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Abstract— Input Queued(IQ) switch architecture has been of recent in-
terest due to its low memory bandwidth requirement. A scheduling al-
gorithm is required to schedule the transfer of packets through cross-bar
switch fabric at everytime slot. The performance, that is throughput and
delay, of a switch depends on the scheduling algorithm. The Maximum
weight matching(MWM) algorithm is known to deliver 100% throughput
under any admissible traffic [2][3][4]. In [5], Leonardi et. al. obtained non-
trivial bound on the delay for MWM algorithm under admissible Bernoulli
i.i.d. traffic. There has been a lot of interesting work done over time to ana-
lyze throughput of scheduling algorithms. But apart from [5], there has not
been any work done to obtain bounds on delay of scheduling algorithms.
The MWM algorithm is perceived to be very good scheduling algorithm in
general and simulations have suggested that it performs better than most
of the known algorithms in terms of delay. But it is very complex to im-
plement. Hence many simple to implement approximations to MWM are
proposed.

In this paper, we study a class of approximation algorithms to MWM,
which always obtain a schedule whose weight 1 differs from the weight of
MWM schedule W* by at most f(WW*), where f(.) is a sub-linear func-
tion. We call this difference in weight as “approximation distance” of al-
gorithm from MWM. We denote this class of algorithms by 1-APRX. We
prove that any 1-APRX algorithm is stable, that is, it delivers upto 100%
of throughput under any admissible Bernoulli i.i.d. input traffic. Under
any admissible Bernoulli i.i.d. traffic, we obtain bounds on the average
queue length(equivalently delay) of the 1-APRX algorithms using a Lya-
punov function technique, which was motivated in [5]. The delay bounds
obtained for the 1-APRX algorithm is linearly related with the “approx-
imation distance”, which matches the intuition that better the weight of
schedule, better the algorithm will perform. Interestingly, simulations show
a linear relationship between the average queue length(equivalently delay)
and the “approximation distance”. Thus, the “approximation distance” of
a scheduling algorithm can serve as a metric to differentiate between the
performance of different stable algorithms, even though throughput may
be same for these algorithms.

We also obtain a novel heuristic tighter bound on the average queue
length (equivalently delay) under uniform Bernoulli i.i.d. traffic for MWM
using a very simple argument.

I. INTRODUCTION AND MOTIVATION

Output Queued switches (or known architectures other than
the 1Q architecture) are becoming increasingly difficult to imple-
ment due to its high memory bandwidth requirements and hence
poor scaling at high line speeds. Input Queued switches on the
other hand, have been of recent interest among researchers and
industry people because of its capability of operating at high line
speeds with lower memory bandwidth requirement. We briefly
introduce the popular model of the input-queued switch with
crossbar architecture.

Consider the NV x N crossbar IQ switch shown in figure 1. At
each of the inputs, there are /N separate Virtual Output Queues
(VOQ) corresponding to each of the N outputs. A VOQ for
output j at input 7 is denoted by VOQ;;. Let @Q;;(¢) denote the
number of packets in VOQ;; at time ¢. At any time ¢, consider
the bipartite graph induced by these /N inputs-outputs, where
an input ¢ has an edge to output j iff Q;;(t) > 0. The cross-
bar constraints of an IQ switch require that at every time slot
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t, each input can be connected to at most one output and each
output can receive at most one packet from inputs. This means
that a feasible “schedule” of input-output is a “matching” on this
bipartite graph. A matching of input-output can be represented
as a permutation matrix 7 = (m;;); j<n: m; = 1 iff input 7 is
matched to output j in the matching. A scheduling or matching
algorithm S obtains a permutation (matching) < (n) for every
time slot ¢. In this paper, we consider all scheduling algorithms
with speed up 1, that is, packets are transferred only once per
time slot. Let \;; denote the arrival rate at input 4 for output j.
An arrival traffic is called admissible if (a) > j Aij < 1,Vi,and

Definition 1. Weight of a schedule: Weight of a VOQ refers
usually, but not restricted to, the length (number of packets in
backlog) of the VOQ. Weight of the schedule is the sum of the
weight of all the VOQs that have been scheduled (matched) to
the outputs in that time slot. That is, if 7 = [m;;] is a schedule
and Q(t) = [Q;;(t)] is the switch state at time ¢, then the weight
of schedule 7 at time ¢ is },; m;;Q;;(t). We will also use the
inner product notation to define weight: the inner product of 7
and Q(t) is (m, Q(t)) = >_;; ™ijQi;(t). We denote the weight
of schedule m by W.

