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ABSTRACT
Game theoretic modeling and equilibrium analysis of con-
gestion games have provided insights in the performance of
Internet congestion control, road transportation networks,
etc. Despite the long history, very little is known about
their transient (non equilibrium) performance.
In this paper, we are motivated to seek answers to ques-

tions such as how long does it take to reach equilibrium,
when the system does operate near equilibrium in the pres-
ence of dynamics, e.g. nodes join or leave. In this pursuit,
we provide three contributions in this paper. First, a novel
probabilistic model to capture realistic behaviors of agents
allowing for the possibility of arbitrariness in conjunction
with rationality. Second, evaluation of (a) time to con-
verge to equilibrium under this behavior model and (b) dis-
tance to Nash equilibrium. Finally, determination of trade-
off between the rate of dynamics and quality of performance
(distance to equilibrium) which leads to an interesting un-
certainty principle. The novel technical ingredients involve
analysis of logarithmic Sobolov constant of Markov process
with time varying state space and methodically this should
be of broader interest in the context of dynamical systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; G.3 [Probability and Statistics]: Markov
processes

General Terms
Algorithms, Performance, Reliability
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1. INTRODUCTION
In the recent years, game theoretic frameworks have pro-

vided sound models for analyzing the performance of large
networks formed out of independent, autonomous or non-
engineered agents. A successful example is the study of
equilibrium behavior of flow level, bandwidth sharing model
of the Internet (cf. Kelly, Maullo and Tan [13]) under self-
ish behaviors of agents, users, computers or network nodes.
Specifically, the result of Johari and Tsitsiklis [11] (also see
Roughgarden and Tardos [20]) suggests that despite the self-
ish behaviors of agents or users, the performance loss (com-
pared to optimal allocation) incurred under the equilibrium
is small. This result about limited performance loss, pop-
ularly known as the small price of anarchy (cf. [14]), holds
for the broader class of congestion games [2][20][6][19].

An interesting feature (and hence usefulness) of conges-
tion games is that the network reaches the Nash equilibrium
under simple, myopic best response strategy : each agent
updates its action selfishly at every available opportunity.
Under more realistic modeling, one expects agents to make
partly rational or selfish decisions. For example, each agent
updates its action selfishly with some probability and ar-
bitrarily otherwise. For a wide class of such partly myopic,
selfish behavior models, including the popular logit-response,
it is well understood that equilibrium is reached in an asymp-
totic sense.

In summary, under a reasonable behavioral model of au-
tonomous agents (cf. partly selfish and myopic), Nash equi-
librium is reached and the performance loss under the equi-
librium state is limited. However, in reality we expect the
network to be in transience continually, e.g. agents join or
leave the network. Therefore, it is important to understand
the transience properties of the network evolving under rea-
sonable behavioral models of agents. And very little (or
nothing) is known in the literature about them.

In this paper, we shall undertake the study of transient
network properties. Specifically, we shall examine the rate of
convergence to equilibrium under a class of behavioral model
for agents and study the effect of network dynamics, in terms
of players joining or leaving, on the network performance.

1.1 Related Work
Here we briefly describe relevant prior works. To this end,

the congestion game was introduced in [2]. The congestion
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game is an instance of the symmetric potential games. A
game is symmetric if an agent’s utility (or payoff) depends
only on other agents’ aggregate actions, but not on their
identities. And a game is potential if a (marginal) payoff
due to change in an action for any agent can be described
by the marginal payoff due to the same action change in
a single global function. Indeed, congestion games satisfy
both of these properties (see Example 1 in Section 2.1).
The potential games were introduced by Monderer and

Shapley [17]. The potential games are widely practically
applicable including congestion games. The best response
mechanism reaches Nash equilibrium for any potential game
(cf. the result by Cournot [7] for duopoly games). In this
mechanism, agents update their strategies sequentially, by
choosing the best possible strategy against the other agents’
choices. While the best response mechanism is simple and
myopic, in reality one does not expect agents to be fully
rational. This led to the study of the best response with er-
ror: agents behave as per the best response with probability
1−ε and respond arbitrarily (commit mistake or error) with
probability ε. Various results about the long-term behavior
of this mechanism has been obtained by Friedlin [15], Kan-
dori, Mailath and Rob [12] and Young [22]. However such
results are often criticized for their extreme sensitivity to
the underlying error model (cf. [3]).
In response to this criticism as well as to provide a more re-

alistic behavioral model, Blume introduced the logit-response
mechanism [4]. Here, each agent chooses strategy probabilis-
tically with larger probabilities for actions with larger pay-
offs. More precisely, the probability is chosen as per the logit
form and hence the name logit-response. A parameter, usu-
ally denoted by β > 0, governs the intensity of rationality:
larger β, higher chance of agent choosing the best response
and as β → ∞ the logit-response mechanism becomes the
standard best response mechanism.
Blume [5] observed that for any potential game the logit-

response mechanism leads to a reversible Markov process
with the product form stationary distribution. And as β →
∞, this stationary distribution concentrates on a Nash equi-
librium. We take a note of utilization of the logit-response
mechanism in the context of design of control for networked
systems [16].
Clearly, many natural and important questions remain

unanswered. To begin with, we wish to understand the
probabilistic distance to the Nash equilibrium, under the
stationary distribution, for a given intensity of rationality
β > 0. Next, determination of the time it takes to con-
verge (close) to the stationary distribution under the logit-
response mechanism. This will suggest that if the system
changes at a slower time scale than the convergence time,
then it will remain close to the stationary distribution. Fi-
nally, we wish to characterize the effect of dynamics on the
performance for the entire spectrum of dynamics. But most
importantly, we would like to come up with a more realistic
behavioral model of agents that can capture aspects that are
missing in the standard logit-response model.

1.2 Our Contributions
As the main result of this paper, we answer all of the

above questions in the context of symmetric potential games,
which includes the congestion game as a special instance.
To begin with, we define the notion of universal symmetric

potential games so as to allow us formally study the effect of

dynamics in terms of agents (or players) joining or leaving.
Indeed, the congestion game naturally extends to become
an instance of universal symmetric potential games.

First, we study the stationary distribution under the logit-
response mechanism. This suggests that, for any finite ε > 0,
in order to be ε-close to the Nash equilibrium in any sense,
β must scale as Ω(n), for games of n agents. That is, for
the logit-response to be effective, it ought to be close to the
best response. An immediate implication of this is that for
a arbitrary symmetric potential function, the convergence
time under the logit-response may need to be exponential in
n for β = Ω(n) (see Example 2 in Section 2.2). In summary,
Logit-response is rather undesirable from the perspective of
error in the performance as well as the convergence rate.

The logit-response mechanism misses the following aspect
– if an agent finds that she is playing a strategy that is
played by a small fraction of other agents then she is likely
to be more anxious to verify whether her current strategy
is indeed a good choice. We explicitly model this aspect
and provide a very minor modification of the standard logit-
response mechanism. Essentially, in contrast to the standard
logit-response in which each player updates her strategy at
uniform rate, in the modified mechanism each player up-
dates her strategy in a non-uniform manner.

