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Abstract— The speedup of a switch is the factor by which the switch,
amd hence the memory used in the switch, runs faster compared to the
line rate. In high-speed swiiches, line rates are already tonching limits at
which memory can operate, In this scenario, it is very important for a
switch to run at as low a speedup as possible.

In the past, it has been shown that 100% thrnughput can be achieved
for any admissible traffic for an Input Queued (IQ) switch [1], [2] at
speedup one. This gives finite average defays but does not guarantee con-
trol on packet delays. In |3}, authors show that a Combined Input Output
Quened (CIOQ) switch can emulate perfectly an Output Queued (0Q)
switch at a speedup of 2 and, thus, control the packet delays. This moti-
vates the study of possibility of obtaining delay control at speedup less than
2. To guarantee optimal control of delays for a general class of traffic, as
shown in {3|, speedup 2 is necessary. Hence, to obtain control of delays
at lower speedup, we need to resirict the class of arrival traffics. In this
paper, we study the speedup requirement for a class of admissible traffic,
which we will denote as (1, ruF")-regulated traffic, with parameters n and
F. We obtain the necessary speedup for this class of traffic. Further, we
present a general class of algorithms working at the necessary speedups
and thuos providing bounded delays.

I. INTRODUCTION

Recently, Input-Queued (IQ) and Combined-Input-Output-
Queued (CIOQ) switches with Virtual Output Queueing (VOQ)
have become an attractive architectural solution in very high
speed routers (4], {5] as they scale well with the line rate.

At the same time, Output-Queued (0OQ) switches are attrac-
tive as they achieve 100% throughput under any admissible
traffic and give control over delays. But OQ switches require
memory bandwidth (at the output ports) to scale as O{rN),
where r is the line rate and N is the number of ports. In other
words, the internal switching speed has to run N times faster
than the line rate, that is, speedup S is N. This constrains the
speed at which OQ switches can run.

A pure IQ switch is able to achieve very hlgh speeds, since
the memory bandwidth scales as G(r), being by construction
its speedup equal to 1. The main drawback of this architec-
ture is that it requires a scheduling algorithm which selects
a non-conflicting set of packets to transfer across the switch.
This scheduling algorithm should be simple, becanse it is im-
plemented in hardware at very high speed. A class of Max-
imum Weight Matching (MWM) algorithms for 1Q switches
are known which provide 100% throughput for any admissi-
ble traffic [1], [2], [6]. In [7], [8] bounds on the average delay
are obtained for MWM algorithm under admissible Bernoulli
Li.d. traffic pattern. But they do not guarantee delay bounds for
cach packet. Many practical scheduling algorithms [9], [10]
have been proposed to approximate MWM performance. Their
simplicity usually leads to some performance penalties, usually
in the form of throughput degradation and/or larger delays.

In [2], [11] it is shown that at speedup 2, simple maxi-
mal matching kind of algorithms are stable (provide 100%
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throughput) under admissible arrival traffic. But again, there
are no strict delay guarantees provided. In [3] it is shown that
S > 2 is necessary and sufficient to emulate performance of
0OQ switches and, thus, to control the delays. Unfortunately the
perfect emulation of OQ requires complicated stable-marriage
style algorithms which are not feasible to implement at a very
high-speed. In [12] it was shown that simpler scheduling algo-
rithms can achieve the same performance of an OQ switch in
terms of average delay.

Since speedup higher than 1 limits the speed at which a
switch can operate, it is very desirable to operate at as low
speedup as possible. This leads us to investigate a possible
tradeoff between speedup and delay. However, if we want to
obtain delay control for speedup 1 < § <« 2, we must restrict
the arrival traffic. In this paper, we consider a general enough
class of arrival traffic and study the necessary and sufficient
speedup 1 < .5 < 2 required to emulate OQ performance with
guaranteed delay bounds.

