
COUNTING INDEPENDENT SETS USING
THE BETHE APPROXIMATION*

VENKAT CHANDRASEKARAN†, MISHA CHERTKOV‡, DAVID GAMARNIK§, DEVAVRAT SHAH†,

AND JINWOO SHIN¶

Abstract. We consider the #P-complete problem of counting the number of independent sets in a given
graph. Our interest is in understanding the effectiveness of the popular belief propagation (BP) heuristic. BP is
a simple iterative algorithm that is known to have at least one fixed point, where each fixed point corresponds
to a stationary point of the Bethe free energy (introduced by Yedidia, Freeman, and Weiss [IEEE Trans.
Inform. Theory, 51 (2004), pp. 2282–2312] in recognition of Bethe’s earlier work in 1935). The evaluation
of the Bethe free energy at such a stationary point (or BP fixed point) leads to the Bethe approximation
for the number of independent sets of the given graph. BP is not known to converge in general, nor is an
efficient, convergent procedure for finding stationary points of the Bethe free energy known. Furthermore,
the effectiveness of the Bethe approximation is not well understood. As the first result of this paper we propose
a BP-like algorithm that always converges to a stationary point of the Bethe free energy for any graph for the
independent set problem. This procedure finds an ε-approximate stationary point in Oðn2d42dε−4log3ðnε−1ÞÞ
iterations for a graph of n nodes with max-degree d. We study the quality of the resulting Bethe approximation
using the recently developed “loop series” framework of Chertkov and Chernyak [J. Stat. Mech. Theory Exp., 6
(2006), P06009]. As this characterization is applicable only for exact stationary points of the Bethe free energy,
we provide a slightly modified characterization that holds for ε-approximate stationary points. We establish
that for any graph on n nodes with max-degree d and girth larger than 8d log 2 n, the multiplicative error
between the number of independent sets and the Bethe approximation decays as 1þOðn−γÞ for some
γ > 0. This provides a deterministic counting algorithm that leads to strictly different results compared to
a recent result of Weitz [in Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Comput-
ing, ACM Press, New York, 2006, pp. 140–149]. Finally, as a consequence of our analysis we prove that the
Bethe approximation is exceedingly good for a random 3-regular graph conditioned on the shortest cycle cover
conjecture of Alon and Tarsi [SIAM J. Algebr. Discrete Methods, 6 (1985), pp. 345–350] being true.
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1. Introduction. We consider the problem of counting the number of independent
sets in a given graph. This problem has been of great interest as it is a prototypical
#P-complete problem. It is worth noting that such counting questions do arise in prac-
tice as well, e.g., for performance evaluation of a finite buffered radio network (see Kelly
[10]). Recently, the belief propagation (BP) algorithm has become the heuristic of choice
in many similar applications where the interest is in computing what physicists refer to
as the partition function of a given statistical model or, equivalently, when restricted to
our setup, the number of independent sets for a given graph. In this paper we wish
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to understand the effectiveness of such an approximation for counting independent sets
in a given graph.

BP is a simple iterative message-passing algorithm. It is well known that this itera-
tive procedure does have fixed points, which correspond to stationary points of the
Bethe free energy—for more details on the Bethe approximation and its relation to
BP fixed points, see Yedidia, Freeman, and Weiss [21]; also see the book by Georgii
[9]. However, there are two key problems. First, BP is not known to converge for general
graphs for counting the number of independent sets; indeed, there are known counter-
examples for other problems (see [17]). Second, given the BP fixed points, i.e., the Bethe
approximation, it is not clear what the quality of the approximation is. The main results
in this paper address both of these challenges. Before explaining our results, we provide a
brief description of relevant prior work.

1.1. Prior work. Previous work on counting the number of independent sets in a
given graph falls into two broad categories. The first and major body of work is based on
sampling via Markov chains. In this approach, initiated by the works of Dyer, Frieze,
and Kannan [6] and Sinclair and Jerrum [14], one wishes to design a Markov chain that
samples independent sets uniformly and has a fast mixing property. Some of the notable
results for independent set problems are by [12], [7], [16], [5]. These results show the
following: (a) for any graph with max-degree up to 4, there exists a fully polynomial
randomized approximation scheme using a fast mixing Markov chain, (b) there is no
fast mixing Markov chain (based on local updates) for all graphs with degree larger than
or equal to 6, and (c) approximately counting independent sets for all graphs with degree
larger than 25 is hard.

The second approach introduced by Weitz [18] provides a deterministic fully poly-
nomial-time approximation scheme for any graph with max-degree up to 5. It is based on
establishing a correlation decay property for any tree with max-degree up to 5 and an
intriguing equivalence relation between an appropriate distribution on a graph and an
appropriate distribution on its self-avoiding walk tree. We also note the work by
Bandyopadhyay and Gamarnik [2]: it establishes that the Bethe approximation is
asymptotically correct for graphs with large girth and degree up to 5 (e.g., random
4-regular graphs). As in [18] it also uses the correlation decay property. On the other
hand, it provides an oðnÞ bound for graphs of size n between the logarithms of the num-
ber of independent sets and the Bethe approximation.

In summary all of the above results use some form of a correlation decay property—
either dynamic or spatial. Furthermore, the generic conditions based just on max-degree
are unlikely to extend beyond what is already known.

