

Suppose (8) is not true. Then, since |W (m)| ≥ 0 we have
that for some δ > 0,

Pr (|W (m)| ≥ δm, i.o.) ≥ δ, (11)

where “i.o.” means infinitely often. Now if |W (m)| ≥ δm,
then there exists an HOL packet that has been weighting in the
switch for time at least δm/N2. This is true because |W (m)|
is the sum of weighting times of at most N2 HOL packets.
Call this packet p. This packet must have arrived at time ≤
m− δm/N2 = m(1− δN−2). Since waiting time of a packet
increases only by 1 each time-slot, the waiting time of the
packet p must be at least 0.5δm/N2 in time interval [m1,m],
where m1 = m − 0.5δmN−2 = m(1 − 0.5δN−2). Now,
consider any time m′ ∈ [m1,m]. The packet waiting at the
HOL of the queue that contains p must have waiting time
higher than that of p due to FIFO ordering policy. Therefore,
the contribution to |W (m′)| by HOL packets of the queue that
contains packet p is at least 0.5δmN−2. Therefore, we obtain

m∑
m′=m1

|W (m′)| ≥ δ2m2

4N4
. (12)

Therefore, by the definition of Xm and non-negativity of
|W (·)|, we have the following logical implication:

|W (m)| ≥ δm ⇒ Xm ≥ δ2m

4N4
. (13)

Thus, if (11) holds then by (13) we have

Pr
(

Xm ≥ δ2m

4N4
, i.o.

)
≥ δ. (14)

Now observe the following relation of Xn: since |W (·)| ≥ 0,

Xn+1 ≥
(

1 − 1
n + 1

)
Xn.

Hence, for α > 1,

Xnα ≥
(

1 − 1
n

)(α−1)n

Xn. (15)

Since (
1 − 1

n

)(α−1)n

≈ exp (−α + 1) ,

we obtain that for there is large enough no such that for n ≥
no, for any n′ ∈ [n, 1.5n)

X1.5n ≥ 1
3
Xn′ . (16)

Define, Yk = X1.5k for k ≥ 0. Then, the following are direct
implications of (16): for any θ > 0,

Xm ≥ θm, i.o. ⇒ Yk ≥ θ1.5k/3, i.o.;

Yk ≥ 3θ1.5k, i.o. ⇒ Xm ≥ θm, i.o..

Therefore, to complete the proof of (8) by contradicting (11),
it is sufficient to show that for θ = 3δ (since N ≥ 1),

Pr
(
Yk ≥ θ1.5k, i.o.

)
= 0.

For this, let event Ek = {Yk ≥ θ1.5k}. Then, from E[Zn] ≤
O(1), relations Yk = X1.5k , Zk = Xk

log k and Markov’s
inequality we obtain that

Pr(Ek) ≤ O

(
k

1.5k

)
.

Therefore,∑
k

Pr(Ek) ≤
∑

k

O

(
k

1.5k

)
< ∞.

Therefore, by Borel-Cantelli’s Lemma, we have that

Pr(Ek i.o.) = 0.

This completes the proof of (8) and that of Theorem 2. �

Proof of Lemma 3. Define the following: for all i, j

W̃ij(n + 1) = Wij(n) + 1 − S∗(n)τij ,

where S∗(n) is the schedule of MUCF algorithm and τij is
the inter-arrival time for the arrival process to VOQij . When
queue is empty, treat τij as an independent r.v. without any
meaning, while if queue is not empty then treat it as the
inter-arrival time between the packet being served and the
packet behind it. In either case, due to FIFO policy the τij

is totally independent of the scheduling decisions performed
by algorithm till (including) time n and information utilized
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by the algorithm. Therefore, we will treat it as independent
random variable with Geometric distribution of parameter
λij (since arrival process is Bernoulli i.i.d.). Consider the
following: for any i, j,

W̃ 2
ij(n + 1)λij = W 2

ij(n)λij + λij − 2S∗
ij(n)τijλij

+ S∗
ij(n)τ2

ijλij + 2Wij(n)λij − 2Wij(n)S∗
ij(n)τijλij

(17)

Here we have used fact that S∗
ij(n) ∈ {0, 1}. Using (17)

and τij being Geometric r.v. with mean 1/λij , we have the
following:

E

∑
ij

W̃ 2
ij(n + 1)λij −

∑
ij

W 2
ij(n)λij | W (n)


= 2

∑
ij

Wij(n)λij − 2
∑
ij

Wij(n)S∗
ij(n) +

∑
ij

λij

− 2
∑
ij

S∗
ij(n) +

∑
ij

S∗
ij(n)λ−1

ij .