Under this modified logit-response, we characterize the
stationary distribution. We find it to be ε-close to the Nash
equilibrium for β scaling as ε log 1/ε, in contrast to Ω(n) as
per the standard logit-response. Further, the convergence
to the stationary distribution happens in essentially linear
(in n) time, exponentially faster compared to the standard
logit-response.

Finally, we study the effect of dynamics, in terms of agents
joining or leaving, on the performance of our modified logit-
response mechanism. We consider the scenario where the
number of agents can change arbitrarily but at a bounded
rate. We find a precise relation between the performance
error (distance to the Nash equilibrium) and this rate of
dynamics.

To establish our results, especially under the dynamic
setup of agents, we develop a novel technique to analyze
the mixing time of Markov process of which state space is
changing over time. To obtain sharp results, we study the
evolution of entropy distance between the empirical distri-
bution of Markov process and its stationary distribution.
This requires to evaluate a logarithmic Sobolov constant of
Markov process. Evaluating a logarithmic Sobolov constant
is harder in general than the more popular spectral analysis
(e.g. spectral gap, conductance, canonical path, etc.), but is
crucial for our success. Our evaluation is building upon the
work of Frieze and Kannan [10].

In the context of congestion games, our results can be in-
terpreted as follows. The modified logit-response mechanism
provides a more realistic model for agents’ behaviors, such
as drivers on the road or computers which uses the Internet.
The quick convergence to near Nash equilibrium even with
small intensity of rationality and robustness of the long-term
behavior with small price of anarchy suggests that in reality
even though players are only partly rational and network is
highly dynamic, the network operates near optimal. That is,
for congestion games the dynamic price of anarchy is small
!

Organization. Section 2 provides the necessary notions,
the symmetric potential game and the logit-response learn-

108



ing mechanism. We also introduce our new notion of the uni-
versal symmetric potential game in Section 2.1. In Section
3, we present our main results, the modified logit-response
and its robustness (or uncertainty principle) in the dynamics
setup i.e. players join or leave over time. Section 4, 5 and 6
are dedicated to prove our theoretical claims.

2. SETUP
In this section, we start with description of symmetric

potential game, the concept of Nash equilibrium and relation
to the optima of potential function. We recall the congestion
game and explain it as an instance of symmetric potential
games. We describe a popular behavioral model of the logit-
response mechanism and state its property for our setup.

2.1 Symmetric Potential Game
A game G = (n, s, {up}) consists of n agents, players or

nodes1. Each player can play one of the s strategies (s ≥ 2)
denoted as [s] = {1, . . . , s}. Let up : [s]n → R be the utility
or payoff function of player p, for 1 ≤ p ≤ n. That is, the
payoff (profit/utility) obtained by player p is up(s1, . . . , sn)
when the strategy played by all n players are s1, . . . , sn re-
spectively. Throughout the paper, our interest will be when
s is fixed and small while n is large and dynamic.
Naturally, the selfish goal for each player is to maximize

her own profit. However the profit of player, in addition to
her own strategy, depends on the strategy of other players.
Therefore, in a totally rational world, if a player can im-
prove her own profit by changing her strategy, she will do
it. Therefore, an equilibrium is the state in which no player
can improve her payoff by changing her strategy unilater-
ally. This leads to the well known notion of the pure Nash
equilibrium.

Definition 1 (Pure Nash Equilibrium). Strategies s
= (s1, s2, . . . , sn) is a pure Nash equilibrium of G = (n, s, {up})
if for each player p ∈ [n],

up (s) ≥ max
i∈[s]

up (s1, . . . , sp−1, i, sp+1, . . . , sn) .

In general, a game may not have a pure Nash equilibrium.
For the class of games of interest in this paper, the symmet-
ric potential games do posses pure Nash equilibrium. To
this end, we introduce definitions of potential and symmet-
ric games.

Definition 2 (Exact Potential Game [17]). A game
G is called an exact potential game if there exists a potential
function P : [s]n → R such that

up(i, s−p)− up(j, s−p) = P (i, s−p)− P (j, s−p) . (1)

For a potential game, it is well known that s∗ is a pure Nash
equilibrium if

s∗ ∈ arg max
s∈[s]n

P (s).

It is also known [21, 9] that G is an exact potential game
if and only if there exists a potential function P : [s]n → R
and auxiliary function H : [s]n−1 → R such that

up(s1, s2, . . . , sn) = P (s1, s2, . . . , sn) +H (s−p) , (2)

where s−p := (s1, s2, . . . , sp−1, sp+1, . . . , sn).

1Throughout this paper, we shall use terms agent, player
and node interchangeably.

Definition 3 (Symmetric Game). A game G is called
a symmetric game if for any permutation π of {1, . . . , n},

up(s1, s2, . . . , sn) = uπ(p)(sπ(1), sπ(2), . . . , sπ(n)).

An important property in symmetric games is that the pay-
off of a player p for any given strategy sp depends on the
other players strategy only through their aggregate behav-
iors – i.e. how many other players are playing strategy 1,
. . . , strategy s matters, and identities of players do not.

We call a game G symmetric potential if it is both sym-
metric and exact potential. Specifically, as per (2) for such
a game, it must be that P and H are symmetric. That is
for any permutation π of n and s = (s1, . . . , sn) ∈ [s]n,

P (s1, . . . , sn) = P (sπ(1), . . . , sπ(n)),

and similarly for H. Therefore, value of P (resp. H) does
not depend on which player exactly plays what strategy,
but depends only on the aggregate information of how many
players play a particular strategy. Therefore, in a symmetric
potential game, the potential function P (resp. H) can be re-
defined in terms of a lower-dimensional function P : Ψs

n → R
(resp. H : Ψs

n−1 → R), so that for any s = (s1, . . . , sn) ∈
[s]n,

P (s1, . . . , sn) = P (x1(s), . . . , xs(s)) ,

where xj(s) =
1
n
|{p ∈ [n] : sp = j}|. Throughout, we shall

use this notation

x(s) = (x1(s), . . . , xs(s)) for s ∈ [s]n.

Also we shall use Ψs
n to denote

Ψs
n =

{(v1
n
, . . . ,

vs
n

)
: vi ∈ Z+ for all i ∈ [s],

s∑
i=1

vi = n

}
.

And, hence the payoff or utility function of each player p
will have form

up(s) = P(x(s)) +H (x (s−p)) , for any s ∈ [s]n. (3)

We shall use P and P interchangeably throughout. There-
fore, in what follows, one may think of P as a function
Ψs

n → R. Next we present the congestion game as an in-
stance of symmetric potential games.

Example 1 (Congestion Game). A congestion game
is an n player game in which each player’s strategy consists
of a set of resources, and the cost of the set of strategy, say
[s] = {1, . . . , s}, depends only on the number of players using
each resource, i.e. the cost takes form

∑
e de(xe(s)), where

xe(s) is the number of players using resource e and de is a
non-negative increasing function. A standard example is a
network congestion game on a directed graph (e.g. road or
transportation network), in which each player must select a
path from some source to some destination, and each edge
has an associated “delay” function that increases with the
number of players using the edge. It is well known that this
game admits potential function

ϕ(s) = −
∑
e

∫ xe(s)

0

de(z)dz.