The well known maximum weight matching (MWM)
scheduling algorithm finds the matching (schedule) with max-
imum weight among all possible N! matchings. MWM is know
to deliver 100% throughput for any admissible traffic [2], [3],
[4]. In [5], Leonardi et. al. obtained non-trivial bound for
MWM under any admissible Bernoulli i.i.d. traffic. Simulation
study by many researchers has suggested that MWM provides
very good delay properties. Thus MWM has desirable proper-
ties. But it is very complex to implement. This has led to many
simple approximations to MWM. Consider the following class
of approximations to MWM:
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Definition 2. 1-APRX: Let the weight of a schedule obtained
by a scheduling algorithm B be Wp. Let the weight of the max-
imum weight match for the same switch state be W*. B is de-
fined to be a 1-APRX to MWW, if the following property is
always true: Wg > W* — f(W™*), where f(-) is a sub-linear
function, that is, lim,_.., £ Ef)

For a 1-APRX algorithm B, the bound on the difference be-
tween its weight and weight of MWM is defined as “approxima-
tion distance” of that algorithm to MWM. Note that in the above
definition, we can call f(W*) as an “approximation distance” of
the algorithm B. To avoid ambiguity on the notion of “approx-
imation distance”, we will denote the smallest such f(W*) as
the approximation distance.

We will show that all 1-APRX algorithms deliver 100%
throughput for any admissible traffic. Since throughput does not
seem to be a good enough metric to differentiate between these
algorithms, we will also study the delay offered by these algo-
rithms. In this paper, we will use delay as a metric to evaluate
the performance of all such approximate algorithms. We will
analyze, both theoretically and through experiments, the delay
bounds on the class of 1-APRX algorithms for MWM.

This paper is mainly about analysis of the average delays of
scheduling algorithms. We first obtain heuristic delay bounds
for the MWM scheduling algorithm under i.i.d. uniform traf-
fic using a very simple argument. This turns out to be tighter
than the bounds obtained in [5]. Interestingly, these bounds can
be extended for the non-i.i.d. traffic but not non-uniform traf-
fic. Next we obtain bounds on delay (average queue length) for
1-APRX algorithms. As it turns out, these bounds are linearly
related to the “approximation distance” of these algorithms. Ex-
tended simulation study confirms this observation. We would
like to note that this matches the intuition: better the approxi-
mation an algorithm is to MWM in terms of “weight”, better it
is in terms of delay.

The rest of the paper is organized as follows: In section II,
we discuss the stability and delay bounds of the 1-APRX al-
gorithms. In particular, section II-B.1 discusses the (heuristic)
novel tighter bounds on MWM under uniform traffic. In section
II-B.2, we present the technique to analyze the bounds on the
average queue length or delay for 1-APRX schemes. In section
III, we consider two particular algorithms, which can be seen
as implementable versions of MWM. We show that they are 1-
APRX algorithms. In section III-A, we provide an extensive
simulation study about the average delay of these algorithms,
which confirms our theoretical results. Finally, we conclude in
section IV.

= 0 for any switch state.

II. 1-APRX ALGORITHMS: STABILITY AND DELAY
BOUNDS

In this section, we consider the performance of 1-
approximation algorithms to MWM in terms of throughput and
delay bounds.

A. Approximate Algorithms: Stability

The following theorem proves that 1-APRX algorithms de-
liver 100% throughput.

Theorem 1. Let W*(t) denote the weight of maximum weight
matching schedule at time t, with respect to switch state Q(t).
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Let B be a 1-approximation algorithm to MWM. Let W B (t)
denotes its weight at time t. Further, B has property that,

WHE(t) > W*(t) — fF(W*(t)),Vt,

where f(-) is a sub-linear function. Then, the scheduling al-
gorithm B is stable under any admissible Bernoulli i.i.d. input

traffic.

