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Many networking problems suffer
from the so-called curse of dimensionality:
That is, although excellent (even optimal)
solutions exist for these problems, they do not
scale well to high speeds or large systems. In
various other situations where deterministic
algorithms’ scalability is poor, randomized ver-
sions of the same algorithms are easier to
implement and provide surprisingly good per-
formance. For example, recent work in load
balancing1,2 and for documenting replacement
in Web caches3 provides compelling demon-
strations of the effectiveness of these ran-
domized algorithms. Motwani and Raghavan
provide other examples and a good introduc-
tion to the theory of randomized algorithms.4

Here, we focus on applying randomization
to the design of input-queued (IQ) switch
schedulers. We take for granted the effective-
ness of the IQ architecture for very high-speed
and for large-sized switches. Several references
attribute this effectiveness to the IQ architec-

ture’s minimal memory bandwidth require-
ment compared with output-queued and
shared-memory architectures.

Figure 1 shows the logical structure of an
N × N IQ packet switch. We assume the
switch operates on fixed-size cells (or packets).
Each input has N first-in first-out virtual out-
put queues (VOQs), one for each output.
This VOQ architecture avoids performance
degradation from the head-of-the-line block-
ing phenomenon.5

In each time slot, at most one cell arrives at
each input and at most one cell can transfer to
an output. When a cell with destination output
j arrives at input i, the switch stores it in the
VOQ, denoted Qij. Let the average cell arrival
rate at input i for output j be λij. Incoming traf-
fic is admissible if Σi=1

N λij < 1, ∀ j; and Σj=1
N λij

< 1, ∀ i. In other words, these conditions ensure
that no input or output is oversubscribed.

We can model the scheduling problem as a
matching problem in a bipartite graph with
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N input nodes and N output nodes. The edge
between input i and output j is present if Qij

is nonempty; we give it weight wij, which
equals the length of Qij. Given the transfer
constraints in the switching fabric, a matching
for this bipartite graph is a valid schedule. For
example, Figure 2 shows a weighted bipartite
graph and one valid matching (or schedule).
We can consider a valid matching as a per-
mutation of the N outputs, and in this arti-
cle, we use the words schedule, matching, and
permutation interchangeably.

The maximum-weight matching (MWM)
algorithm delivers a throughput of up to 100
percent5,6 and provides low delays by keeping
queue sizes small. However, it is too complex to
implement because it requires O(N 3) iterations
in the worst case. Therefore, an efficient design
of the overall system (scheduler and switching
fabric) requires the best possible compromise
between ease of implementation and goodness
of throughput and delay performance.

As Keshav and Sharma pointed out, the
specific issues in high-performance router
design depend on whether the router operates
in backbone or enterprise networks. Routers
in backbone networks, which interconnect a
few enterprise networks, have few ports oper-
ating at a high line rate. Hence, a good sched-
uling algorithm for this scenario must have a
low time complexity.

Routers in enterprise networks typically
have several ports connected to slower lines.
Although slower line rates allow more time
for scheduling, a greater number of itera-
tions—stemming from the large number of

ports—consumes this extra time.
Researchers have proposed several good

switch scheduling algorithms, such as iterative
SLIP (iSLIP),7 iterative longest queue first
(iLQF),8 reservation with preemption and
acknowledgment (RPA),9 and matrix unit cell
scheduler (MUCS)10 With centralized imple-
mentations, the runtime of these algorithms is
O(N 2) or more. But by adopting parallelism
and pipelining (which means adding spatial
complexity in hardware) these algorithms can
considerably reduce their time complexity.

However, under nonuniform input traffic
the performance of these algorithms is poor
compared to MWM: They induce long
delays, and their throughput can be less than
100 percent. Furthermore, solutions that
intrinsically possess an O(N 2) runtime com-
plexity are unlikely to scale for implementa-
tion in high-speed and large-sized switches.

Here, we discuss how to design low-com-
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plexity switch schedulers by exploiting the
power of randomized algorithms.