(18)

Using fact that
∑

ij λij ≤ N ,
∑

ij S∗
ij(n) ≤ N and λ−1

ij < ∞
for all i, j such that λij �= 0, we obtain that

E

∑
ij

W̃ 2
ij(n + 1)λij −

∑
ij

W 2
ij(n)λij | W (n)


≤ 2

∑
ij

Wij(n)λij − 2
∑
ij

Wij(n)S∗
ij(n) + K,

(19)

where K is some large enough constant. Now, define Sw(n)
as

Sw(n) = arg max
σ∈M

∑
i

Wiσ(i)(n).

That is, Sw(n) is the schedule whose weight is maximum
where weight of VOQij is Wij(n). Now, define notation

〈A,B〉 =
∑
ij

AijBij .

Consider the following:

〈W (n), λ − S∗(n)〉
= 〈W (n), λ − Sw(n)〉 + 〈W (n) − U(n), Sw(n) − S∗(n)〉

+ 〈U(n), Sw(n) − S∗(n)〉. (20)

By definition of S∗(n), Sw(n) and ∆(n)(= W (n) − U(n)),
it follows that

〈U(n), Sw(n) − S∗(n)〉 ≤ 0, (21)

〈W (n) − U(n), Sw(n) − S∗(n)〉 ≤ 〈∆(n),1〉, (22)

where 1 = [1], the matrix of all 1. Now, for strictly admissible
λ using the Fact, we obtain that for some β ∈ (0, 1),

〈W (n), λ − Sw(n)〉
= 〈W (n),

∑
k

αkπk〉 − 〈W (n), Sw(n)〉

=
∑

k

αk〈W (n), πk〉 − 〈W (n), Sw(n)〉 (23)

Since Sw(n) is the maximum weight schedule with weight of
VOQij as Wij(n):

〈W (n), πk〉 ≤ 〈W (n), Sw(n)〉 ∀k (24)

Thus, it follows from (23) and (24):

〈W (n), λ − Sw(n)〉 ≤ −β〈W (n), Sw(n)〉. (25)

Now, since all N2 entries can be covered by N distinct
matchings, it follows that the weight of maximum weight
matching is at least 1/N the sum of the weights of all entries.
That is,

〈W (n), Sw(n)〉 ≥ 1
N

∑
ij

Wij(n) =
|W (n)|

N
. (26)

Combining (18)-(26) and taking further expection with respect
to W (n), we obtain

E

∑
ij

W̃ 2
ij(n + 1)λij −

∑
ij

W 2
ij(n)λij


≤ −εE [|W (n)|] + 2E

∑
ij

∆ij(n)

+ K, (27)

where ε = 2β/N . To complete the proof, note that if VOQij is
non-empty after service at time n, then W̃ij(n+1) = Wij(n+
1). Else, Wij(n+1) = 0. Therefore, W̃ij(n+1)2 ≥ W 2

ij(n+
1). This inequality along with (27) imply the desired claim of
Lemma 3. �

Proof of Lemma 4. To prove this lemma, we now consider
a discrete time single FIFO queue: it has deterministic server
that can serve one packet every time-slot and time i.i.d. arrival
process with maximum number of packets arriving in a time-
slot being N with mean ρ < 1. Thus, the queue is under
loaded. Let this queue start empty. At the end of any time slot
k, let Qk denote the queue length. Let ηk denote the number
of packets arrived in time slot k. Then, the following is a
standard Lindley style recursion.

Qk = max
1≤s≤k+1

{
k∑
s

ηi − (k − s + 1)

}
. (28)

For completeness, we provide sketch of the proof for (28) as
follows. The proof essentially is induction of the claim over
k. For k = 0, since system starts empty the claim is trivially
verified. Suppose the (28) is true till some k ≥ 0. Now, we
wish to establish it for k+1. The following equation is readily
verifiable:

Qk+1 = (Qk + ηk+1 − 1)+ (29)

From (29) and the induction hypothesis we have

Qk+1 =

(
max

1≤s≤k+1

{
k∑
s

ηi − (k − s + 1)

}
+ ηk+1 − 1

)+
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But, (
max

1≤s≤k+1

{
k∑
s

ηi − (k − s + 1)

}
+ ηk+1 − 1

)+

= max

{
max

1≤s≤k

{
k+1∑

s

ηi − (k + 2 − s)

}
, 0

}

= max
1≤s≤k+2

{
(k + 1 − s) −

k+1∑
s

ηi

}
.