Clearly, this is a symmetric potential function and hence an
instance of symmetric potential games. And the maximizer

of ϕ(s) (or minimizer of
∑

e

∫ xe(s)

0
de(z)dz) is a Nash equi-

librium. The relation between the “delay” induced by such
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an equilibrium state and the socially optimal solution, mini-
mizing total “delay”

∑
e xe(s) · de(xe(s)), has been well stud-

ied under the popular price of anarchy literature in the past
decade, cf. [14][20][19][11].

In this paper, we shall be interested in studying the setup
where the number of players are changing over time. To be
able to consistently define the notion of symmetric potential
game for such a dynamic setup without cumbersomeness, we
introduce the notion of universal symmetric potential game
defined as follows.

Definition 4 (Universal Symmetric Potential).
For a given s ∈ N, P : Ψs

∞ → R and H : Ψs
∞ → R, a

sequence of games Gn = (n, s, un
p ) for any number of play-

ers n ≥ 2, is called a universal symmetric potential game
(s,P,H) if the payoff functions of Gn is given by

un
p (s) = P (x(s)) +H (x(s−p)) ,

for any s ∈ [s]n.

In above, Ψs
∞ is defined as:

Ψs
∞ :=

{
(x1, . . . , xs) : xi ∈ [0, 1] for all i ∈ [s],

s∑
i=1

xi = 1

}
.

Clearly, if the number of players is fixed, this definition re-
duces to the standard non-dynamic setup.

2.2 Learning Mechanism : Logit-Response
Our interest is in understanding the transience properties

of universal symmetric potential games under a natural be-
havioral setup. As discussed earlier, it is only reasonable to
expect players or agents to utilize simple, myopic learning
rules to choose their strategies over time. For example, as
a car driver using a road network everyday, she will update
her route selection daily by reacting to delays observed over
the recent past using a simple, myopic selfish rule. The logit-
response learning rule or mechanism provides a reasonable
model for it. We briefly recall its precise definition in our
setup.
We shall consider an asynchronous version of the logit-

response learning mechanism. Let us consider it for a sym-
metric potential game G = (n, s,P,H). In Logit-response
[1], every player p has an independent Exponential clock of
rate 1: that is, the times between two consecutive clock-ticks
are independent and distributed as the exponential distribu-
tion of mean 1. When the clock of player p ticks, she obtains
an opportunity to revise her strategy. And, she chooses to
play strategy i ∈ [s], till the next clock ticks, with probabil-
ity

eβup(i, s−p)∑
j∈[s] e

βup(j, s−p)
. (4)

In above, recall that s−p ∈ [s]n−1 is the current strategy
profile of other players and β > 0 is some constant. As β
becomes larger, the player chooses strategy with the best
payoff given s−p with higher probability. In that sense, pa-
rameter β serves as the index of rationality. And, the finite
value of β models the possible non-rational behaviors of play-
ers as one may expect in real scenarios. Using (1) and (3),
in symmetric potential games, the updating probability can

be simplified to

eβup(i, s−p)∑
j∈[s] e

βup(j, s−p)
=

eβ P(x(i, s−p))∑
j∈[s] e

β P(x(j, s−p))
.

The above Logit-response induces a continuous time, re-
versible and irreducible Markov chain on the (finite) state
space Ψs

n. Then, the following characterization of its unique
stationary (invariant) distribution π follows from the stan-
dard arguments using the reversibility.

Lemma 1. The stationary distribution π = [πx]x∈Ψs
n

of
the (asynchronous) logit-response of symmetric potential game
G = (n, s,P,H) is

πx ∝ eβP(x)

(
n

nx1 . . . nxs

)
≈ eβP(x)+nH(x), (5)

with H(x) = −
∑

i xi lnxi, for any x = (x1, . . . , xs) ∈ Ψs
n.

Now if β = o(n), i.e. a player’s “rationality” scales slower
than n, then

βP(x) + nH(x) = (1± o(1))nH(x),

where we assume P is bounded below and above (indepen-

dent of n). Hence essentially πx ∝ enH(x). Therefore, for n
large enough the distribution π concentrates on the uniform
strategy profile, i.e. x ≈ [1/s] with high probability. And,
hence the players’ payoff function (or preferences) become
irrelevant. That is, to have any reasonable equilibrium (i.e.
the stationary distribution π) under Logit-response in our
setup with large number of players, n, it is essential that
β scales at least proportional to n, i.e. β = Ω(n). In that
case, as we explain in the following example, the worst con-
vergence time of Logit-response to equilibrium is exponential
in n.

Example 2. Suppose β = Ω(n) i.e. β ≥ cn for some
c > 0. Consider the example when s = 2 and

P(x1, x2) = |2x1 − x2| −
H(x1, x2)

c
.

First observe that πx ∝ eβ|2x1−x2|−ζH(x1,x2) from (5), where
ζ ≥ 0. Then, it is easy2 to check that it takes Ω

(
eβ

)
(=

eΩ(n)) time for Logit-response starting from the initial state
x1 = (0, 1) ∈ Ψs

n to reach x2 = (1/3, 2/3) ∈ Ψs
n. Hence, it

also takes exponential time to reach the maximizer (1, 0) ∈
Ψs

n of P.

In summary, under Logit-response for symmetric potential
games, (a) to reach reasonable equilibrium, the “rationality”
of players must scale with the number of players n, and (b)
for such a setting, the time to reach equilibrium is quite
large. Due to this undesirable transience property, it is rea-
sonable to expect that under Logit-response, the network
state is very fragile to dynamics in terms of players.

3. MAIN RESULTS
Two key results of this paper are state here. The poor

transient properties (or fragility) of the Logit-response mech-
anism raises a natural question : is there a simple, Logit-
response like mechanism that has much nicer transient or
convergence properties and subsequently is robust to dynam-
ics in the network ?

2Use the fact that πx1/πx2 ≥ eβ .
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3.1 Efficient Learning Mechanism
We propose a novel Logit-response like mechanism with

the desired transient and robustness properties. It is exactly
same as Logit-response – every player has an Exponential
clock and when it ticks she updates its strategy probabilis-
tically as per (4). The only minor change is that the clock
rate of each player is time varying, unlike the fixed unit rate
as in the standard Logit-response. And it is merely a func-
tion of number of players playing the same strategy at that
time.
Specifically, let s(t) = (s1(t), . . . , sn(t)) ∈ [s]n be the

strategies that n players are playing at time t. Then, the Ex-
ponential clock of any player p is α/zp(t), where zp(t) is the
fraction of players (including p) that are playing the same
strategy as p at time t, i.e. zp(t) = 1

n
|{q ∈ [n] : sq(t) =

sp(t)}|. Here α > 0 is a parameter. When the clock of player
p ticks, she chooses her strategy probabilistically from [s] as
per (4). We shall call this the modified Logit-response learn-
ing mechanism with parameters α, β.
This mechanism induces a reversible and irreducible Markov

process on Ψs
n. Somewhat surprisingly, we find that this

minimal change leads to the following exponentially twisted
distribution that removes the dependence on the ‘entropy
term’, nH(x), that was present in the stationary distribu-
tion of the standard Logit-response. As we shall see, this
leads to the desired properties we have listed above.