Main features of our approach
We base our approach on the following

observations:

• The state of the switch as captured by its
queue lengths, for example, does not
change by much between two consecu-
tive time slots. Thus, it is likely that good
matchings at times t and t + 1 are quite
closely related in that the heavier weight-
ed edges in one matching are likely to be
in the other. This suggests that it is pos-
sible to use the matching at time t to
devise the matching at time t + 1, elimi-
nating the need to compute matchings
from scratch in each time slot.

• We can use a randomly generated match-
ing to improve the matching used at time
t and use it for obtaining the matching
at time t + 1.

• Most of a matching’s weight is typically
contained in a few edges. Thus, it is more
important to choose edges at random
than it is to choose matchings at random.
Equally, it is more important to remem-
ber the few good edges of the matching
at time t for use in time t + 1 than it is to
remember the entire matching at time t.

Tassiulas recently proposed a very simple
randomized algorithm, based mainly on the
first two observations.11 We can describe this
algorithm as follows. At time t + 1, choose
matching R uniformly and randomly from the
N ! possible matchings. Compare R’s weight
with matching M used at time t, and use the
more heavily weighted matching as the sched-
ule at time t + 1. Remember this matching for
the next time slot.

Tassiulas proved that this algorithm
achieves up to 100 percent throughput. How-
ever, as we will see later, packets using this
matching can experience long delays. Essen-
tially, an algorithm must exploit our third
observation to control delays.

We use all three observations to devise an
efficient randomized algorithm, which we call
Laura. We can prove that it achieves a through-
put of up to 100 percent. Simulations show
that it provides delays close to that of MWM

and outperforms all other known low-com-
plexity scheduling algorithms. Laura needs an
external source of randomness to obtain ran-
dom matchings each time, which can cause
some implementation difficulties. To over-
come this problem, we propose an enhanced
version of Laura, called Serena, which exploits
the randomness present in the arrivals process
to determine good random matchings. Fortu-
itously, this also improves performance,
because the arrivals are precisely what increase
the weight of edges. Using them leads to bet-
ter (more heavily weighted) schedules.

Discussion of randomized approaches
Using simulations, we present a series of

steps for determining the correct criteria for
designing efficient randomized schemes. We
begin with some naive schemes, progressive-
ly make design decisions for improving their
performance, and end up with the Laura and
Serena schemes.

Simulation setting
We first must define a particular switch,

input traffic, and performance measures.

Switch. Switch size N equals 32. Each VOQ
has maximum capacity Qmax of 10,000 pack-
ets. The switch does not share buffers, and it
also drops excess packets.

Input traffic. Packets arrive at inputs according
to independent and identically distributed
Bernoulli processes. All inputs have equal nor-
malized load, and ρ denotes the correspond-
ing load factor. In the following, we abbreviate
k mod N as |k|. We considered three types of
loading matrices:

• Uniform. In a uniform matrix, λij = ρ/N
∀ i,j. This is the most commonly used
test traffic profile in the literature.

• Diagonal. A diagonal loading has λii = 2ρ/3,
λi|i+1| = ρ/3 ∀ i, and λij = 0 for all other i and
j. This loading is skewed in the sense that
input i has packets only for outputs i and 
|i + 1|. This type of traffic is more difficult
to schedule than uniform loading, because
arrivals favor the use of only two matchings
out of the 32! possible matchings.

• Log diagonal. For a log-diagonal loading,
λij = 2λi|j+1| and Σi λij = ρ. For example,
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the load distribution at input 1 across
outputs is λ1j = 2N − jρ/(2N − 1). This type
of load is more balanced than diagonal
loading, but clearly more skewed than
uniform loading. Hence, a specific algo-
rithm’s performance will become worse
as the loading changes from uniform to
log diagonal to diagonal.

Performance measures. We compared algorithms
on the basis of the mean input queue lengths
they induce and computed delays using Little’s
formula. The simulations ran until the confi-
dence interval of the estimated average delay
reached a relative width of 1 percent with prob-
ability ≥ 0.95. The estimation of the confidence
interval uses the batch means approach.

Random I
In this and the next few sections, we present

various randomized algorithms. Due to space
limitations, we shall consider their perfor-
mance only under diagonal loading. This type
of loading is particularly discriminating with
randomized algorithms, because it requires
them to find good matchings randomly from
a large space of possible matchings.