Proof. We will use the approach similar to [2]. Let V(Q(t)) =
D Q .(t) be the usual quadratic Lyapunov function. To es-

tablish stablhty it suffices to prove that for some § > 0 and
K>0

EV(Qt+1) - V(Q(1)IRQ®))
< —0W™*(t), whenever W*(t) > K,

Consider the following:

V(Q(t+1)) = V(Q@)) = Z[ 5t +1) — Q)]
= Z[Q” (t+1) = Qi M][Qu;(t + 1) + Qi ()]
Let S(t) = [S;;(¢)] be the schedule used by B at time ¢ and let

A;;(t) denote arrivals to VOQ,; at time t. We know that

Qij (t + 1) [QU( )
< max{[Q;;(t) —

Sip(M]F + Aij(t+1)
Sij()] + Ayi(t +1),1}. (D

Hence, we obtain

V(Q(+1)) = V(QQ®))

<Z (Ay(t+1) —
<Z

Si (1)) (2Qi; (1) + 1) +1]

i (t+1) = S (1) (2Qi (1))] + 2N?

Taking conditional expectations with respect to Q(¢) yields

E(V(Q(t+1) - V(QW)IQ(1)
<237 Qu(NIE(A(1) - S5(1)|Q(1)] + 2N

S ()] + 2N?

=2)_Qut

Since the arrival rate matrix, A, is admissible it is strictly
doubly sub-stochastic. Therefore, from arguments made in
Lemma 2 of [2], we may write 3, Q;;(t)Ai; = (Q(t),A) <
> x Vk(Ik, Q(t)), where the II;, are permutation matrices and
Ve = Oandzk% < 1.

Let Wi, = (I, Q(t)) and let 6 = 1 — 3, 7. Putting the
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above observations together, we get

EV(Q(t+1) - V(Q(#)IQ®))
<20} Wi, (t) — WH(t)) + 2N?

k
=203 Wi, (t) = W*(t) + W*(t) — W5 (1)) + 2N?
k
<20k — YW (t) + 2f(W*(t)) + 2N?
k

= —20W*(t) + 2f (W*(t)) + 2N?
Since f(-) is sub-linear function, for large enough constant X >
0, we obtain,

EV(Qt+1))-V(Q(#)[Q®) < —6W*(t), W*(t) = K

This proves the stability of algorithm B. O

This theorem shows that, all such 1-approximation algorithms
have the same throughput region as MWM. Thus only through-
put consideration does not let us differentiate between the per-
formance of such algorithms. This motivates the study of delay
bounds of these algorithms, which we study next.

B. Delay Bounds

In this section we present different theoretical bounds on av-
erage delays of 1-APRX scheduling algorithms.

B.1 Delays for MWM

In [5], Leonardi et. al. provided bounds on performance of
MWM. Their method provides tight bounds for uniform traffic,
that is the arrival rate for each VOQ is the same. In this section
we present a very simple but powerful way to obtain heuris-
tic bounds on the performance of MWM under uniform traffic.
These bounds can be extended to non-i.i.d. arrival traffic, but
it is particular to uniform traffic (rather particular to throughput
region where \;; < 1/NVi, j). As it turns out, these bounds are
little tighter than the bounds provided in [5].

We first consider the following simple randomized scheduling
algorithm, which we denote as RANDOM:

(a) Every cell-time, pick a matching R uniformly at random out
of all N'! possible matchings.
(b) Use matching R as schedule for this particular time.

Intuitively it seems that the algorithm RANDOM is worse than
MWM (at the same time, we do not know if that is true !).
Hence, the average delay(or average queue length) under RAN-
DOM should serve as an upper bound for MWM. This motivates
the analysis of the average queue length under this RANDOM
policy.