II. BAsIC MODEL, DEFINITIONS AND NOTATIONS
A. A CIOQ Switch

An N x N CIOQ switch has N inputs and N outputs with
crossbar in the switch fabric. The queues at each input is
logically divided into N Virtual Qutput Queunes (VOQ) cor-
responding to N different outputs. There are queues at out-
put too. When a CIQQ switch is working at speedup .5 (with
1 € § < N), each input is able to transfer up to S packets
per time slot, and each output is able to receive up to S packets
per time slot. At speedup S = 1 a CIOQ switch is same as [Q
switch, and does not requite queues at the output side.

We assume that time is slotted. In a given time slot, at most
one packet can arrive at each input. In every “scheduling cy-
cle”, the crossbar can transfer one packet from each input and
one packet to each output. Effectively for a CIOQ switch op-
crating at a speedup S, S scheduling cycles happen during 1
time slot. For example, if § = 3/2, then every | time slot 1.5
scheduling cycles happen. That is, in real switch, every 2 time
slots, 3 scheduling cycles happen.

B. Werk Conservation

Next we would like to consider the concept of work conser-
vation for a switch. Consider the following definition, which
was first proposed in [12] motivated from the classical queue-
ing theory.

Definition 1. A switch is work-conserving if and only if, for
any time slot, an cutput is always transferring one packet to

the outgoing link whenever a packet is present in the system
directed to the considered output.
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Note that this definition requires that the system should be
“observed” at each time slot to check if it is work-conserving.

An OQ switch is by construction work-conserving whereas
an IQ switch is not work-conserving. For example, consider a
3 3¢ 3 IQ switch in which at time ¢ = 0 no backlog exists and at
time t = 1 two packets arrive: one at input | directed to output
3 and one at input 2 directed to output 3. An arrived packet is
immediately transferred to the outputs and transmitted, while
the other packet is stored at the input. At time ¢ = 2 cther two
packets arrive: one packet at input 1 directed to output 2 and
one packet at input 2 directed to output 1. Now at the inputs
there are three packets directed to different outputs, but only
two of them can be transferred to the outputs thus an output
port remains idle even if there is a packet directed to it. As
a conclusion an 1Q switch can not be work conserving. Note
that a work-conserving switch ensures the minimum average
delays, (i.e. the same average delay than an OQ switch) since
an-output is never idling as long as a packet directed to it is in
the switch.

The work-conserving property of QQ switch suggests the
following equivalent work-conservation property which was
first considered in [3]:

Definition 2. A switch, in particular CIOQ switch, is work-
conserving iff, for any arrival sequence A the following holds
for all the time: for each output j, the number of packets in
the switch waiting for transmission to j equals the number of
packets that would be stored in an OQ under the same A.

From [3), speedup 2 is necessary to emulate OQ and hence to
be strictly work-conserving for a CIOQ switch, The goal of this
paper is to consider the switch operating at speedup 1 < § <
2 while providing bounds on performance difference between
CIOQ switch and an OQ switch. This leads to the notion of
little less strict work-conserving property which we call as F-
work-conservation. Basically, instead of requiring the system
to be work conserving every time, we consider system with
property of work-conservation holding at every F' times.

Definition 3. A CIOQ switch is F-work-conserving iff, for
any arrival sequence A the following hoids for time ¢ =
0,F,2F,...,kF,.... for each output jthe number of pack-
ets in the switch waiting for transmission directed to output §
equals the number of packets that would be stored in an OQ
under the same A. We call the time interval {t € Z7 : { €
[(k — 1)F + 1, kF]} as the k** abservation window.

The most important property about F-work canerving
switches is about the control of the delays. We compare the
delays experienced by packets in a CIOQ switch with an F-
work-conserving policy and in an OQ switch under the same
arrival sequence.