The first randomized algorithm, Random
I, is the most obvious randomized algorithm
and works as follows:

• For every time, pick matching R uni-
formly and randomly from all possible
N ! matchings.

• Use R as the schedule.

For this algorithm, Figure 3 shows that the
average queue length under a diagonal traffic
pattern is excessive when normalized load ρ >
0.06.

Random II
An obvious refinement of the previous

algorithm, which we call Random II, is the
following:

• Choose d > 1 matchings uniformly and
randomly in each time slot.

• Use the highest weighted of these match-
ings as the schedule.

For d = 32, Figure 3 shows that Random II
performs better than Random I, as expected.

However, its performance is still quite poor
compared to MWM.

Random III
This algorithm, originally proposed by Tas-

siulas,11 works as follows:

• Let S(t) be the schedule used at time t.
• At time t + 1, choose a matching R(t + 1)

uniformly and randomly from the set of
all N! possible matchings.

• Let the schedule at time t + 1, S(t + 1), be
the heavier weighted of S(t) and R(t + 1).

As mentioned earlier, Random III exploits
the fact that the input buffers’ states don’t
change by much during successive time slots.
Tassiulas shows that this fact makes Random
III a stable matching; that is, Random III
delivers a throughput of up to 100 percent.
This algorithm clearly outperforms Random
II in terms of delay, as Figure 4 (next page)
shows. But, when compared with MWM, the
delays it induces are still very large even when
the load is approximately 40 percent of max-
imum possible throughput.

Random IV
We now use the observation that just a few

edges carry most of the matching’s weight, and
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therefore it is better to remember edges
between iterations than it is to remember
entire matchings. Under uniform loading,
most edges have similar weights, and it does
not matter which matching we use. This is
also the main reason that most algorithms per-
form well under uniform loading. But when
the loading is nonuniform, edge weights are
highly skewed: Just a few edges carry most of
the weight of a randomly chosen matching.
Algorithms that exploit this fact, therefore,
typically outperform algorithms that don’t.

Let Fη(M) be the minimal set of edges in
matching M carrying at least an η fraction of
the total weight of M. Let |Fη(M)| denote the
cardinality of Fη(M). Here 0 < η ≤ 1, where
η is the selection factor.

As the next step in our evolutionary devel-
opment, consider the following algorithm,
Random IV:

• Let S(t) be the matching used at time t.
• Compute Fη[S(t)].
• At time t + 1, let R(t + 1) be the match-

ing that first uses the edges in Fη[S(t)].
This leaves N − |Fη[S(t)]| input/output
nodes unmatched. R(t + 1) connects
these unmatched input/output nodes
using a randomly chosen matching.

• Let S(t + 1) equal the heavier weighted
of R(t + 1) and S(t).

We can generalize Random IV to Random
IV-rm to improve each of the m matchings.
Random IV-rm stores m matchings from the
past and considers r random matchings,
obtained by applying the third phase of Ran-
dom IV r times independently.

Figure 4 shows the performance improve-
ment given by Random IV and Random IV-
rm with η = 0.5 and m = r = N. The idea of
keeping the best edges of a matching from one
time slot to another is promising. We use it in
our innovative scheduler, Laura.

Laura
We base Laura mainly on the following

ideas:

• Use good schedules from a previous time,
and avoid computation from scratch
every time.

• Obtain good random matchings using a
very different technique that is sensitive
to higher-weight edges.

• Instead of choosing the better of two dif-
ferent schedules, merge them to obtain a
better solution.

We next describe the complete algorithm,
but, in the interest of space, we do not
describe some details.

Let M1, ..., MS be S distinct matchings
remembered from past time slots. Let ψ(M)
denote the weight of matching M at the current
time. For every time slot, do the following:

• Obtain V random matchings X1, ..., XV

from V independent trials of procedure
Random, which we describe in the next
section.

• Obtain higher-weight schedules, M′ij =
Merge(Mi, Xj), for 1 ≤ i ≤ S, 1 ≤ j ≤ V.
We describe procedure Merge in a fol-
lowing section.