Under uniform traffic, the arrival rates are such that, \;; =
A< % , Vi, 7. Under scheduling policy RANDOM, the probabil-
ity that a particular VOQ @Q);; receives a service, is (N];!l)! = %
Thus, all queues Q;;(1 < 4,57 < N) become discrete time
queues with Geometric arrival process of rate A and Geometric
service process of rate 1/N, which is a discrete approximation
to usual M/M/1 queue. Thus to obtain average queue length (or
delay bounds) we need to analyze a simple discrete time queue
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with such friendly arrival-departure distribution. We state the
following well known lemma from very basic queueing theory.

Lemma 1. For a FCFS discrete time version of M/M/1 queue,
which has Geometric arrival process of rate \(probability of ar-
rival) and Geometric service process with rate |1 > ), the aver-

age queue length is
AL =)

(h—=2)
Proof. We will sketch the proof of this lemma. We can model
this system as a discrete time Markov chain, with the state of
this system being the number of packets in the queue. Let X ()
denote the state(number of packets) of the system at time £. At
time ¢t 4+ 1, an arrival occurs with probability A and departure
occurs with probability p. Thus, X (¢ + 1) = X(¢) + 1 with
probability A(1 — p) 24, X(t+1)=[X(t) — 1] with proba-
bility p1(1 — A) 2 band X (¢ + 1) = X () otherwise. This can
be easily analyzed and the steady state distribution gives the de-
sired average queue length as A=

(n—2X)
look into [13] for reference. |

. An interested reader can

From the above discussion, and Lemma 1 we obtain the fol-
lowing theorem:

Theorem 2. Under i.i.d. uniform traffic with arrival rate \;; =
A, Vi, j, under the RANDOM scheduling algorithm, in the equi-
librium the average queue length of a VOQ Q;;,Vi, j is

A(1—1/N)
V=N =

where A < 1/N.

The normalized loading factor of switch arrival process is p =
AN. Hence from the above theorem, the average queue length
is
p N-1

(I-p) N

Intuitively, this is a possible upper bound on the average queue
length under MWM. We do not claim this as an upper bound
since there is no theoretical result that says that the delays of
RANDOM are worse than that of MWM. Let us compare this
bound with the bound obtained by Leonardi et. al. in [5] as,

L(p) =

= p N-—-p
L(p):(l—p)T

Since, p < 1 it immediately implies that,

L(p) < L(p)

Note that, in analysis of the policy RANDOM, we used results
of the average queue length for a discrete time FCFS queue with
Geometric arrivals-services. There are many results known in
queueing theory about the average delay of such queue under
general arrival traffic assumption, depending on the character-
istics of traffic(see [13]). All such bounds apply to the case
of RANDOM, which provide a heuristic bounds on the average
queue length under MWM policy for uniform traffic.

We would like to note that, the average queue length and av-
erage delay are related by Little’s law: L = AW, where L is
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the average length, W average delay and A arrival rate. Thus
bounds on average queue lengths and average delays can be de-
rived from each other. We would like to note that, because of
this reason, we will use bound on delay and bound on queue
length interchangeably. As a note, stable switches do observe
Little’s Law, even though they may not be work-conserving.

B.2 Delay bounds for Approximate Algorithms

In this section, to obtain bounds for all 1-APRX algorithms
of MWM, we develop a new technique motivated from [5]. We
would like to note that, these techniques(this paper and [5]) have
similar flavor to previously well-known results, e.g. [15]. We
obtain the bounds on the average queue length under any admis-
sible Bernoulli i.i.d. arrival traffic.

For all 1-APRX algorithms (including MWM), from the proof
of theorem 1, the following always holds:

EV(Q(+1) - V(QM)IQWM)] < —26W"(¢) +

fW*(t)) + 2N?

where recall that W*(¢) is the weight of the MWM schedule.
Though the methods used in the rest of the paper apply to all
sub-linear functions f(-), we will restrict the analysis in the sub-
sequent sections to the special case where f(-) = C, a constant.
However later we will generalise the result for any sub-linear
function f(-). We would like to note that, in the rest of the
section, || - || denotes the 1-norm of vector unless specified oth-
erwise, that is, for Q(2), [Q(t)[| = >_; ; Qi (1)

For the rest of the section, we will consider a 1-APRX algo-
rithm of MWM, which we denote as B. Let W5 (#) denote the
weight of the schedule obtained by algorithm B at time t. By
the approximation property for B,

WE(t) > W*(t) — Cp, Vi

where, C}, is a constant, representing algorithm B’s approxima-
tion distance from MWM.