Lemma 2. Given symmetric potential game G = (n, s,P,H),
the stationary distribution under the modified Logit-response
with parameters α, β, is

πx ∝ eβP(x), x ∈ Ψs
n. (6)

The proof of Lemma 2 is explained in Section 4.2. The pa-
rameter α > 0 does not play a role in characterizing the
stationary distribution but in the time to reach equilibrium.
Next, we compare the total rate of changes or the average
number of updates per unit time between the standard and
modified versions of the Logit-response. Under the standard
Logit-response, it is n. And, under the modification it be-
comes

∑s
i=1 nxi

α
xi

= αsn since nxi players have clock rate

α/xi for i ∈ [s]. Thus, if α = 1/s, then both version of
the learning mechanisms have exactly the same effect up-
date rate. However, as we state next, the time to reach near
equilibrium for a good choice of β (i.e. the stationary dis-
tribution has near Nash equilibrium properties) under our
modified Logit-response is essentially linear in n – this is in
sharp contrast to what we would expect, i.e. exponentially
in n, for the standard Logit-response.

Theorem 3. Given a symmetric potential game G = (n, s,
P,H) with P : Ψs

n → [0, 1]. Let the potential function P be
λ-Lipschitz, i.e.

|P(x1)− P(x2)| ≤ λ∥x1 − x2∥1, ∀ x1,x2 ∈ Ψs
n. (7)

For any given ε ∈ (0, 1), starting with any initial strategy
state at time 0, under the modified Logit-response with pa-
rameters α, β such that

β ≥ max

{
4(s− 1)

ε
log 2s,

4(s− 1)

ε
log

8sλ

ε

}
≈ Θ

(
1

ε
log

1

ε

)
,

(8)
then

E [P(x(s(t)))] ≥ sup
x∈Ψs

n

P(x)− ε, (9)

for

t ≥ ne3β

αc

(
log log n+ log β + log

1

ε

)
≈ Θ

(
e3βn log log n

)
.

(10)
Here, the constant c = c(s) > 0 depends only on s, the
number of distinct strategies.

Few remarks about the result as well as the interpretation
of the modified Logit-response are in order. Due to removal
of dependency on the entropy term in the stationary distri-
bution, we find that even for little rationality, i.e. β scaling
essentially as 1

ε
log 1

ε
, under the stationary distribution the

strategy profile is ε-close to Nash equilibrium in the sense of
(9). For such a choice of β and α = 1/s, from (10) it follows
that the time to reach near such a good state is O(n log logn)
which is essentially the best one can expect. Thus with the
same total update rate, the modified Logit-response appears
exponentially (in n) faster than the standard Logit-response.
Now it is worth pondering whether the minor modification
we have suggested is reasonable. To this end, first observe
that the time varying rate requires each player to know the
aggregate information of strategies of other players, which
is needed anyways for the player to even evaluate her pay-
off. Next, the modification captures the intuition that if
a player finds herself playing a strategy that is played by
too few other players, she gets ‘alarmed’ and checks ratio-
nality of playing her current action quickly – of course, if
she finds her current strategy reasonable, then she does not
change as captured by (4). Finally, we shall use the def-
inition that a potential game is ε-predictable, equivalently
ε-close to Nash equilibrium, under a learning mechanism if
it satisfies inequality (9) with respect to its long-term or
stationary distribution of the strategy profile of players.

3.2 Robustness of Modified Logit-Response
As the second key result of the paper, we study the ro-

bustness of our modified Logit-response learning mechanism
with respect to dynamics in the number of players. To this
end, let n(t) be the number of players at time t ∈ R+. At
any time t, if a new player joins than n(t) increases by one,
i.e. n(t) = n(t−) + 1; if an existing player leaves, then
n(t) = n(t−) − 1. Under this dynamic setup, for a given
universal symmetric potential game G = (s,P,H), the mod-
ified Logit-response learning mechanism naturally extends.
That is, at time t each player p ∈ [n(t)] has an Exponential
clock with rate α/zp(t) where as before zp(t) is the fraction
of players playing the same strategy as player p at time t.
When a clock of player p ticks, she updates her strategy as
per (4).

Here, n(t) (and the state space Ψs
n(t) as well) is chang-

ing with t. The state s(t), strategy profile of n(t) play-
ers, is evolving as per the modified Logit-response as ex-
plained above. Since this is a symmetric potential game,
the aggregate strategy profile x∗(t) ∈ argmaxy∈Ψs

n(t)
P(y)

is a Nash equilibrium. Ideally, we would like the aggregate
state x(s(t)) so that P(x(s(t))) ≈ P(x∗(t)). If n(t) is fixed,
then as stated in Theorem 3, this is indeed true for all t =
Ω(n log logn). If n(t) is changing very wildly, clearly x(s(t))
should be arbitrary. Therefore, what one can hope for is the
characterization of tradeoff between |P(x(s(t)))−P(x∗(t))|
and the rate of change in n(t). Indeed, we obtain such a
characterization suggesting that there is an inherent uncer-
tainty in the nearness to Nash equilibrium (ε-predictability)
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and the (rate (1/Λ) of) dynamics as stated below. Specifi-
cally, as reader will notice, (11) and (16)-(17) suggest that to
be ε-predictable at all times, the rate of change 1/Λ should
be slower than O(ε2 exp(−4β)) for β scaling as Ω

(
1
ε
log λ

ε

)
.

Theorem 4. Given a universal symmetric potential game
G = (s,P,H) with P : Ψs

∞ → [0, 1]. Let P be λ-Lipschitz,
i.e.

|P(x1)−P(x2)| ≤ λ∥x1 −x2∥1, ∀ x1,x2 ∈ Ψs
∞, (11)

Let the number of players n(·) evolves so that for a given
Λ > 0

|n(t+ Λ)− n(t)| ≤ 1, ∀ t ≥ 0. (12)

Here 1/Λ ∈ (0,∞) represents the rate of change in n(t).
The players evolve as per the modified Logit-response with
parameters α, β. We shall assume that n(t) is large enough
so that for all t ≥ 0,

n(t) ≥ max
{
4sαc0e

−3βΛ, 2βλ
}
. (13)

Then, for any given ε ∈ (0, 1)

E [P (x(s(t)))] ≥ sup
y∈Ψs

n(t)

P(y)− ε, (14)

for

t ≥ 2n(0)e3β

αc1ε2
(log n(0) + β) ≈ Θ

(
e3βn(0) logn(0)

)
, (15)

as long as

β ≥ max

{
4(s− 1)

ε
log 2s,

4(s− 1)

ε
log

8sλ

ε

}
≈ Θ

(
1

ε
log

λ

ε

)
(16)

Λ ≥ 2ε−2e3β
(
6βλ+ eβ(s− 1)

sc0α

)
≈ Θ

(
ε−2e4βλ

)
. (17)

In above, constants c0, c1 are strictly positive and dependent
only on s.