1.2. Our results. In order to obtain good approximation results for graphs with
larger (> 5) max-degree, but possibly with additional constraints such as large girth, we
study the BP/Bethe approximation for counting the number of independent sets. As the
main result, we provide a deterministic algorithm based on the Bethe free energy for
approximately computing the number of independent sets in a graph of n nodes with
max-degree d and girth larger than 8d log2 n for any d.

As the first step toward establishing this result, we propose a new simple message-
passing algorithm that can be viewed as a minor modification of BP. We show that our
algorithm always converges to a stationary point of Bethe free energy for any graph for
the independent set problem. To obtain an ε-approximate stationary point of the
Bethe free energy for a graph on n nodes with max-degree d, the algorithm takes
Oðn2d42dε−4log3ðnε−1ÞÞ iterations (see Theorem 2).
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We analyze the error in the resulting Bethe approximation using the recently de-
veloped framework of “loop series” by Chertkov and Chernyak [4], which characterizes
this error as a summation of terms with each term associated with a “generalized loop” of
the graph. As this characterization is applicable only for exact stationary points of the
Bethe free energy, we provide a bound on the error in the loop series expansion for
ε-approximate stationary points. Though this approach provides an “explicit” charac-
terization of the error, it involves possibly exponentially many terms and hence is far
from trivial to evaluate in general. To tackle this challenge and bound the error, we
develop a new combinatorial method to evaluate this summation. We do so by bounding
the summation through a product of terms that involves what we call apples—an apple
is a simple cycle or a cycle plus a connected line. Along with the result of Bermond,
Jackson, and Jaeger [3], this leads to the eventual result that the error in the Bethe
approximation for the number of independent sets decays as Oðn−γÞ for some γ > 0
for any graph on n nodes with max-degree d and girth larger than 8d log2 n.

By replacing the result of Bermond, Jackson, and Jaeger by its stronger version, also
known as the shortest cycle cover conjecture (SCCC) of Alon and Tarsi [1], we obtain a
stronger statement for random 3-regular graphs: the difference between the logarithms
of the number of independent sets and the Bethe approximation is Oð1Þ with high prob-
ability. This is in sharp contrast to the result of Bandyopadhyay and Gamarnik [2] that
does not assume the SCCC and suggests that the error is oðnÞ based on correlation decay
arguments (and also as expected by physicists). Thus we have an intriguing situation—
either the SCCC is false or the Bethe approximation is terrific for counting the number
of independent sets!1 A byproduct of the technique used to establish the result for ran-
dom 3-regular graphs is the following algorithmic implication: it suggests a systematic
way to correct the error in the Bethe approximation, which could be of interest in its
own right.

1.3. Organization. Section 2 introduces the Bethe approximation for the problem
of computing the number of independent sets in a given graph and the error character-
ization based on loop series for this approximation. We also briefly discuss the BP algo-
rithm and its relation to the stationary points of the Bethe free energy. In section 4 we
describe a new message-passing algorithm for computing a stationary point of the Bethe
free energy for the independent set problem. We obtain its rate of convergence in
Theorem 2. In section 5 we analyze the error in the resulting Bethe approximation
for graphs with large girth. Finally, in section 6 we obtain a sharp bound on the error
of the Bethe approximation for random 3-regular graphs assuming the SCCC.

2. Background. Let G ¼ ðV;EÞ be a graph with vertices V ¼ f1; : : : ; ng, edges
E ⊆ ðV2 Þ, and a (vertex labeled) collection of binary variables X ¼ fXvjv ∈ Vg. Let
XA ¼ fXvjv ∈ Ag for any A ⊂ V . We construct a joint probability distribution over
X as follows:

PrðX ¼ xÞ ¼ 1

Z

Y
ðu;vÞ∈E

ð1− xuxvÞð1Þ

for x ¼ ðxvÞ ∈ f0; 1gn and where Z is the normalization constant. By construction the
distribution ofX is uniform over all independent sets of G, and hence Z is the number of

1An experimental study conducted subsequent to our initial submission suggests that the error between the
logarithms of the number of independent sets and the Bethe approximation does seem to be Oð1Þ for random
3-regular graphs [20].
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independent sets in G. We will use the following notation throughout this paper: N ðvÞ
refers to the set of neighbors of v ∈ V , dðvÞ ¼ dGðvÞ ≜ jN ðvÞj for v ∈ V , and
d ≜ maxv dðvÞ.

2.1. Bethe approximation. We present the Bethe approximation for Z as a func-
tion of the induced node marginals fτvgv∈V and pairwise edge marginals fτu;vgðu;vÞ∈E .
The Bethe free energy (see [21]) is optimized over all fτvg and fτðu;vÞg subject to the
constraints that these are valid distributions and that the edge marginals are consistent
with the node marginals. For the problem of interest discussed here, one can check that
the following conditions must be satisfied:

τu;vð0; 1Þ ¼ τvð1Þ; τu;vð1; 0Þ ¼ τuð1Þ;
τu;vð1; 1Þ ¼ 0; τu;vð0; 0Þ ¼ 1− τvð1Þ− τuð1Þ.ð2Þ

Consequently, we have the following simplified expression (cf. page 83 of [17]) for
the Bethe free energy FB∶½0; 1�n → R parameterized only by a vector y ¼ ðyvÞ ∈ ½0; 1�n
that corresponds to the node marginals fτvg via τvð1Þ ¼ yv:

FBðyÞ ≜
X
v∈V

HðXvÞ−
X

ðu;vÞ∈E
I ðXu;XvÞ

¼ðaÞ −
X
v∈V

ðdðvÞ− 1ÞHðXvÞ þ
X

ðu;vÞ∈E
HðXu;XvÞ

¼
X
v∈V

ð−yv ln yv þ ðdðvÞ− 1Þð1− yvÞ ln ð1− yvÞÞ

−
X

ðu;vÞ∈E
ð1− yu − yvÞ ln ð1− yu − yvÞ;

where Hð⋅Þ is the standard discrete entropy and I ð⋅Þ is the mutual information. In the
above, (a) follows from I ðXu;XvÞ ¼ HðXuÞ þ HðXvÞ− HðXu;XvÞ.