• Let
~
Mi = arg maxj[ψ(M′ij)].

• Let Mmax = arg maxi(
~

Mi), which we use as
schedule. In the Max-Laura version, we
use the maximized version of Mmax.

• Retain only the S matchings with the high-
est weight among all S × V schedules M′ij.

Random procedure
This random selection procedure finds a ran-

dom matching that depends on the weight
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matrix. At the same time, the random selection
cannot be a nonuniform random selection
based on the weights, because such a scheme is
too complex to implement. To obtain an effec-
tive and simple random selection procedure,
Random runs in multiple stages to obtain a
weight-dependent schedule, while at each stage
it uses random matchings generated indepen-
dently of weights. We describe the Random
procedure as follows. Initially, we mark all
inputs and outputs as unmatched, then repeat
the following steps in each of I iterations:

• Let 1 ≤ i ≤ I be the current iteration num-
ber. Let k ≤ N be the number of
unmatched input-output pairs. Choose
random matching Xi(k) of this unmatched
bipartite graph uniformly and randomly
from the k! possibilities.

• If i < I, retain the edges corresponding to
Fη[Xi(k)] and mark the nodes they cover
as matched. If i = I, then retain all edges
of Xi(k).

This procedure yields a complete matching
with N edges.

Merge procedure
Merge runs on two matchings, M1 and

M2, and matching
~

M. We describe Merge as
follows.

Let G′ = M1 ≈ M2; in other words, G′ is a
bipartite graph with the edges obtained by the
union of matchings M1 and M2. Let

~
M ini-

tially be a bipartite graph with no edges.

Phase A. Mark all N input and output nodes
of G′ as unmarked. Repeat the next six steps
until all nodes in G′ are marked. This phase
ends after visiting at most 2N edges.

• Let v be an unmarked input node. Set
path Pv = Ø. Let ψ (Pv) denote the weight
of path Pv. Initially, set ψ(Pv) = 0.

• Let (v, w) ∈ M1. Add (v, w) to Pv, and set
ψ(Pv) = ψ (Pv) + ψ(v, w).

• Let (w, u) ∈ M2. Add (w, u) to Pv, and set
ψ(Pv) = ψ (Pv) − ψ(w, u).

• If u = v, stop. Or else, repeat the first three
steps with u in place of v, and update Pv

accordingly.
• Let M1(Pv) denote the edges of M1 that

belong to Pv, and similarly denote

M2(Pv). If ψ(Pv) ≥ 0, set
~

M=
~

M ≈ M1(Pv).
Or else, let

~
M =

~
M ≈ M2(Pv).

• If any node q is unmarked, start from the
first step with q in place of v.

Phase B. Output
~

M as the solution, which has
the property ψ(

~
M ) ≤ ψ(M1), ψ(M2).

Figure 5 shows an example merging of
matchings M1 and M2.

Stability properties
We assert that Laura is a stable algorithm—

that is, it achieves 100 percent throughput
under any admissible traffic patterns. Although
we have proved this theorem, we omit the
proof here because of space limitations.

Runtime
Laura’s worst case running time is bounded

by O(VIN log2N + SVN). In our proposed
implementation, we set I = log2 N; S and V
are constant. In particular, in our implemen-
tation we set S = 2 and V = 1. Hence, the algo-
rithm’s runtime is O(N log2 N). This is quite
low compared to the runtime of O(N 3) for
MWM, O(N 2.5) for maximum-size matching,
and for all other approximations thus far pro-
posed. Max-Laura does extra work to make
the matching maximal. If l of N nodes remain
unmatched, then a simple algorithm to obtain

15JANUARY–FEBRUARY 2002

47

11

Old
matching M1

Random
matching M2

23

31

97

23

5

7

89

Weight = 209 Weight = 106

Merged-matching X

Merge

Weight = 217

Figure 5. Merging example for matching
M1 and M2. The weight of the final match-
ing is always greater than or equal to the
maximum weight of M1 and M2.



a maximal matching takes a worst-case time
of O(l 2). If l is small, this time is negligible
compared to that of other algorithms. From a
simulation study, we find that, in most cases,
l << N, which suggests that the additional
work done by Max-Laura is negligible.