For algorithm B, from the proof of theorem 1, we obtain,

EV(QEt+1) -V(Q®)IQWM)] < —20W*+Cy

+2N? 2)

Note that, now onwards, unless stated explicitly, W* denotes
the weight of the MWM schedule at the time in consideration.
For example, W* denotes W*(t) in (2).

We would revisit the proof of Theorem 1 to obtain tighter
bounds on the sum of the average queue length. In (1), we
bounded the Qij by the max{[Qij (t) — Sij (t)] + Aij (t + 1), 1}.
This results in a constant 2N2 in (2) above. Instead, if we ignore
the reflection condition of the queue and simply take,

Qij(t+1) = Qi;(t) — Si(t) + Aij(t + 1)
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then we obtain,

V(Q(t+1) — V(Q(t))=ZQij(t+1)2—Qij(t)2

= 3 (Qus(t) — Sij(t) + Aij(t + 1))

—Qij(1)?
= ) (Ai(t+1) = Si;(t)* +
2Qu (At — Syt +1) )

Before proceeding further, one might object regarding the
use of such “unreflected” version of queueing evolution. We
would like to note that the “reflection” condition becomes ac-
tive only when Q;;(¢) = 0. This trivially gives a bound on
Q;j(t + 1) of 1. Which in turn, as we will see later can give
bound, E[||Q(t + 1)||] < N2, if the “reflection” condition is ac-
tive on all the ;;(¢). The “unreflected” version, as we will see
later, will give bound, say _E, for E[||Q(t + 1)||]. Thus, the bound
on B[||Q(t+1)|]] is max{b, N?}. Later we will see that, in gen-
eral, b > N2, and hence it is the important bound. In the rest
of the paper, henceforth, we will not consider the “reflection”
condition.

Using argument similar to used in proof of Theorem 1, and
(3), for algorithm B, we obtain,

EV(Q(t+1)) = V(QM)IQ(t)] < —26W*(¢)

+Cy + Z E[(Ay(t+1) = Si5(1)*|Q(1)]
—20W*(t) + Cy+ > B[(Aj(t +1) — Si;(t))?]
—26W*(t) + Ch + > E[Aij(t+1)°] +

> E[Si(1)°] — 2B[A;(t + 1)S;(t)]

“

Before proceeding further, we would like to evaluate the exact
values of many of the terms in (4).

First, consider the term 6. As used in proof of Theorem 1,
since arrival matrix A is strictly doubly sub-stochastic, we can
write,

A< ZWch
%

where, v, > 0, Ve < 1. We would like to remind to the
reader that, in above equation, the < sign means the term-by-
term domination of one matrix by the other. Further it is possi-
ble to get a collection of 7, such that )", v, = max; ) ; Aij-
(refer to [14] for the procedure to obtain such). To explain this,
consider the following example:

Example 1. Consider the case of uniform traffic with \;j; = A =
p/N,Yi,j. Consider the N disjoint permutations: 1IF = [Hfj]
such that, Hfj =1ifj=(i+k) mod N, fork=0,...,N—
1. Then A = [\ = ij;ol Y IT¥, where v, = A\ = p/N, Vk.