DEFINITION 1 (Bethe approximation). Let τ ¼ ðτvÞv∈V be the node marginals
corresponding to a stationary point of the Bethe free energy FB. Then the Bethe approx-
imation denoted by ln ZB of ln Z , the logarithm of the number of independent sets, is
defined as

ln ZB ¼ ln ZBðτÞ ≜ FBðτð1ÞÞ;

where τð1Þ ¼ ðτvð1ÞÞv∈V ∈ ½0; 1�n.
We note that the gradient of the Bethe free energy ∇FBðyÞ ¼ ½∂FB

∂yv
� is such that

∂FB

∂yv
¼ −ðdðvÞ− 1Þ ln ð1− yvÞ þ ln yv þ

X
u∈N ðvÞ

ln ð1− yu − yvÞ.ð3Þ

Let y� be a zero-gradient point (or stationary point) of FB, i.e., ∇FBðy�Þ ¼ 0, with y�

strictly in the interior of ½0; 1�n. From (3) it follows that

Q
u∈N ðvÞð1− y�v − y�uÞ
ð1− y�vÞdðvÞ−1y�v

¼ 1.ð4Þ
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We also make the following observation about a collection of node marginals
τ ¼ ðτvÞv∈V that correspond to a zero-gradient point of FB , i.e., τvð1Þ ¼ y�v and
τvð0Þ ¼ 1− y�v:

τvð1Þ ≤ τvð0Þ;ð5Þ

which easily follows from (4) where one can check that y�v ≤ 1 ∕ 2.
Belief propagation (BP) (see [13]) is a widely used heuristic for approximating the

partition function Z with the key property that the fixed points of the BP iteration
correspond to stationary points of the Bethe free energy [21] (see also [17] for more
details). Therefore, if BP converges, one can directly compute the Bethe approximation
for the partition function. Unfortunately, BP can fail to converge even for the indepen-
dent set problem. We remedy this situation by describing a provably convergent algo-
rithm for computing stationary points of the Bethe free energy (see section 4).

2.2. Error in Bethe approximation: Loop series correction. Recently
Chertkov and Chernyak [4] showed that the partition function Z can be obtained by
“correcting” the Bethe approximation ZB as follows:

Z ¼ ZB

�
1þ

X
∅≠F⊆E

wðFÞ
�
.ð6Þ

Here F ⊆ E are (edge) subgraphs of G, and the explicit form of weight wðFÞ can be
obtained as follows (see Proposition 1 in [15]). For F with any node having degree
1, we have that wðFÞ ¼ 0. For all other F , called generalized loops,

wðFÞ ¼ ð−1ÞjF j
Y
v∈VF

τvð1Þ
�
1þ ð−1ÞdF ðvÞ

�
τvð1Þ
τvð0Þ

�
dF ðvÞ−1

�
ð7Þ

for the independent set problem. Here, τ ¼ ðτvÞv∈V represents the estimate of the node
marginals at a stationary point of the Bethe free energy, i.e., τvð1Þ ¼ y�v and
τvð0Þ ¼ 1− y�v.

2.3. Near-stationary points of the Bethe free energy. In practice one is ty-
pically not able to compute stationary points or, equivalently, zero-gradient points, of
the Bethe free energy exactly. Thus, we introduce the concept of an ε-gradient point: y�

is said to be an ε-gradient point of the Bethe free energy if ‖∇FBðy�Þ‖2 ≤ ε. Based on
the formula (3) for the gradient of the Bethe free energy FB, we have that2Q

u∈N ðvÞð1− y�v − y�uÞ
ð1− y�vÞdðvÞ−1y�v

¼ 1� ε.ð8Þ

Indeed, the convergent algorithm that we describe in section 4 for computing sta-
tionary points of the Bethe free energy provides an ε-gradient point, where ε is an input
parameter in the algorithm and the number of iterations required to compute an
ε-gradient point depends on ε. Further, the y� produced by the algorithm satisfies
(5); i.e., y� ≤ ð0; 1 ∕ 2Þn. See section 4 for more details.

2We say that β ¼ 1� ε if β ∈ ½1− ε; 1þ ε�.
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If we let τ be the node marginals corresponding to an ε-gradient point, the Bethe
approximation for ln Z denoted by ln ZB;ε is defined as

ln ZB;ε ¼ ln ZB;εðτÞ ≜ FBðτÞ.

In the following section, we provide a loop series correction result for ZB;ε.

3. Loop series correction for ZB;ε. As discussed in section 2.2, the explicit loop
series formula (6) relating Z and ZB is known [4], [15]. However, the proofs in [4], [15] do
not naturally extend to the case of ZB;ε. This is essentially because an ε-gradient point
may not necessarily be close to a zero-gradient or stationary point of FB. To resolve this
issue we present an “ε-version” of the loop series expansion.