4. PRELIMINARIES

4.1 Markov Chain & Mixing Time
Consider a discrete-time Markov chain {Xτ}τ∈Z+ over a

finite state space Ω. Let an |Ω| × |Ω| matrix M be its tran-
sition probability matrix:

µ(τ) = µ(τ − 1)M = µ(0)Mτ ,

where µ(τ) is the distribution of Xτ ∈ Ω. If M is irre-
ducible and aperiodic, then the Markov chain has a unique
stationary distribution π and it is ergodic in the sense that
limτ→∞ µ(τ) = π. The adjoint of the transition matrix M ,
also called the time-reversal of M , is denoted by M∗ and
defined as: for any i, j ∈ Ω, πiM

∗(i, j) = πjM(j, i).3 By
definition, M∗ has π as its stationary distribution as well.
If M = M∗ then M is called reversible.
The continuous-time Markov process {Xt}t∈R+ over a fi-

nite state space Ω can be characterized using a discrete-time
Markov chain M . For t ≥ 0, et(M−I) represents the transi-
tion matrix of the process:

µ(t) = µ(0)et(M−I).

3Throughout this paper, bold letters (e.g. u) are reserved
for vectors or distributions.

We call M as the kernel of the Markov process.
The distribution µ(t) of the continuous-time Markov pro-

cess with its irreducible and aperiodic kernel M converges to
the stationary distribution π of M starting from any initial
condition µ(0). To establish our results, we will need quan-
tifiable bounds on the time it takes for the process to reach
close to its stationary distribution – popularly known asmix-
ing time. To make this notion precise and recall known
bounds on mixing time, we start with definitions of the dis-
tance between probability distributions.

Definition 5 (Distances of Measures). Given two
probability distributions µ and ν on a finite space Ω, we
define the following two distances. The total variation dis-
tance, denoted as ∥µ− ν∥TV , is

∥µ− ν∥TV =
1

2

∑
i∈Ω

|µi − νi| .

The relative entropy (or Kullback-Leibler divergence), de-
noted as D(µ : ν), is

D(µ : ν) =
∑
i∈Ω

µi log
µi

νi
.

We make note of the following relation between the above
distances:

∥ν − µ∥TV ≤
√

D(µ : ν)

2
. (18)

The mixing time can be quantified using these distances.
For ε > 0 and given initial distribution µ(0),

TTV (ε) = min
t

{∥µ(t)− π∥TV ≤ ε} .

TD(ε) = min
t

{D(µ(t) : π) ≤ ε} .

If the kernel M of the process is irreducible, it is known [8]
that D(µ(t) : π) is exponentially decaying:

D(µ(t) : π) ≤ e−4tρ(M)D(µ(0) : π), (19)

where ρ(M) > 0 denotes the logarithmic Sobolev constant
of M defined as

ρ(M) := min
ϕ:Ω→R

E(ϕ, ϕ)
L(ϕ)

where

E(ϕ, ϕ) = 1

2

∑
i,j∈Ω

(ϕ(i)− ϕ(j))2πiM(i, j)

L(ϕ) =
∑
i∈Ω

ϕ(i)2 log

(
ϕ(i)2∑

j∈Ω ϕ(j)2π(j)

)
πi.

Therefore, from (18) and (19), it follows that

TD(ε) ≤ 1

4ρ(M)

(
log log

1

πmin
+ log

1

ε

)
TTV (ε) ≤ TD(2ε2) ≤ 1

4ρ(M)

(
log log

1

πmin
+ 2 log

1

ε

)
,

(20)

where πmin = mini πi; it can be verified that D(µ(0) : π) ≤
log 1

πmin
for any µ(0).
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4.2 Application to Modified Logit-Response
Recall the modified Logit-response learning mechanism

with parameters α, β described in Section 3.1. It is a continuous-
time Markov process {Xt}t∈R+ with Xt = x(s(t)) over the
state space Ψs

n. Consider the following Markov chain M ,
which is essentially its kernel, over state space Ψs

n. From
a current state x ∈ Ψs

n, it transits to the next state y as
follows:

◦ Choose a strategy i ∈ [s] uniformly at random.

◦ If xi > 0, y = x+ 1
n
(ej − ei) with probability

eβ P(x+ 1
n
(ej−ei))∑

j∈[s] e
β P(x+ 1

n
(ej−ei))

,

where β > 0 is some (fixed) constant and ei is a s-
dimensional unit vector whose coordinate values are 0
except for the ith one.

◦ Otherwise, y = x.

It can be verified that M is reversible and the stationary
distribution π of M is

πx ∝ eβP(x) for x ∈ Ψs
n. (21)

More importantly, we relateM to the modified Logit-response
described in Section 3.1. In the modified Logit-response, re-
call that the total clock-rate of players of that are playing
strategy i ∈ [s] is always αn for all i ∈ [s]. Hence, due to the
memoryless property of Exponential distribution and the in-
dependence between clocks, the modified Logit-response is
equivalent to having a global exponential clock of rate αsn,
and the transition happening according to M when the clock
ticks. Let µ(t) be the distribution of strategies x(s(t)) under
this modified Logit-response. Then, clearly

µ(t) = µ(0)

∞∑
k=0

Pr(ζ = k)Mk = µ(0)esαnt(M−I), (22)

where ζ is an exponential random variable with mean sαnt.
From this relation, Lemma 2 naturally follows since its sta-
tionary distribution has to be the same as that of M . Fur-
ther, the mixing time of the modified Logit-respose can be
obtained from (20) in term of ρ(M) as follows:

TTV (ε)

≤ 1

4sαnρ(M)

(
log log

1

πmin
+ 2 log

1

ε

)
(a)

≤ 1

4sαnρ(M)

(
log log

(
|Ψs

n|eβ
)
+ 2 log

1

ε

)
(b)

≤ 1

4sαnρ(M)

(
log ((s− 1) log(n+ 1) + β) + 2 log

1

ε

)
,

(23)

where (a) is from the characterization of π in Lemma 2 with
P(·) ∈ [0, 1] and (b) is due to |Ψs

n| ≤ (n+ 1)s−1. Therefore,
the following lemma implies that TTV (ε) = O(n log log n +
n log 1/ε).

Lemma 5. If P : Ψs
n → [0, 1], there exists a constant

c0 = c0(s) such that

ρ(M) ≥ c0e
−3β

n2
.

We note that the above bound is independent from the Lips-
chitz property of P. The proof of Lemma 5 follows by some-
what direct adaptation of arguments in the paper by Frieze
and Kannan [10]. The main difference is that they study
continuous convex sets, while we consider lattice points in
some simplex. At the first glance, this difference looks not
significant since simplexes are also convex. But, one needs
to be careful to deal with discrete objects (i.e. lattices) in-
stead of continuous ones. The proof of Lemma 5 is omitted
due to space constraints.