IEEE INFOCOM 2002



From the proof of Theorem 1, it is clear that § = 1 — >, v,

and hence
=Y
k
= 1-max) X, &)
J

Now consider the other terms in (4). Since A;;(t) is Bernoulli
i.i.d. with mean probability \;; of being 1, we have

E[A;(0)] = Ay,
E[A; (1% = Ay, (6)
Under the strongly stable algorithm B, the switch state be-

comes a discrete time, irreducible, aperiodic Markov chain
which has a stationary distribution. Hence for large enough ¢,

E[Si;(t)] =

E[S;j(t)7] = E[Ai;(1)7] = \ij, (7

Further, since S(t) depends on arrivals till time ¢, S(t) is in-
dependent of A(t + 1) under i.i.d. assumption on input traffic.
Using this, we obtain,

B[S;(t)Aij(t + 1)] E[Si; (1) E[A(t + 1)]

A2 8)

)

From (6)-(8), we obtain

D E[Aij(t+1)°] + B[Si;(t)%] — 2B[Ay (t + 1)Si;(1)]
= (Aij +Aij — 2A3)
=2A; — 2A, ©)

where, A; = Z Aij and Ay = ZU )\2 We denote, A =

(A1—Ay). Observe that, W*(t) > Z” QU (t) = % 1Q) 1.
To see why this is true, suppose the opposite is true, that is
1Q()|lx > NW™*(t). Consider the N disjoint permutations
II¥,0 < k < N — 1, we used in the Example 1. Note that
>, % = [1]. The weight of the schedule corresponding to
these permutations is Wy = (IT¥, Q(t)), and hence,

Z Wi = Z(Hk7 Q1))
k K

= O _1*,Q®)
k

= ([, Q)
Q)] > NW*(#)

Now consider the following,

EV@QE+1)] = EMV(@Q@E+1))-V(Q®)
V(Q(#))]
= EBEV(Q(+1)) - V(QM)IQ®)]
E[V(Q))],

IA

—2¢E[[|Q()[1] + Cb

+2A + E[V(Q(t))] an

Now summing up (11) from¢ = 0to¢ =T — 1, we obtain,

E[V(Q(T)] < T(Cy+2A) + E[V(Q(0))]

T-1
—2¢ > E[|Q()]]
t=0

Assuming, we start with empty system, E[V (Q(0))] = 0. Thus,
for any 7', we obtain,

Z R[] <

t=0

1 _
2_6 (Cb + 21\)

’ﬂ |

1

_ (T) EV(QT)]  (12)

Since V(-) > 0, we obtain from (12),

1 1 .
7 ; EflQ®I] < o (G+28)  (13)

Under the i.i.d. arrival process, the switch state () is a discrete
time Markov chain. It is an irreducible aperiodic Markov chain.
Hence it is ergodic, that is, the left term in (13) converges to ex-

pected value of ||Q(¢)]|; under equilibrium distribution. Hence
from (13) we obtain,

Z

Q)] = Jim BllQ(T)|

1 _
< Q*G(Cb +2A) (14)

Using this, we obtain the following theorem.

Theorem 3. Let B be a scheduling algorithm. The weight of
schedule obtained by B at time t is denoted by W (t) and let
the weight of MWM schedule for the same switch state at time t
be W*(t). For any time t, WB(t) > W*(t) — Cy. Then under
admissible Bernoulli i.i.d. traffic with the arrival rate matrix
A = [\;], the average of the sum of all the queue lengths in
stationarity is bounded above as

. . . Nix NG,
Hence, by pigeon-hole principle, we must have one k such tlim EllQt)|h] £ — + 55
that Wi» > W*, which is a contradiction. Hence, W*(t) > >
lod )”1. where, § = 1 —max;{}_; A} and A = > (Nij — )\12])]
From (4), above discussion and replacing € = £, we obtain, For MWM, we have C}, = 0, which means that the bounds
EV(Qt+1) =V(Q®)IRM)] < —2e[Q)]:+ e NA
Cy,+2A (10 Ello] = =5~
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For uniform traffic, we have A\;; = A = p/N, Vi, j. Hence,

404

-50(1-%)

iy ()

These bounds are exactly same as the ones obtained in [5].

Note that, from Theorem 3, the important implication is that,
the bound of approximate algorithms on average queue length
are proportional to their “approximation distance” from max-
imum weight matching (MWM). The simulation study shows
that this qualitative statement on bounds is actually tight. Thus,
the approximation distance of a scheduling algorithm from max-
imum weight matching gives a metric to differentiate perfor-
mance of algorithms with respect to each other.

For a general 1-APRX algorithm B, with property

This gives,

El|Q)[1] < N?