The first equality follows from the fact that ηk+1 − 1 is
independent of s and the last equality follows because the
expression

∑k+1
s ηi−(k−s+2) evaluates to zero for s = k+2.

This completes the justification of (28).

Now, define X(s, k)
�
=
∑k

s ηi−(k−s+1) for 1 ≤ s ≤ k+1.
Since ηi’s are i.i.d. it follows that X(s+1, k+1) has the same
distribution as that of X(s, k) for 1 ≤ s ≤ k + 1. Define

Yk = max
1≤s≤k+1

{X(s, k)}; Y
′
k = max

1≤s≤k+1
{X(s + 1, k + 1)}

and Yk+1 = max{Y ′
k ,X(1, k + 1)}.

Now, Yk and Y
′
k have the same distribution. Since Yk+1 =

max{Y ′
k ,X(1, k +1)}, Yk+1 stochastically dominates Yk and

Y
′
k . Now,

Qk = Yk ∀ k ∈ N.

Hence, Qk � Qk+1 i.e., Qk+1 stochastically dominates Qk.
Thus it follows that

E[Qk] ≤ E[Qk+1].

Recursing this we obtain that ∀ n ≥ k,

E[Qk] ≤ E[Qn].

Since the single FIFO queue defined above has arrival process
which is mixture of N Bernoulli i.i.d. processes (since the
FIFO queue corresponds to an output queue in OQ switch),
we have that the queue Markov process converges to a unique
invariant distribution. Therefore, taking n to ∞ we obtain

E[Qk] ≤ E[Q∞]

Given the distributional assumptions on arrival and service
processes, standard Large Deviation arguments will imply that
[25], for t large enough

Pr (Q∞ > t) ≤ A exp(−Bt); for some A,B > 0

Using this, the union bound and the formula E[X] =∑
t Pr(X > t), we obtain that

E

[
max
k≤M

Qk

]
≤ O(log M) (30)

V. EXPERIMENTS

We carried out simulations to compare the perfor-
mance of our algorithm, MUCF(FIFO), with Longest
Queue First (LQF) and Oldest Cell First (OCF). We
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Fig. 1. Comparison of the logarithm of Expected latencies of different
scheduling algorithms.
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Fig. 2. Comparison of the logarithm of second moments of the latencies of
different scheduling algorithms.

used a fixed-length packet switch simulator available at
http://klamath.stanford.edu/tools/SIM/.

We first explain the simulation settings: The switch size
is N = 16. The buffer sizes are infinite. The policy used is
FIFO. All inputs are equally loaded on a normalized scale, and
ρ ∈ (0, 1) denotes the normalized load. The arrival process is
Bernoulli i.i.d. We use a Uniform load matrix, i.e., λij =
ρ/N ∀i, j. We ran our simulation for 2.1 million time steps
removing the first 100,000 time steps to achieve steady-state.

Because we are approaching this problem from the per-
spective of fairness, we evaluate the aforementioned switching
algorithms in terms of Latency and Output-Queue (OQ) Delay.
OQ delay is defined as the difference of the departure times of
a cell in the input queued switch and the shadow OQ switch.
Further, the goal cannot only be to achieve a better expected
latency, but in fact, we wish to value consistency, or relatively
few deviations from the mean. One measure for this are higher
moments of the variables. Thus, here we provide plots for the
logarithm of first and second moments of both Latency and
the OQ Delay versus a uniform load of ρ.

Figures 1 and 2 correspond to latency and figures 3 and
4 correspond to OQ delay. We observe that MUCF performs
better than the other two algorithms for both the metrics at
all the loads, especially for the second moments illustrating
the fairness. Thus, the simulations illustrate that MUCF better
tracks the performance of an OQ switch than LQF and OCF.
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Fig. 3. Comparison of the logarithm of Expected output queued delays of
different scheduling algorithms.
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Fig. 4. Comparison of the logarithm of second moments of the output queued
delays of different scheduling algorithms.

VI. CONCLUSION

In this paper, we proposed a new notion of fair scheduling
algorithm for constrained packet network such as input queued
switch. We obtain such an algorithm through an equivalence
between ranked election and fair scheduling. Our algorithm,
though presented for input queued switch, can easily extend
for any constrained packet network. We established that our
algorithm is throughput maximal when it is derived based on a
FIFO OQ switch. We strongly believe that our proof extends
to an arbitrary work-conserving policy since the difference
between urgencies for FIFO and any work conserving policy
must be stochastically bounded for the reason that the second
moment of busy cycle for any work-conserving single queue
is bounded under friendly arrival process.
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