THEOREM 1. Let Z be the number of independent sets, let τ be the node marginals
corresponding to an ε-gradient point, and let ZB;ε be the corresponding Bethe approx-
imation. Then,

Z

ZB;ε

¼ ð1� εÞ2n
�
1þ

X
∅≠F⊆E

wðFÞ
�
;ð9Þ

where wðFÞ ¼ ð−1ÞjF jQv∈VF
τvð1Þ½1þ ð−1ÞdF ðvÞðτvð1Þ

τvð0ÞÞ
dF ðvÞ−1�.

Proof. We first start by recalling the proof in [15] for (6), which is the case ε ¼ 0.
The authors first show that

Z

ZB

¼
X

x∈f0;1gn

Y
v∈V

τvðxvÞ
Y

ðu;vÞ∈E

τu;vðxu; xvÞ
τuðxuÞτvðxvÞ

.ð10Þ

Second, they prove (see Proposition 1 of [15]) that

X
x∈f0;1gn

Y
v∈V

τvðxvÞ
Y

ðu;vÞ∈E

τu;vðxu; xvÞ
τuðxuÞτvðxvÞ

¼ 1þ
X

∅≠F⊆E

wðFÞ.ð11Þ

In the independent set model of interest here, the edge marginals τu;v are determined by
the node marginals τu; τv (see (2)). Therefore their proof for (11) still holds for a set of
node marginals τ corresponding to an ε-gradient point with ε > 0. This is because their
proof for (11) does not depend on the properties of stationary points of FB (hence, also
not on the quality of the ε-gradient points), but only on the fact that the edge marginals
are consistent with the node marginals. Therefore to complete the proof of (9), it suffices
to show the ε-version of (10), i.e.,

Z

ZB;ε

¼ ð1� εÞ2n
X

x∈f0;1gn

Y
v∈V

τvðxvÞ
Y

ðu;vÞ∈E

τu;vðxu; xvÞ
τuðxuÞτvðxvÞ

;ð12Þ

where the summation is taken over independent sets x ∈ f0; 1gn and τ represents the
node marginals corresponding to an ε-gradient point y, i.e., τvð1Þ ¼ 1− yv and
τvð0Þ ¼ 1− yv.
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To this end, we obtain the following expression of ZB;ε in terms of y�:

ZB;ε ¼ eFBðyÞ

¼
Y
v∈V

y−yv
v ×

Y
v∈V

ð1− yvÞðdðvÞ−1Þð1−yvÞ ×
Y

ðu;vÞ∈E
ð1− yv − yuÞ−1þyvþyu

¼ðaÞð1� εÞn
Y
v∈V

y−yv
v ×

Y
v∈V

�Q
u∈N ðvÞð1− yv − yuÞ

yv

�1−yv

×
Y

ðu;vÞ∈E
ð1− yv − yuÞ−1þyvþyu

¼ ð1� εÞn
Y
v∈V

y−1
v ×

Y
v∈V

Y
u∈N ðvÞ

ð1− yv − yuÞ1−yv

×
Y

ðu;vÞ∈E
ð1− yv − yuÞ−1þyvþyu

¼ ð1� εÞn
Y
v∈V

y−1
v ×

Y
ðu;vÞ∈E

ð1− yv − yuÞ2−yv−yu

×
Y

ðu;vÞ∈E
ð1− yv − yuÞ−1þyvþyu

¼ ð1� εÞn
Y
v∈V

y−1
v ×

Y
ðu;vÞ∈E

1− yv − yu;ð13Þ

where (a) is from (8). On the other hand, for an independent set x ∈ f0; 1gn, each term of
the summation in (12) can be bounded as