5. PROOF OF THEOREM 3
Now, we present proof of Theorem 3. We wish to establish

that for choice of large enough β as per (8) and large enough
time t as per (10), the aggregate state of strategy profile
x(s(t)) is such that P(x(s(t))) is ε-close to maxy∈Ψs

n
P(y),

in expectation. This is established by using two key results.
First, Lemma 6 implies that for β large enough as per (8),
the expectation of the strategy profile with respect to the
stationary distribution π of the modified Logit-response is
ε/2-close to maxy∈Ψs

n
P(y). Second, from (23) and Lemma

5 for t large enough as per (10), the distribution of strat-
egy profile is ε/2-close to π starting from any initial state.
Putting these together, the desired conclusion follows. To
this end, we state and prove the lemma required for the first
step.

Lemma 6. For β large enough so that

β ≥ max

{
4(s− 1)

ε
log 2s,

4(s− 1)

ε
log

8sλ

ε

}
,

then

Eπ [P(x)] ≥ sup
x∈Ψs

n

P(x)− ε/2.

In the above, P as in Theorem 3, π being the stationary
distribution as defined in Lemma 2.

Proof. We start by defining the following notations.

Lβ = Eπ [P(x)] , Cβ =
∑

x∈Ψs
n

eβP(x)

x∗ = arg max
x∈Ψs

n

P(x), B(x∗, δ) = {x ∈ Ψs
n : ∥x− x∗∥1 ≤ δ} ,

where δ ∈ [0, 1] is some small constant which will be decided
later. The distribution π is of exponential form with its
normalization constant Cβ . Therefore, it can be verified
(and very well known) that the derivative of logCβ with
respect to exponential parameter β is the expectation Lβ .
Further, it is easy to observe that Lβ is monotonically non-
decreasing (increasing) in β. Therefore, by the standard
Mean Value Theorem, it follows that

Lβ ≥ 1

β
(logCβ − logC0)

=
1

β
log

Cβ

|Ψs
n|

=
1

β
log

∑
x∈Φs

n
eβP(x)

|Ψs
n|

= P(x∗) +
1

β
log

∑
x∈Ψs

n
eβ(P(x)−P(x∗))

|Ψs
n|

≥ P(x∗) +
1

β
log

∑
x∈B(x∗,δ) e

β(P(x)−P(x∗))

|Ψs
n|
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(a)

≥ P(x∗) +
1

β
log

∑
x∈B(x∗,δ) e

−βδλ

|Ψs
n|

= P(x∗) +
1

β
log

|B(x∗, δ)| e−βδλ

|Ψs
n|

= P(x∗)− δλ+
1

β
log

|B(x∗, δ)|
|Ψs

n|
,

where (a) is from the λ-Lipschitz property of P and the def-
inition of B(x∗, δ). Now |B(x∗, δ)| and |Ψs

n| can be bounded
as follows:

|B(x∗, δ)| ≥
(
δ(n+ 1)

2s

)s−1

and |Ψs
n| ≤ (n+1)s−1.

Therefore, we have

Lβ ≥ P(x∗)− δλ+
1

β
log

|B(x∗, δ)|
|Ψs

n|

≥ P(x∗)− δλ+
1

β
log

(
δ(n+1)

2s

)s−1

(n+ 1)s−1

= P(x∗)− δλ+
s− 1

β
log

δ

2s
. (24)

To complete the proof, we consider two cases: (i) λ ≤ ε/4
and (ii) λ > ε/4. First, let us consider case (i). For this, we

choose δ = 1 and β ≥ 4(s−1)
ε

log 2s. Then, from (24),

Lβ ≥ P(x∗)− δλ+
s− 1

β
log

δ

2s

= P(x∗)− λ− s− 1

β
log 2s

≥ P(x∗)− ε/4− ε/4

= P(x∗)− ε/2,

where each step follows from choice of δ, β and the fact that
in the case (i) we have λ ≤ ε/4.
Now the case (ii), λ > ε/4. For this we choose δ = ε

4λ
.

This is a valid choice since δ = ε
4λ

< 1 since we have λ > ε/4.

Consider β ≥ 4(s−1)
ε

log 8sλ
ε
. Then

Lβ ≥ P(x∗)− ε/2.

In summary, for both cases (i) and (ii), the desired conclu-
sion follows as long as we have β large enough so that

β ≥ max

{
4(s− 1)

ε
log 2s,

4(s− 1)

ε
log

8sλ

ε

}
.

This completes the proof of Lemma 6.

Completing the proof of Theorem 3. As before, let µ(t) de-
note the distribution of strategies x(s(t)) under the modified
Logit-response mechanism with parameters α, β as described
in Section 3.1. From (23) and Lemma 5, if

t ≥ ne3β

αc

(
log log n+ log β + log

1

ε

)
(25)

(a)

≥ n

4sαc0e−3β

(
log ((s− 1) log(n+ 1) + β) + 2 log

2

ε

)
,

then

∥µ(t)− π∥TV ≤ ε/2.

In above, for (a), one can find an appropriate constant c
which depends on s. Therefore, we have the desired bound

for t larger than (25):

E [P(x(s(t)))] = Eµ(t) [P(x)]

≥ Eπ(t) [P(x)]− ∥µ(t)− π(t)∥TV · sup
x∈Ψs

n

P(x)

(a)

≥ sup
x∈Ψs

n

P(x)− ε/2− ε/2

= sup
x∈Ψs

n

P(x)− ε,

where (a) is from Lemma 6 and supx∈Ψs
n
P(x) ≤ 1. This

completes the proof of Theorem 3.

6. PROOF OF THEOREM 4
We wish to establish that under condition that time t sat-

isfies (15), rationality parameter of modified Logit-response
β satisfies (16) and dynamics rate Λ satisfies (17), the ε-
predictability of modified Logit-response holds for all time t
as per (14).

Some formalism. To this end, we start by noting that the
underlying state, the strategy profile x(s(t)) of players, has
time varying state space. Specifically, it is Ψs

n(t) which
changes with n(t). To address the associated formalism,
we introduce the natural ‘projection’ operator. Now since
Λ > 0, it must be that at each time t one the three things
can happen: no change in n(t) (i.e. n(t) = n(t−)); one new
player joins (i.e. n(t) = n(t−) + 1); or one existing player
leaves (i.e. n(t) = n(t−)− 1). For each of these three cases,
we associate state x(s(t)) with x(s(t−)) through the ‘projec-
tion’ operation [·]t : Ψs

n(t−) → Ψs
n(t) as follows:

1. No change, i.e. n(t−) = n(t). Then, [x]t = x for any
x ∈ Ψs

n(t−).

2. A new player joins with initial strategy i ∈ [s], i.e.
n(t) = n(t−) + 1 and sn(t) = i ∈ [s]. Then, for any

x ∈ Ψs
n(t−), [x]t = (n(t−)x+ ei)/n(t). That is, for

y = [x]t

yj =

{
n(t−)xj/n(t) for j ̸= i

(n(t−)xj + 1)/n(t) for j = i.

3. An existing player with strategy i ∈ [s] departs, i.e.
n(t) = n(t−) − 1. Then, for any x ∈ Ψs

n(t−), [x]t =

(n(t−)x− ei)/n(t). That is, for y = [x]t

yj =

{
n(t−)xj/n(t) for j ̸= i

(n(t−)xj − 1)/n(t) for j = i.