Theorem 1. Fix any admissible arrival traffic sequence A at
a switch of size N. Suppose an OQ switch and an F-work
conserving CIOQ switch are given the same arrival traffic pat-
tern A For any packet P € A, let TS, be the departure
time from the OQ switch, Similarly, let TS be the departure
time of the same packet P tinder the F-work conserving CIOQ

switch, Then for every P departing from OQ switch, there ex-
ists a unique packet P' € A departing from CIOQ switch from
the same output as P, such that,

Ty ~Tfe < F-1. M

Hence, the average delay per packet experience by F-work
conserving CIOQ switch is at most F — 1 more than the OQ
switch for each feasible traffic pattern A

Proof. We apply exactly the same traffic sequence A to both:

(a) an OQ switch, and {b) an F-work conserving CIOQ switch.
We would like to prove the statement by induction. At time

t = 0, both systems start empty and hence statement is trivially

true. Assume that the theorem statement is true for all pack-

ets departing from OQ till time kF. By F-work conservation

property, the number of packets queued for any of the output in

both OQ and CIOQ switch is the same at time kF. Consider

Py, ..., Py, packets departed from output j in OQ switch be-

tween time kF' 4+ 1,...,{k + 1)F, where m < F, depending

on arrival pattern A. Since,

- at the end of time £F, both OQ and CIOQ had the same

number of packets enqueued for output j,

- at the end of time (k + 1)F, both OQ and CIOQ have the

same number of packets enqueued for output j, and

- there are m packets Py, ..., P, departing from output j in

0OQ switch between time kF + 1,..., (k + 1) F,

- there are m packets Py, ..., P, departing from output j of

CI0OQ by the end of time (k + 1) F.

We can associate each of the F; with unique P/ and obtain,

T ~Thy, S F -1

which means that the average departure time in C10Q differs at
most by F — t from OQ. Then the same property holds for the
average delay, since the arrival sequence is the same for CIOQ

and OQ. This completes the proof of Theorem 1, ]

We would like to note that the Theorem 1 refers to a much
stronger property than just a bounded average delays. For
example, under admissible traffic an IQ switch running at
speedup 1 and using MWM scheduling policy has a bounded
average delay, and hence bounded average delay with respect
te OQ switch too (by definition OQ has average delay > 0).
But it does not imply the property of Theorem 1.

C. Notations

Consider an N x N CIOQ switch. We observe the system
at times . = kF, ¥k € Z*, since we are interested in F-work
conserving property. We define the folfowing notations:

. ij is the number of packets enquened at the input port ¢ and
destined to output 4, sampled at the beginning of the observa-
tion window k, at time { = kFV k € Z%.

« B 25 BEand BF LY, BE,

» A;;(t} is the number of arrivals from input ¢ to output j at
time &, ¥t € Zt; A(t) = [Ay;(L)] Af‘j is the cumulative
number of arrivals from input i to output j occurring during
the (k — 1) observation window: Af; = 577000 ) - Ay(8).
A* = [ak].
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. D" is the cumulative number of services from input ¢ to out-
put 7, occurring during the k** observation window. D* =
[DE].

D"AZD"andD’““): D
. O;“ is the number of packets enqueued at the output port j,
sampled at the beginning of the k** observation window.
» Y} =3, B + Of is the total number of packet queved in
the system and destmed to output j.
» [2]T = max{0, z}.
To model the system, we consider the switch evolving in a
gated-fashion with period F), i.e. new arrivals are aggregated
during each observation window and they are scheduled only
at the beginning of the next observation window. It is like con-
sidering batch ‘arrivals at the beginning of a new observation
window, by batching all the arrivals during the previous ob-
servation window. The evolution of the state of the system is
sampled at the beginning of a new observation window and can
be modetled as follows:

B!°.+1 = BE + A% - DY,
Ok+1

Vi, j Q)
[0f + Z Dt - F1* Vi 3

Yk+1 ryk + Ak F'l+ VJ (4)
“Eq. (2) models the system evolving in a gated fashion. Indeed,
the new backlogged packets are given by the old ones, plus the
new arrivals and minus the departures, both occurring during
the previous observation window. Note that, when F' = 1,
Eq. (2) degenerates into the evolution of a generic discrete-time
queue. It is important to highlight that a system evolving in a
gated fashion can increase the delay of a packet by at most I
time slots, with respect to a slot-by-slot system. Egs. (3) and
(4) describe the transfer of all the scheduled packets directed
to a generic output; in fact, during each observation window, at
most F packets can be transferred to the output line cards.
Define the following norm:

Definition 4 (I0 Norm). Given X € RV*:

X0 2 max{m?.x{z: Xis}s mf.lx{z Xi;1}

A policy D working with a speedup § is feasible if:

ID*lljo < SF vk, B, AL, (5)
Indeed, by Birkhoff von Neumann theorem, any set D¥ can be
scheduled [13] in a time window of |[D¥||;o slots, since D*

can be decomposed in || D*|| ;o switching configurations.

D. Traffic Class

In our context, we consider only controlled traffic, since it is
the only one for which it is possible to guarantee delay bounds
in an OQ switch architecture. We consider here only two kinds
of controlled traffic: regulated and leaky bucket constrained

traffic. Since at-most one packet arrives per time slot, the fol-
lowing property holds when the arrivals are observed at the in-
puts:

A <F (6)

D.1 Regulated traffic

The following definition is derived by the adversary queue-
ing theory [14].

Definition 5. An arrival process A is {p,
t+W-—-1

> A@R)

=t

W)-regulated if:

<pW vt
10

i.e., at most pW packets arrive during each interval of W time
slots for each input-output couple. W is called “admissibility
window”.

We can say that a (p, W)-regulated traffic injects at most pW
packets during an admissibility window W, corresponding to a
maximum average rate g for each input-output couple during
the same window W. Furthermore, an arrival process (p, W)-
regulated is also (1, pW)-regulated, but not viceversa. In other
words, the family of all the possible arrival processes (p, W)-
regulated is a subset of the bigger family of processes (1, pW)-
regulated.

We focus on (1, nF)-regulated arrival processes for which it
holds: kin—

ZA’f

D.2 Leaky bucket constrained traffic

<nF 4]
10

This second kind of source is the usual [p, o] leaky bucket
constrained source ([p,o]-LBC). We refer [15] for a detailed
definition of this source.

IIi. PROPERTIES OF F-WORK CONSERVING POLICIES

Property 1. A policy D is F-work-conserving in an observa-
tion window of size F with speedup S if:
BiV' < [BE+AF+OF-FIY  Vkj  (8)

To understand the meaning of this property, start to consider
the case F' = 1. Eq. (8) means that if at least a packet is present
at the input ports destined for output j, this (single) packet
should be transferred to the output queue j, provided that no
packet at the output queue j is present, For a generic F', Eq. (8)
implies that, if at least F — O_;‘ packets are present at the input
ports destined for output j, these packets should be transferred
to the output queye 3.

For F-work-conserving policies we state the following the-
orem:

Theorem 2. Assume that policy D is F-work-conserving and
the arrival process A is (1, nF)-regulated. If Y_,,-k > 0 then:
Ing: 0 < ng < n, %"Y_,f*"“ =0

i.e., there exists a k' close to k (thatis, k' —

k < n} such that
Y;.k ={.
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We omit the proof for lack of space, the interested reader can
find it in [16].

Note that Theorem 2 implies that the maximum delay expe-
rienced by packets of an (1, nF")-regulated arrival process in a
CIOQ switch with an F-work-conserving policy is not greater
than nF slots,

We now show one possible example of F-work-conserving
policy:

Lemma 1. The following policy D:

OF — ~0; o
‘D:;-—-(A?j'l'ij ,—nk——‘kj} Vi, i, k
Af + B;

is F-work-conserving for 8 > land 0 < v £ L.
Proof 1f A% + B < OF — 40, then B¥*! = 0 and Dt =
.ﬁ;‘ + ;1;‘ Otherwise, ifjif + B_,'f > 8F - ~40; then B}‘“’l =