Y
v∈V

τðxvÞ
Y

ðu;vÞ∈E

τu;vðxu; xvÞ
τvðxvÞτuðxuÞ

¼
Y

v∶xv¼1

yv ×
Y

v∶xv¼0

1− yv ×
Y

v∶xv¼1

Y
u∈N ðvÞ

τu;vð0; 1Þ
τvð1Þτuð0Þ

×
Y

ðu;vÞ∈E∶xu¼xv¼0

τu;vð0; 0Þ
τvð0Þτuð0Þ

¼
Y

v∶xv¼1

yv ×
Y

v∶xv¼0

1− yv ×
Y

v∶xv¼1

Y
u∈N ðvÞ

1

τuð0Þ

×
Y

ðu;vÞ∈E∶xu¼xv¼0

τu;vð0; 0Þ
τvð0Þτuð0Þ

¼
Y

v∶xv¼1

yv ×
Y

v∶xv¼0

1− yv ×
Y

v∶xv¼0

�
1

τvð0Þ
�

dðvÞ

×
Y

ðu;vÞ∈E∶xu¼xv¼0

τu;vð0; 0Þ ¼
Y

v∶xv¼1

yv ×
Y

v∶xv¼0

�
1

1− yv

�
dðvÞ−1

×
Y

ðu;vÞ∈E∶xu¼xv¼0

1− yv − yu¼ðaÞð1� εÞn
Y

v∶xv¼1

yv ×
Y

v∶xv¼0

yvQ
u∈N ðuÞ

1− yu − yv

×
Y

ðu;vÞ∈E∶xu¼xv¼0

1− yv − yu ¼ ð1� εÞn
Y
v∈V

yv ×
Y

ðu;vÞ∈E

1

1− yu − yv

¼ðbÞð1� εÞ2n 1

eFBðyÞ ¼ ð1� εÞ2n 1

ZB;ε

;ð14Þ

where (a) is from (8) and (b) is from (13). Therefore, (12) follows from (14). This com-
pletes the proof of Theorem 1. ▯
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4. Fast, convergent algorithm for Bethe approximation. As discussed pre-
viously, BP is an iterative heuristic procedure that is widely used to compute stationary
points of the Bethe free energy. However, BP does not always converge in general
(e.g., see [17]); in fact, one can even construct examples for independent set problems
in which BP fails to converge. Here, we propose a convergent BP-like alternative to
compute stationary points of the Bethe free energy for the independent set problem.
This procedure offers several of the advantages of BP in that it is a local iterative meth-
od, with the added benefit that it is always guaranteed to converge.

The algorithm computes an ε-gradient point of the Bethe free energy FB with the
number of iterations depending on ε. The Bethe approximation corresponding to such
an ε-gradient point is sufficient for our purposes. We note here that computing such an
ε-gradient point of FB is not known to be easy in general since the underlying domain
½0; 1�n grows exponentially with respect to n.

4.1. Algorithm description. The algorithm described next computes yðtÞ ¼
ðyvðtÞÞv∈V as an ε-gradient point of FB . It is based on the standard gradient descent
algorithm. The nontriviality lies in the choice of the appropriate step size, and subse-
quent analysis of correctness and rate of convergence.

4.2. Properties of the algorithm: Correctness, convergence. Next we state
and prove the correctness and convergence of the algorithm.

THEOREM 2. Let yðtÞ be the sequence of iterates of the algorithm, with yðsÞ being the
output chosen at random. Then, yðsÞ ∈ ð0; 1 ∕ 2Þn and

E½‖∇FBðyðsÞÞ‖22� ¼ O

�
nd42d log Tffiffiffiffi

T
p

�
;

where E½‖∇FBðyðsÞÞ‖22� ¼ 1P
T

t¼0
αðtÞ
P

T
t¼0 αðtÞ‖∇FBðyðtÞÞ‖22.

• Algorithm parameters: number of iterations T ≥ 0, yðtÞ ¼ ðyvðtÞÞv∈V . Initi-
ally, t ¼ 0 and yvð0Þ ¼ 1 ∕ 4, v ∈ V .

• yðtÞ ¼ ðyvðtÞÞv∈V is updated until t ≤ T :

yvðtþ 1Þ ¼ yvðtÞ− αðtÞ ∂FB

∂yv

����
yðtÞ

;

where αðtÞ ¼ 1 ∕ ð2dþ7ðd2 þ 6dþ 2Þ ffiffiffiffiffiffiffiffiffiffiffi
tþ 1

p Þ. Recall that
∂FB

∂yv

����
yðtÞ

¼
�
ðdðvÞ− 1Þ ln ð1− yvðtÞÞ þ ln yvðtÞ−

X
u∈N ðvÞ

ln ð1− yuðtÞ− yvðtÞÞ
�
.

• Choose an s ≤ T with probability αðsÞP
t≤T

αðtÞ; output yðsÞ ¼ ðyvðsÞÞv∈V .

COUNTING INDEPENDENT SETS 1019
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Choice ofT . Theorem 2 implies that forT ¼ Θðn2d42dε−4log3ðn ∕ εÞÞ, the algorithm
will produce an ε-gradient point of FB for any ε > 0.

Proof of Theorem 2. Recall that FB∶½0; 1�n → R is such that

FBðyÞ ¼
X
v∈V

ðyv ln yv − ðdðvÞ− 1Þð1− yvÞ ln ð1− yvÞÞ

þ
X

ðu;vÞ∈E
ð1− yu − yvÞ ln ð1− yu − yvÞ.

Now the updating rule of the algorithm is equal to

yvðtþ 1Þ ¼ yvðtÞ− αðtÞ ∂FB

∂yv

����
yðtÞ

.

We start by establishing that under the dynamics of the above algorithm with the cho-
sen initial condition and algorithm parameters, yvðtÞ ∈ ½0; 1 ∕ 2� for all v ∈ V at all itera-
tions t. For this we need the following three steps: with ε1 ¼ 1 ∕ 2dþ2, ε2 ¼ 1 ∕ 2dþ6,

∂FB

∂yv
≤ 0 if yv < 2ε1 and y ∈ D ≜

�
ε1;

1

2
− ε2

�
n

;ð15Þ

∂FB

∂yv
≥ 0 if yv >

1

2
− 2ε2 and y ∈ D;ð16Þ

����α ∂FB

∂yv

���� ≤ 1

2
min fε1; ε2g if y ∈ D and α ≤

1

2dþ7ðd2 þ 6dþ 2Þ .ð17Þ

From (15)–(17) it follows that yðtÞ ∈ D; i.e., yvðtÞ does not hit 0 or 1
2. Hence, we have

that yvð⋅Þ ∈ ½0; 1 ∕ 2� for all v ∈ V under the algorithm’s iterations.
Proof of (15). Observe that

∂FB

∂yv
¼ ðdðvÞ− 1Þ ln ð1− yvÞ þ ln yv −

X
u∈N ðvÞ

ln ð1− yu − yvÞ

≤ ln yv − d ln

�
1

2
− yv

�
¼ ln

yv
ð12 − yvÞd

¼ ln
2dyv

ð1− 2yvÞd
≤ ln

2dyv
1− 2dyv

≤ 0;

where one can easily verify each step using the conditions yv ≤ 2ε1 ¼ 1
2dþ1 and yu ≤ 1

2 for
u ∈ N ðvÞ.