WE(t) > W(t) — F(IV*(t))

where, f(-) a sublinear function. We assume that f is non-
decreasing function. We also know that

W*(t) < [1Q(®)]
Hence, we have, f(W*(t)) < f(||Q(¢)|l1) which gives

W) = w*(t) - F(IQ®)1)

We assume that function f behaves “nicely”, so that by ergodic-
ity of Q(t), we obtain,

T-1
ﬁg%%ﬂ%@M=E&ﬂM@ﬂm

Putting the above discussion together, the bound of Theorem 3,
for such an algorithm B becomes,
. NA N
Jim BIQW)I] < == + 3= lim BL(IQ()])]

III. PRACTICAL 1-APRX ALGORITHMS

In this section, we consider two 1-APRX of MWM algorithm,
which are implementable versions of the MWM algorithm.

Pipelined-MWM

This algorithm can be described as follows: The MWM
schedule is computed over more than one time-slot. This com-
putation is done in a pipelined manner. Let K be the depth of
pipeline. Hence, the computation of the MWM schedule with
respect to switch state at time ¢ would get over at time ¢ + K.
Thus at any given time, the MWM schedule used is K time slots
old. We denote this algorithm as pMWM.

The reason we chose this algorithm is because of its compati-
bility with hardware. We know that hardware lends itself well to
pipelining. We would therefore like to understand what would
happen if we were to implement a pipelined version of MWM.
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3 time slots to compute
MWM (p=3)

MWM vat t=0

used at t=3 v
MWM at t=2
used at t=5

Fig. 2. Pictorial description of pMWM with pipelining p=3.

The figure 2, explains the way pMWM works.

Theorem 4. Let W), denote the weight of schedule obtained by
pPMWM, and W* denote the weight of MWM schedule for the
same switch state. Then,

W, > W* —2KN

Proof. The weight of a schedule can not increase by more than
N between consecutive time slots and can not decrease by more
than IV between two consecutive time slots. Let S*(s) denote
the MWM schedule at time s. Consider any time ¢. The schedule
used by pMWM, say SP(t) is MWM schedule with respect to
switch state at time ¢ — K. Thus, the weight of SP(t) at time
t— K, (SP(t),Q(t — K)) is at most K N more than its weight,
(SP(t),Q(t)) at time t. Also, the weight of S*(¢) is at most
K N more than the weight of SP(¢) at time ¢ — K. Putting this
together, we obtain that the weight WP (¢) of the schedule used

by pMWM is greater than W*(¢) — 2K N. O
Thus pMWM is a 1-APRX algorithm.
Bursty MWM

This is another variant of MWM. In this version, every K"
time slot, a MWM schedule is computed with respect to the
switch state at that time. This schedule is used repeatedly for
the next K time slots. We call this a Bursty MWM, and denote
by bMWM.

The reason we chose this algorithm is because it is a good ex-
ample of our class of approximate algorithms where the weight
of the matching keeps changing from being exactly equal to the
weight of MWM to that of the weight that is a constant 2K N
away from the weight of MWM.

The figure 3 explain the bMWM algorithm for K = 3.

Theorem 5. Let W), denote the weight of schedule obtained by
bMWM, and W* denote the weight of MWM schedule for the
same switch state. Then,

Wy, > W* —2KN
Proof. From the proof of Theorem 4,
W*t)y>W*(t—-1)— N
Consider the K'" time-cycle starting from say ¢y, one of the

time slots when a new MWM schedule has just been computed
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MWM at t=0
used at t=0, 1, 2

I I I I S .
0 1 2 3 4 5 6

MWM at t=3
used at t=3, 4,5

Fig. 3. Pictorial description of bMWM. Here the burst size is 3.

by the bMWM algorithm. For time ¢ € [to, to + K — 1], we keep
this schedule fixed. The weight of this schedule can at most
decrease by IV every time. Thus combining above discussion
together, we obtain that for any time ¢ € [tg, to + K — 1],

Wy, >W*—-2KN

A. Simulation of Delays

We first explain the simulation settings:

Switch: Switch size: N = 32. Each VOQ can store upto 10,000
packets. Excess packets are dropped.