Robustness
We explored Laura’s sensitivity to several

parameters to understand its robustness as its
complexity decreased. We studied the sensi-
tivity to I, S, and dmin, and we also studied a

nonrandomized version of Laura. In all these
cases, we always experienced delays compara-
ble to those of the original version of Laura.

Serena
Serena is a variant of Laura that uses packet

arrival times as a source of randomness. It also
uses an innovative merging algorithm. Laura
uses the randomization to obtain unknown
heavily weighted edges with low complexity.
Observe that an edge becomes heavily weight-
ed if its corresponding queue receives many
arrivals and few services. Hence, an algorithm
can capture the randomness provided by arrivals
and use it to find heavily weighted edges.

The basic version of Laura merges the past
schedule with a randomly generated match-
ing. In contrast, Serena considers the edges
that received arrivals in the previous time slot
and merges them with the past matching to
obtain a higher-weight matching.

Consider the bipartite graph at time t in
which edges are those revealed by the arrivals.
Thus, edge eij is present in this arrival graph if
and only if a packet arrived at input i and was
destined for output j at time t. Figure 6 shows
an example arrival graph. This graph has at
most N edges (because there is at most one
arrival per input in each time slot), each input
node has at most a degree of 1, but an output
can have a degree of up to N.

Serena merges the arrival graph with match-
ing M(t) used in time slot t − 1 to obtain the
schedule at time t. Here, we do not discuss the
Arrival-Merge procedure in detail; but
it is a simple procedure, loosely described as
follows. For each output in the arrival graph
that has multiple incident edges, choose the
heaviest weighted edge and discard the other
edges. This process results in a subgraph in
which some input-output pairs are matched
and others aren’t. We arbitrarily match all
unmatched input-output pairs. Serena merges
the resulting matching with M(t) to obtain
schedule S(t) at time t.

More formally, we describe Serena as fol-
lows:

• Let M(t) be the matching used at time t
− 1.

• Let A(t) = Aij(t) denote the arrival graph,
where Aij(t) = 1 indicates arrival, and Aij(t)
= 0 indicates otherwise.
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• Let S(t) = Arrival-Merge[M(t),
A(t)], where Arrival-Merge is a spe-
cial procedure, which we describe using
the example in Figure 6.

• Use S(t) as the schedule, and let M(t + 1)
= S(t).

Serena is even simpler than Laura, because
it does not need to generate a random match-
ing in each time slot. We note that Serena is
a self-randomized algorithm—it does not use
any external randomization.

Performance study
Figures 7, 8, and 9 compare the perfor-

mance of Laura and Max-Laura, using the set-
tings in Table 1. The figures compare these
algorithms with well-known algorithms
iSLIP7 and iLQF,8 both using N iterations.

Laura shows long delays for low load,
because it is not maximal. By making Laura
maximal, Max-Laura has delays as short as
those of MWM even for low loads. Laura and
Max-Laura outperform the other approxi-
mating algorithms for high load and nonuni-
form traffic patterns.

Figure 10 compares the performances of
Serena and Laura with only one stored match-
ing. It shows that Serena’s Arrival-Merge
outperforms Laura’s usual Merge, which uses
the Random procedure. But Arrival-
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Table 1. Simulation settings for Laura 

and Max-Laura.

Parameter Symbol Value

Random-matching probes V 1
No. of stored matchings S 2
No. of iterations I 5
Selection factor η 0.5
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Figure 10. Comparison of Serena with Laura using one
stored matching (S = 1) and under diagonal traffic. In this
case, Serena’s Arrival-Merge outperforms Laura’s
Merge.



Merge requires a somewhat more complex
data structure. The choice of Serena or Laura
should be based on the design tradeoffs asso-
ciated with overall system performance.

Given the simplicity of the algorithms
Laura and Serena, we would like to actu-

ally implement these algorithms in hardware
in an actual switch. On the other hand, it will
be interesting to theoretically prove that the
delays of these algorithms are approximately
close to that of the maximum-weight match-
ing algorithm. MICRO
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