Let µ(t) = [µ(t)x] be the distribution over the space Ψs
n(t) of

strategy profile of players under the modified Logit-response
at time t. Then as per the above notation,

µ(t)[x]t = µ(t−)x, ∀ x ∈ Ψs
n(t−).

Therefore, with an abuse of notation, we shall use

µ(t) =
[
µ(t−)

]
t
. (26)

Proof of Theorem 4. For t ≥ 0, let M(t) denotes the Markov
chain M associated with the modified Logit-response over
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state space Ψs
n(t) as described in Section 4.2. Its stationary

distribution be denoted by π(t) which has the form

π(t)x ∝ eβP(x) for x ∈ Ψs
n(t). (27)

Let the sequence {t0 < t1 < t2 < t3 < . . . } be the collection
of times when possibly changes in n(t) happens. Without
loss of generality, we shall assume that for m ≥ 0,

tm+1 − tm ∈ [Λ, 2Λ] and t0 ≤ Λ. (28)

This is because (12) implies tm+1 − tm ≥ Λ and for tm+1 −
tm ≤ 2Λ, we can insert additional times with n(t) = n(t−)
for those particular time instances. Let µ(tm) is the dis-
tribution over Ψs

n(tm), just after the ‘change’ at time tm.
Let π(tm) be the stationary distribution on Ψn(tm) cor-
responding to thus ‘changed’ system. We wish to study
D(µ(tm) : π(tm)). Specifically, we will establish the fol-
lowing.

Lemma 7. For any m ≥ 0, with tm satisfying (28),

D(µ(tm+1) : π(tm+1))

≤
(
1− A1

n(tm)

)
D(µ(tm) : π(tm)) +

A2

n(tm)
, (29)

where A1 = 2sαc0e
−3βΛ and A2 = 6βλ+ eβ(s− 1).

Using (29), we first complete the proof of Theorem 4 and
then present the proof of Lemma 7. To this end, we claim
that (29) implies that for any m ≥ m0,

D(µ(tm) : π(tm)) ≤ ε2/2, (30)

with

m0 = Ω

(
n(0)

A1ε2
(s logn(0) + β)

)
=

n(0)

αc1e−3βΛε2
(log n(0) + β) . (31)

The (30) essentially completes the proof of Theorem 4. This
is because, for any t ∈ [tm, tm+1) since there is no change,
we have

D(µ(t) : π(t)) ≤ e−4sαn(tm)ρ(M(tm))(t−tm)D(µ(tm) : π(tm))

≤ D(µ(tm) : π(tm)),

where the first inequality follows from (19) and π(t) = π(tm).
Therefore, from (30) it follows that for t ≥ tm0 ,

D(µ(t) : π(t)) ≤ ε2/2.

And hence using relation (18) between entropy distance and
total variation distance, we have

∥µ(t)− π(t)∥TV ≤ ε/2.

Additionally, we can choose m0 from (31) such that

tm0 ≤ 2Λm0 =
2n(0)

αc1e−3βε2
(log n(0) + β) ,

where the first inequality is due to (28). In summary,

∥µ(t)−π(t)∥TV ≤ ε/2, ∀ t ≥ 2n(0)

αc1e−3βε2
(logn(0) + β) .

From this and use of identical arguments as in the last part
of the proof of Theorem 3, the desired statement of Theorem
4 follows.

Now we justify (30) using the Lemma 7. To this end, first
observe that suppose for any m0,

D(µ(tm0) : π(tm0)) ≤ ε2/2. (32)

Then, from (29) of Lemma 7,

D(µ(tm0+1) : π(tm0+1))

≤
(
1− A1

n(tm0)

)
D(µ(tm0) : π(tm0)) +

A2

n(tm0)

≤
(
1− A1

n(tm0)

)
ε2/2 +

A2

n(tm0)

≤ ε2/2,

where the last inequality follows from condition on Λ as per
(17), since

A2

n(tm)
=

6βλ+ eβ(s− 1)

n(tm)

≤ sαc0e
−3βΛε2/2

n(tm)
=

A1ε
2

4n(tm)
. (33)

Therefore, for m ≥ m0,

D(µ(tm) : π(tm)) ≤ ε2/2. (34)

Hence, it suffices to show that there exists m0 satisfying (31)
so that D(µ(tm0) : π(tm0)) ≤ ε2/2. To this end, suppose
that for a given m0 for all m ≤ m0,

D(µ(tm) : π(tm)) > ε2/2. (35)

Then, from (29),

D(µ(tm0) : π(tm0))

≤
(
1− A1

n(tm0−1)

)
D(µ(tm0) : π(tm0−1)) +

A2

n(tm0−1)

<

(
1− A1

n(tm0−1)

)
D(µ(tm0−1) : π(tm0−1))

+
A2

n(tm0−1)
× D(µ(tm0−1) : π(tm0−1))

ε2/2

(a)

≤
(
1− A1

2n(tm0−1)

)
D(µ(tm0−1) : π(tm0−1))

≤ D(µ(t0) : π(t0))

m0−1∏
m=0

(
1− A1

2n(tm)

)

≤ D(µ(t0) : π(t0))

m0−1∏
m=0

(
1− A1

2(n(0) +m)

)
(b)

≤ ((s− 1) log(n(0) + 2) + β)

m0−1∏
m=0

(
1− A1

2(n(0) +m)

)
,

where (a) follows by using (33); (b) is due to

D(µ(t0) : π(t0)) ≤ log
1

π(t0)min

≤ (s− 1) log(n(t0) + 1) + β

≤ (s− 1) log(n(0) + 2) + β,

as we discussed in (23). Therefore, it follows immediately
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that if

m0 ≥ Ω

(
n(0)

A1ε2
(s logn(0) + β)

)
=

n(0)

αc1e−3βΛε2
(log n(0) + β) ,

then we have

D(µ(tm0) : π(tm0)) < ε2/2.

This completes the justification of (30) based on Lemma 7
and hence proof of Theorem 4.

6.1 Proof of Lemma 7
To simplify notations, define

µ̂(t−m+1) :=
[
µ(t−m+1)

]
tm+1

, π̂(tm) := [π(tm)]tm+1
.

Note that µ(tm+1) = µ̂(t−m+1) from (26), but π̂(tm) ̸=
π(tm+1); µ̂(t

−
m+1) is absolutely continuous with respect to

π̂(tm); and as a distribution µ̂(t−m+1) (resp. π̂(tm)) is the

same as µ(t−m+1) (resp. π(t−m+1) = π(tm)). With these
observations, we have

D(µ(tm+1) : π(tm+1))

= D(µ̂(t−m+1) : π(tm+1))

=
∑

x∈Ψs
n(tm+1)

µ̂(t−m+1)x log
µ̂(t−m+1)x

π(tm+1)x

=
∑

x∈Ψs
n(tm+1)

µ̂(t−m+1)x

(
log

µ̂(t−m+1)x

π̂(tm)x
+ log

π̂(tm)x
π(tm+1)x

)

= D(µ̂(t−m+1) : π̂(tm)) +
∑

x∈Ψs
n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x

= D(µ(t−m+1) : π(tm)) +
∑

x∈Ψs
n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x
.