Proof of (16). Consider the following:

∂FB

∂yv
¼ ðdðvÞ− 1Þ ln ð1− yvÞ þ ln yv −

X
u∈N ðvÞ

ln ð1− yu − yvÞ

≥ ðdðvÞ− 1Þ ln ð1− yvÞ þ ln yv −
X

u∈N ðvÞ
ln ð1− ε1 − yvÞ

¼ ln
yv

1− yv
−
X

u∈N ðvÞ
ln

1− ε1 − yv
1− yv

≥ ln
yv

1− yv
− ln

1− ε1 − yv
1− yv

¼ ln
yv

1− ε1 − yv

> ln
1
2 − 2ε2

1
2 þ 2ε2 − ε1

≥ 0;
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where each step can be verified using yv >
1
2 − 2ε2 ¼ 1

2 −
1

2dþ5 and yu ≥ ε1 ¼ 1
2dþ2 for

u ∈ N ðvÞ.
Proof of (17). This follows from our choice of α, since for y ∈ D���� ∂FB

∂yv

���� ¼
����ðdðvÞ− 1Þ ln ð1− yvÞ þ ln yv −

X
u∈N ðvÞ

ln ð1− yu − yvÞ
����

≤
���� ln yv

1− yv
−
X

u∈N ðvÞ
ln

1− yu − yv
1− yv

����
≤ − ln

yv
1− yv

−
X

u∈N ðvÞ
ln

1− yu − yv
1− yv

≤ − ln
ε1

1− ε1
− d ln

2ε2
1
2 þ ε2

≤ − ln ε1 − d ln 2ε2

¼ ðdþ 2þ dðdþ 5ÞÞ ln 2 ≤ d2 þ 6dþ 2;ð18Þ

where each step follows from y ∈ ½ε1; 12 − ε2�n.
We have established yðtÞ ∈ D as a consequence of the above three steps, which

shows that the algorithm is well defined; i.e., yðtÞ is always in the valid domain D.
Now we consider the dynamics

yðtþ 1Þ ¼ yðtÞ− αðtÞ∇FBðyðtÞÞ.

Using Taylor’s expansion,

FBðyðtþ 1ÞÞ ¼ FBðyðtÞ− αðtÞ∇FBðyðtÞÞÞ
¼ FBðyðtÞÞ−∇FBðyðtÞÞ 0 ⋅ αðtÞ∇FBðyðtÞÞ

þ 1

2
αðtÞ∇FBðyðtÞÞ 0 ⋅ R ⋅ αðtÞ∇FBðyðtÞÞ;ð19Þ

where R is an n× n matrix such that

jRvwj ≤ sup
y∈B

���� ∂2FB

∂yv∂yw

����
and B is an L∞-ball in Rn centered at yðtÞ ∈ D with its radius

r ¼ max
v∈V

����αðtÞ ∂FB

∂yv
ðyðtÞÞ

����.
From (17) we know r ≤ 1

2 min fε1; ε2g. Hence, y ∈ ½ε1 ∕ 2; 12 − ε2 ∕ 2�n if y ∈ B. Using

this, we can get a bound for supy∈B j ∂2FB

∂yv∂yw
j as follows:

• If u ¼ w, ���� ∂2FB

∂y2v

���� ¼
����− dðvÞ− 1

1− yv
þ 1

yv
þ
X

u∈N ðvÞ

1

1− yu − yv

����
<

1

yv
þ 2

X
u∈N ðvÞ

1

1− yu − yv
≤

2

ε1
þ 2d

ε2
¼ Oðd2dÞ.
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• If w ∈ N ðvÞ, ���� ∂2FB

∂yv∂yw

���� ¼ 1

1− yw − yv
≤

1

ε2
¼ Oð2dÞ.

• Otherwise, ∂2FB

∂yv∂yw
¼ 0.

Therefore, using these bounds with (18), the equality (19) becomes

FBðyðtþ 1ÞÞ ≤ FBðyðtÞÞ− αðtÞ‖∇FBðyðtÞÞ‖22 þ α2ðtÞOðjEjd52dÞ
¼ FBðyðtÞÞ− αðtÞ‖∇FBðyðtÞÞ‖22 þ α2ðtÞOðnd62dÞ.ð20Þ

If we sum (20) over t from 0 to T − 1, we have

FBðyðTÞÞ ≤ FBðyð0ÞÞ−
XT−1

t¼0

αðtÞ‖∇FBðyðtÞÞ‖22 þOðnd62dÞ
XT−1

t¼0

α2ðtÞ.ð21Þ

Since jFBðyÞj ¼ OðndÞ for y ∈ D, we obtain

XT−1

t¼0

αðtÞ‖∇FBðyðtÞÞ‖22 ≤ OðndÞ þOðnd62dÞ
XT−1

t¼0

α2ðtÞ.ð22Þ

Thus, we finally obtain the desired conclusion:

E½‖∇FBðyðsÞÞ‖22� ¼
1P

T
t¼0 αðtÞ

XT
t¼0

αðtÞ‖∇FBðyðtÞÞ‖22

≤
1P

T−1
t¼0 αðtÞ

�
OðndÞ þOðnd62dÞ

XT−1

t¼0

α2ðtÞ
�

¼ðaÞO
�
2dd2ffiffiffiffi
T

p
��

OðndÞ þO

�
nd2

2d

�
log T

�

¼ O

�
nd42d log Tffiffiffiffi

T
p

�
;

where (a) follows from our choice of αðtÞ ¼ Θð 1
2dd2

ffiffi
t

p Þ. This completes the proof of

Theorem 2. ▯

5. Correctness of ZB;ε for graphs with large girth. The algorithm in the pre-
vious section provides an ε-gradient point of the Bethe free energy FB . This leads to the
Bethe approximation, ln ZB;ε (or ZB;ε), of ln Z (or Z) for the (logarithm of the) number
of independent sets of any graphG. Here we establish that the estimation ZB;ε is asymp-
totically close to the desired value Z for graphs with large girth. Formally the girth of a
graph is the length of the shortest cycle (for trees it is ∞). The formal result is stated
below.

THEOREM 3. Let gðGÞ be the girth of a graph G. If gðGÞ > 8d× log2 n, then

Z

ZB;ε

¼ ð1� εÞ2nð1�Oðn−γÞÞ;

where γ ¼ 4ð gðGÞ
8d log2 n

− 1Þ > 0.
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We note here that this theorem when combined with the algorithm of the previous
section gives a polynomial-time approximation alg orithm for counting independent sets
in graphs with girth larger than 8d log2 n when the maximum degree d is Oðlog nÞ.

5.1. Proof of Theorem 3 We start by introducing the notion of apples—a special
class of connected subgraphs of G.

DEFINITION 2 (apple). A connected edge subgraph C ⊆ E ofG is an apple if (a) it is a
cycle, or (b) it is the union of a cycle and a line; i.e., two vertices v1; v2 ∈ C have
dC ðv1Þ ¼ 1, dC ðv2Þ ¼ 3, and dC ðvÞ ¼ 2 for v ∈ VC \ fv1; v2g.

Given estimates for the node marginals τvð1Þ ∕ τvð0Þ, v ∈ V , corresponding to an ε-
gradient point of FB and an apple C ⊆ E, define the weight of C as

ŵðCÞ ≜
0
@Y

fu;vg∈C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

s 1
A1 ∕ 2d

.ð23Þ

As the first result, we will establish the following bound on the summation of weights
over all apples. The proof is presented in section 5.2.

LEMMA 4. Let g ¼ gðGÞ be the girth of G with gðGÞ > 8d log2 n. ThenX
C⊂E

ŵðCÞ ¼ Oðn−γÞ

over all apples C and where γ ¼ 4ð gðGÞ
8d log2 n

− 1Þ > 0.
To establish Theorem 3 from the ε-version of loop series in Theorem 1, it is sufficient

to show that

X
∅≠F⊆E

jwðFÞj ¼ Oðn−γÞ.ð24Þ

We first bound the term
P

∅≠F⊆E jwðFÞj by the summation
P

C⊂E ŵðCÞ as follows. The
proof is presented in section 5.3.

LEMMA 5. For any graph G,

1þ
X

∅≠F⊆E

jwðFÞj ≤ e
P

C⊂E ŵðCÞ.

Now from Lemmas 4 and 5, as well as the fact that ex ¼ 1þOðxÞ for x ¼ Oðn−γÞwith
γ > 0, the desired bound (24) follows immediately. This completes the proof of
Theorem 3.

5.2. Proof of Lemma 4. The key to the proof of Lemma 4 is to (*) bound the
number of apples of a given size (i.e., the number of edges), and (**) bound the weight
of an apple of a given size. As we shall show, under the large girth condition of
Theorem 3, the product of (*) and (**) will decay exponentially in the size of the apple.
This will prove the claim of Lemma 4.

To this end we first bound (**), i.e., the weight of an apple of a given size, say k.
We state the following proposition.

PROPOSITION 6. For any apple C of size k, ŵðCÞ < 2−ðk ∕ 2dÞ.
Proof. From the definition of ŵ in (23) it is enough to show that

COUNTING INDEPENDENT SETS 1023
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

s
≤

1

2

for ðu; vÞ ∈ C . Note that

τvð1Þ þ τuð1Þ ¼ τu;vð0; 1Þ þ τu;vð1; 0Þ ≤ 2τu;vð0; 0Þ ¼ 2ð1− τvð1Þ− τuð1ÞÞ;

where each inequality (or equality) follows from the properties3 noted in (2) and (5).
Thus we have

τvð1Þ þ τuð1Þ ≤
2

3
ð25Þ

for ðu; vÞ ∈ C . Also τvð1Þ ≤ 1 ∕ 2 and τvð1Þ þ τvð0Þ ¼ 1. Using these, we obtain the
desired bound:

τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

¼ τuð1Þ
1− τuð1Þ

τvð1Þ
1− τvð1Þ

≤
ðaÞ
0
@ τuð1Þþτvð1Þ

2

1− τuð1Þþτvð1Þ
2

1
A2

≤
ðbÞ
 

1
3

1− 1
3

!
2

¼ 1

4
.