BF + A% — 6F + y0; > 0and D¥ = 6F ~ y0;. Hence, if
@>landye€|0,1]:

B < [BE 4 A —9F +90,1* <

mjn{l

< (B + AY - F+40,1* < [BF + A - F+0;1F
and the policy D is F-work-conserving,. 0

Policy D, to be feasible with the speedup &, satisfies the
following relation, derived from Eq. 5, referred as feasibility
condition:  SF > [ D*8,7)l10, V&

Intuitively, policy D, with v = @, is greedy, since it transfers
completely all the backlogged packets if compatible with the
available output bandwidth 8. Otherwise, the output band-
width is distributed among all the inputs proporticnally to the
number of backlogged packets.

IV. ON THE MINIMUM SPEEDUP UNDER REGULATED
TRAFFIC

The following three theorems are our main results. The first
one is quite trivial and intuitive, but can be significant.

Theorem 3. Consider a CIOQ switch. Under an arrival pro-
cess A which is (1, W)-regulated, there exists a W-work con-
serving policy when 8§ > 1.

Proof. Fix the observation window size F = W, Consider the
following policy:

F
A% + B, 1, -
- )mm{ A§+B;°}

We know, from Lemma 1, that it is F-work-conserving (in this
the case, § = 1 and ¥ = 0). Now we will prove that it is
feasible for § > 1. Thanks to Theorem 2, we can assume, for
all k: . ‘
and Ok=0

2

k k _ ;
Yf=0=Bf=0vi

By assumption, 21" < F and A¥ < F. Hence, the policy
reduces to: Df, = A’c and by imposing || D*|j0 < SF, we
obtain: § > 1. a

Theorem 4. Consider a CIOQ switch. Under an arrival pro-
cess A which is (1, W)-regulated, there exists a W/2-work
conserving policy if and only if § > 4/3.

Proof. Fix the abservation window size F = W /2. We divide
the proof in two steps, in the first we show that § = 4/3 is a
sufficient speedup to deal with {1, 2F}-regulated traffic, in the
second step we show that it is also a necessary condition. Note
that in this case, D is also the optimal policy, minimizing the
speedup needed.
Step 1. Fix 6, = 4/3 and consider the following policy D:

DE = (4% +B")mm{l,-.kﬁii

A + B

We know, from Lemma 1, that D is F-work-conserving (in this
case, v = 0 and # = @), hence it is a good representative for
D. We show now that D is feasible for § > 4/3. First we
notice that, in general:

= D =min{A% + B}, 00F} < 6F < SF

with § > 4/3. Thus, to decide the feasibility of 1, we have
to compute the maximum possible value for DF. D¥ can be
split in two components, D¥ , which is the amount of services
received by packets arrived during the k** observation window
at input 7, and D¥ ’ s the amount of services received by back-
logged packets from the prevmus observation window at input
i: Df = DF, + DFy. Itis Df, < F because of (6). We

now find the maxlmum for D¥ . Note that if D% ; > 0 then
B" > 0, being D

k g the amount of service recclved by back-

logged packets at output j. Then, Bf ! = 0and D% 5 = BE
for Theorem 2.

ya = a (1-ma 1 25 <
i i
0 F
< ;Afj‘l (1 - min{l —QF}) < F(1-85/2)

thanks to the fact that A}™! < 2F. Thus, after maximizing

Df , we can maximize Df and imposing the feasibility con-

ditions: 4
DFSF+F(1-6/2)= 3F SSF

which holds for § > 4/3.
In conclusion, with speedup S > 4/3 pohcy D is feasible.

Step 2. We want to show, by a counterexample, that the
minimum speedup 4/3 is also necessary to have an F-work-
conserving policy. Consider a switch with 2 active inputs and
3 outputs. Assume ¥}¥ = 0, hence Bf, = 0for1 < i < 2
amdl <j5j<3 Cons:der the followm% trafﬁc pattern, (i, 2F)-
regulated: A%, = A% = A% = ARl = F. At the end of
the k** observation Wmdow to mmlmlze the maximum back-
log at both inputs, we set: D¥, = D& = SF/2.