(36)

For the first term in (36), using (19), (22) and Lemma 5, we
obtain

D(µ(t−m+1) : π(tm))

≤ exp (−4sαn(tm)ρ(M(tm)) (tm+1 − tm))D(µ(tm) : π(tm))

≤ exp

(
−4sαc0e

−3βΛ

n(tm)

)
D(µ(tm) : π(tm)), (37)

where the last inequality is from tm+1 ≥ tm+Λ in (28). For
the second term in (36), we state the following.

Lemma 8. For any m ≥ 0,

∑
x∈Ψs

n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x
≤ 6βλ+ eβ(s− 1)

n(tm)
.

(38)

Before we prove Lemma 8, we complete the proof of Lemma
7 using it. To that end, using the bounds (37) and (38) in

(36), we obtain

D(µ(tm+1) : π(tm+1))

≤ exp

(
−4sαc0e

−3βΛ

n(tm)

)
D(µ(tm) : π(tm)) +

6βλ+ eβ(s− 1)

n(tm)

(a)

≤
(
1− A1

n(tm)

)
D(µ(tm) : π(tm)) +

A2

n(tm)
, (39)

where A1 := 2sαc0e
−3βΛ and A2 := 6βλ + eβ(s − 1). In

above, we have used that x = 2A1
n(tm)

≤ 1 from (13), and

e−x ≤ 1 − x/2 for x ∈ [0, 1]. This completes the proof of
Lemma 7.

6.2 Proof of Lemma 8
There are three possible scenarios at time tm+1 as dis-

cussed while defining the projection operator [·]·: (i) no
change, (ii) one player joins with some strategy, say i ∈ [s],
or (iii) an existing player playing some strategy, say i ∈ [s],
leaves.

The case (i) is trivial due to no change.
Next, we consider case (ii). To this end, let n = n(tm+1) =

n(tm) + 1 = n(t−m+1) + 1. Note that

∑
x∈Ψs

n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x
≤ max

x∈Ψs
n: xi>0

log
π̂(tm)x

π(tm+1)x
,

(40)
since µ̂(t−m+1)x = 0 if xi = 0 as the new player starts with
strategy i. Recall definitions of π̂(tm) and π(tm+1): for
x ∈ Ψs

n,

π(tm+1)x =
1

C1
eβP(x)

π̂(tm)x =

{
1
C2

e
βP

(
nx−ei
n−1

)
if xi > 0

0 otherwise
,

where

C1 :=
∑

x∈Ψs
n

eβP(x), C2 :=
∑

x∈Ψs
n: xi>0

e
βP

(
nx−ei
n−1

)
.

Thus, from (40) we have

∑
x∈Ψs

n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x

≤ max
x∈Ψs

n: xi>0
log

π̂(tm)x
π(tm+1)x

= max
x∈Ψs

n: xi>0
log

1
C2

e
βP

(
nx−ei
n−1

)
1
C1

eβP(x)

= log
C1

C2
+ max

x∈Ψs
n: xi>0

β

(
P
(
nx− ei
n− 1

)
− P (x)

)
≤ log

C1

C2
+

2βλ

n− 1
, (41)

where the last inequality is from the λ-Lipschitz property of
P. To derive the conclusion, it suffices to bound C1/C2 in
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(41), which we obtain as follows:

C1

C2
=

∑
x∈Ψs

n
eβP(x)∑

x∈Ψs
n: xi>0 e

βP
(

nx−ei
n−1

)

=

∑
x∈Ψs

n: xi>0 e
βP(x)∑

x∈Ψs
n: xi>0 e

βP
(

nx−ei
n−1

) +

∑
x∈Ψs

n: xi=0 e
βP(x)∑

x∈Ψs
n: xi>0 e

βP
(

nx−ei
n−1

)
(o)

≤ max
x∈Ψs

n: xi>0

eβP(x)

e
βP

(
nx−ei
n−1

) +
eβ |{x ∈ Ψs

n : xi = 0}|
|{x ∈ Ψs

n : xi > 0}|
(a)

≤ e
2βλ
n−1 + eβ

|{x ∈ Ψs
n : xi = 0}|

|Ψs
n| − |{x ∈ Ψs

n : xi = 0}|

≤ e
2βλ
n−1 + eβ

∣∣Ψs−1
n

∣∣
|Ψs

n| −
∣∣Ψs−1

n

∣∣
(b)
= e

2βλ
n−1 + eβ

s− 1

n

≤ 1 +
4βλ

n− 1
+ eβ

s− 1

n
. (42)

In above, (o) follows using P(·) ∈ [0, 1]; (a) follows from
the λ-Lipschitz property of P; and (b) follows from |Ψs

n| =(
n+s−1

n

)
. For the last inequality, we use ex ≤ 1 + 2x for

x ∈ [0, 1] and the condition (13) of n − 1 = n(tm) that
n(tm) ≥ 2βλ. Therefore, from (41) and (42), we obtain the
conclusion:

∑
x∈Ψs

n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x

≤ log
C1

C2
+

2βλ

n− 1

≤ log

(
1 +

4βλ

n− 1
+ eβ

s− 1

n

)
+

2βλ

n− 1

(a)

≤ 4βλ

n− 1
+ eβ

s− 1

n
+

2βλ

n− 1

≤
(
6βλ+ eβ(s− 1)

) 1

n− 1

=
6βλ+ eβ(s− 1)

n(tm)
,

where (a) follows from the fact that log(1+x) ≤ x for x ≥ 0.
This completes the proof of Lemma 8 for case (ii).
Finally, consider case (iii) i.e. n = n(tm+1) = n(tm) −

1 = n(t−m+1) − 1. In this case, π̂(tm) and π(tm+1) has the
following form: for x ∈ Ψs

n,

π(tm+1)x =
1

C1
eβP(x), π̂(tm)x =

1

C2
e
βP

(
nx+ei
n+1

)
,

where

C1 :=
∑

x∈Ψs
n

eβP(x), C2 :=
∑

x∈Ψs
n

e
βP

(
nx+ei
n+1

)
.

Using the similar arguments as (41) and (42)4, we obtain∑
x∈Ψs

n(tm+1)

µ̂(t−m+1)x log
π̂(tm)x

π(tm+1)x
≤ max

x∈Ψs
n

log
π̂(tm)x

π(tm+1)x

≤ 4βλ

n+ 1
=

4βλ

n(tm)
,

which implies the Lemma 8 for case (iii). This concludes the
proof of Lemma 8.

7. CONCLUSION
In this paper, we studied transient properties of a simple

learning mechanism on the context of symmetric potential
games, which include the congestion game. We obtain a pre-
cise relation between the performance error and the rate of
anarchical dynamics in the number of players, which shows
that the dynamic price of anarchy is small in the conges-
tion game. Our novel techniques to analyze “space-varying”
Markov processes using the entropy distance and logarith-
mic Sobolev constants were crucial for obtaining the desired
results. We believe that the method of this paper should be
of broad interest in understanding the reliability and con-
trollability of dynamical systems.
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