Input Traffic: All inputs are equally loaded on a normalized
scale, and p € (0,1) denotes the normalized load. The arrival
process is Bernoulli i.i.d. The following load matrices are used.
1. Uniform: X\;; = p/N Vi, j. This is the most commonly used
test traffic in the literature.

2. Log-Diagonal: This is a very skewed loading, in the sense
that input ¢ has packets for different outputs with probabilities

Jj—1i

that differ exponentially. Thus \;; = m p. This traffic

pattern is more difficult to schedule than uniform loading.

We measure the average cell delay for different algorithms to
test the bounds obtained theoretically.

We let the simulation run until the estimate of the average
delay reaches the relative width of confidence interval equal to
1% with probability > 0.95. The estimation of the confidence
interval width is obtained using the batch means approach.

From Theorem 4 and 5, pMWM and bMWM are 1-APRX
algorithms, with the approximation distance of 2K N for both
of them. By Theorem 3, the bounds for different versions of
pMWM and bMWM should increase proportional to the num-
ber of stages K, used by them. Thus, Theorem 3 suggests that
the difference between bounds for different versions of pMWM
and bMWM should be proportional to the difference between
the number of stages among the versions. We shall see that the
simulations verify this very well.

The figures 4 and 5 represents the average cell delay of
pMWM, with different values of K, for different traffic load
under uniform traffic and diagonal traffic respectively. Observe
that, for any of the loading, under both traffic patterns, the differ-
ence between average delays are proportional to the difference
in the values of K. For example, in figure 4 for load 0.8 the dif-
ference between average queue length for K = 8 and K = 16
is half the difference between average queue length for K = 16
and K = 32 (similar statement is true for 16,32 and 64 too.).
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This verifies that the increase in the average queue lengths (or
delays) of 1-APRX algorithm are proportional to the approxi-
mation distance of the algorithm.

The figures 6 and 7 show that similar behavior is observed for
the bPMWM algorithm too, which confirms that the bounds we
obtained are tight in the qualitative sense.

We would like to note that, the analytical bounds obtained in
Theorem 3 are an upper bound and not as tight as the simula-
tional results. Hence we have not plotted analytical bounds to
compare them with the simulation bounds. But the main mes-
sage of this paper is to convey the qualitative relationship be-
tween the performance in terms of delay and “approximation
distance”, and it is being verified by simulation appropriately.
Thus, in the qualitative sense our analytical bounds are tight and
agree with the simulation results.

Pipelined MWM. Uniform Traffic. Wt=Queue Size
1400 T T T T

al MWM |
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Fig. 4. Average cell-delay v/s Load for different levels of pipelining(P=level of
pipelining) for pMWM under uniform traffic.

Pipelined MWM. Non-Uniform Traffic (log-diagonal).Wt=Queue Size
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Fig. 5. Average cell-delay Latency v/s Load for different levels of pipelining
under log-diagonal traffic

IV. CONCLUSIONS

In this paper, we studied the throughput and delay properties
of scheduling algorithms for IQ switches which are 1-APRX
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Burst MWM. Uniform Traffic. Wt=Queue Size
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Fig. 6. Average cell-delay v/s Load for different levels of burst under uniform
traffic for b MWM

Burst MWM. Non-Uniform Traffic. Wt=Queue Size
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Fig. 7. Average cell-delay v/s Load for different levels of burst under diagonal
traffic for b MWM

to MWM. We first showed that all such algorithms are stable.
We showed that the delay bounds, an important performance
metric for scheduling algorithms, are directly proportional to the
difference in weight of the MWM schedule and weight of the
schedule of the 1-APRX algorithm. Simulations confirmed that
this qualitative relation actually holds for such algorithms. Thus,
we have provided a theoretical metric that can help differentiate
the performance of all stable algorithms.

We have also provided novel heuristic tighter bounds on the
average queue length(delay) for MWM under uniform i.i.d. ar-
rival traffic. These bounds can be extended for non-i.i.d. arrival
traffic as well but not for non-uniform traffic.
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