After the arrival at time k + 1, there are (1 — §/2) F packets
enqueued at the inputs and destined to output 1, whereas F' are
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Minimum speedup Average delay | Maximum
sufficient | necessary | penalty w.r. OQ delay
S=1 5=1 3/2 x pW 2 x pW
8§=4/3 | §5=4/3 3/4 x pW 3/2 x pW
S=3/2 |- 1/2 x pW 4/3 x pW
S=2 §=2 0 W

TABLE [

TRADEQFF BETWEEN SPEEDUP, THE AVERAGE DELAY PENALTY WITH
RESPECT TO AN O SWITCH AND MAXIMUM DELAY FOR A
(p, W)-REGULATED TRAFFIC

Minimum speedup Average delay Maximum —‘
sufficient | necessary | penalty w.r. OQ delay
S=1 §=1 32xaf/(l-p) | 2xa/l—p)
5=4/3 | §5=4/3 | 3/4xc/(1—p) | 3/2xa/(1-p)
5=3/2 |- 1/2xa/(1-p) | 4/3 x /(1 - p)
§=2 §=2 0 af(1-p)

TABLE II
TRADEQFF BETWEEN SPEEDUP, THE AVERAGE DELAY PENALTY WITH
RESPECT TO AN OQ SWITCH AND MAXIMUM DELAY FOR A (p, ]-LBC
TRAFFIC

destined to output 2 and 3. Hence, to have D work-conserving
by setting ¥; = 0 and B = 0: DEF! = Bf‘j"’l + Afj'"l.
Since D' must be feasible, we impose:

@-S)F 202N -DF

<
N 3N < SF =

52

o | ok

Hence, § > 4/3 is a necessary condition to have an F-work-
conserving policy. 0

Theorem S. Consider o CIOQ switch. Under an arrival pro-
cess A which is {1, W)-regulated, there exisis a W/3-work
conserving policy, if § > 3/2.

We omit the proof for lack of space, the interested reader can
find it in [16].

V. MaIN RESULTS ABOUT DELAY PERFORMANCE

Under a (1,nF)-regulated arrival process, Theorems 3, 4
and 5 evaluate the compromise between speedup and average
delay penalty with respect to an OQ switch, which is 3/2 x F.
Indeed, the average delay penalty is sum of two contributions.
The first is the average delay penalty equal to F' due to the F-
work-conserving property (see Theo. 1). The second is an addi-
tional average penalty equal to F'/2 due to the switch working
in a gated-fashion (see Eq. 2). On the contrary, the absolute
delay is nF + F, thanks to the observation at the end of Theo-
rem 2.

Now consider an arrival process (p, W)-regulated and an ar-
rival process [p, o]-LBC. Tables I and II show the average delay
penalty with respect to GQ and the absolute delay, for regu-
lated and LBC traffic. Note that, for n > 3, we did not com-
pute the minimum speedup. Of course, with speedup § = 2,
a CIOQ system can emulate perfectly an OQ and the average
delay penalty is null.

VI. CONCLUSIONS

CIOQ switches that can control the packet delays at low
speedups are very appealing. It is well known that, at speedup
lower than 2, a CIOQ switch can not emulate OQ switch even
with bounded delay penalty [3]. Hence, we considered the
CIOQ switch operating under a restricted, but general enough,
arrival traffic class. We defined a new notion of F-work conser-
vation for CIQQ switches, which in turn implies the property of
0Q emulation with average delay penalty bounded by F'. Un-
der regulated traffic, we were able to compute an upper bound
of the delay penalty for § = 1, § = 4/3 and § = 3/2. We
presented scheduling policy for § = 4/3 and S = 3/2. Thus,
we showed that it is possible to emulate OQ switch under quite
a general class of arrival traffic at lower speedup than 2 with
bounded amount of average delay penalty.
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