Here (a) follows from Jensen’s inequality and the convexity of log x
1−x when 0 ≤ τvð1Þ,

τuð1Þ ≤ 1 ∕ 2. For (b) we use (25) and the monotonicity of fðxÞ ¼ x
1−x. ▯

Next, we bound (*), i.e., the number of apples of a given size k.
PROPOSITION 7. Given girth g ¼ gðGÞ > 8d log2 n for graph G, the number of apples

of size k is at most n2ðe2 ∕ c1Þk, where c1 ¼ g ∕ ln n.
Proof. Let C be a given apple. If C has a degree 1 vertex, say v, then define it as its

starting vertex; otherwise if C is a cycle, let the starting vertex be arbitrary. Now con-
sider TvðGÞ, the self-avoiding walk tree (cf. [11]) of G rooted at v ∈ V . It is easy to see
that there is an injective map from the apples of size k with starting vertex v to the paths
of length k (i.e., having a leaf at level k) starting at v in TvðGÞ. Given this injection, it
follows that the number of apples of size kwith starting vertex v is at most the number of
leaves at level k of TvðGÞ. Now the number of nodes up to level g ∕ 2 (where g is the girth,
g ¼ gðGÞ) in TvðGÞ must be at most n, or else there will be two nodes in TvðGÞ at level
up to g ∕ 2 that are copies of the same vertex, leading to the existence of a cycle of length
less than g inG. For the very same reason, it also follows that any subtree ofTvðGÞmust
have at most n nodes up to (its) level g ∕ 2. Using these properties, it can be shown that
the number of vertices (and hence leaves) up to level k of TvðGÞ is at most

ndk ∕ ðg∕ 2Þe < nð2k∕ gÞþ1 ¼ nðe2 ln n∕ gÞk.

Now since there are n possible starting vertices, the number of apples of size k is at most

n2ðe2 ln n∕ gÞk ¼ n2ðe2∕ c1Þk.

This completes the proof of Proposition 7. ▯
To complete the proof of Lemma 4, consider the following. From Propositions 6

and 7,

3As we discuss in section 2.3, the node marginals from an ε-gradient point produced by our algorithm sa-
tisfy (5).
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X
C⊂E

ŵðCÞ ≤
X
k≥g

n2ðe2 ∕ c1Þk2−ðk∕ 2dÞ ¼ n2

�X
k≥g

δk

�

< n2

�
δg

1− δ

�
¼ Oðn2nc1 ln δÞ ¼ Oðn−γÞ.

Here we have used c1 ¼ g ∕ ln n > 8d
ln 2 and the definition

δ ≜ 2−ð1 ∕ 2dÞe2∕ c1 ¼ e−ð1∕ 2dÞ ln 2þ2∕ c1 < 1.

5.3. Proof of Lemma 5. In this section we are going to use the following result by
Bermond, Jackson, and Jaeger [3].

THEOREM 8. Given a connected graph G ¼ ðV;EÞ without a bridge (i.e., there is no
edge e ∈ E such that G  0 ¼ ðV;E \ fegÞ is not connected), there exists a list of cycles so
that every edge is contained in exactly four cycles of the list.

Inspired by such a result, we say that a list of apples fCig is a good decomposition of
a given generalized loop F if it satisfies the following conditions:

F ¼
[

Ci and jwðFÞj ≤
Y
i

ŵðCiÞ.

Observe that the existence of a good decomposition for any generalized loop F is suffi-
cient to complete the proof of Lemma 5. This is because

1þ
X

∅≠F⊆E

jwðFÞj ≤
Y
C⊂E

ð1þ ŵðCÞÞ <
Y
C⊂E

eŵðCÞ ¼ e
P

C⊂E ŵðCÞ;ð26Þ

where the first inequality is due to existence of a good decomposition for any generalized
loop F . Now we are left with proving the existence of a good decomposition for any
generalized loop in order to complete the proof of Lemma 5. This is what we do next.

First some notation: given a list of apples fCig and F ¼ SCi, for ðu; vÞ ∈ F let
N ðu;vÞ be the number of Ci that include ðu; vÞ; let Nmax ¼ maxðu;vÞ∈F N ðu;vÞ. We have
the following result that uses Theorem 8.

PROPOSITION 9. For any generalized loop F ¼ ðVF; EFÞ, there exists a list fCig of
apples with Nmax ≤ 4.

Proof. Assume F is connected, or else apply the argument to each connected com-
ponent separately. Now we will prove Proposition 9 by induction on jVF j. The base case
when jVF j ¼ 3 is trivial. Further, if F has no bridge, Proposition 9 follows from
Theorem 8 since there exists a list fCig of cycles (and hence apples) which cover every
edge exactly 4 times. Hence Nmax ¼ 4. Now suppose F has a bridge. Then, we first claim
that

(*) F has a bridge e such that F1 is a bridgeless graph of size > 1, where F1 is a
connected component of F \ feg; i.e., F \ feg ¼ F1

S
F2.

The claim (*) follows from the following recursive argument. Suppose a bridge
eð0Þ ¼ e does not satisfy the claim; this means that both F1ð0Þ ¼ F1 and
F2ð0Þ ¼ F2 have bridges e1ð0Þ and e2ð0Þ, respectively. Both e1ð0Þ and e2ð0Þ become
bridges of F as well. Consider eð1Þ ¼ e1ð0Þ with F \ feð1Þg ¼ F1ð1Þ

S
F2ð1Þ, and sup-

pose eð0Þ ∈ F2ð1Þwithout loss of generality. Then, either F1ð1Þ is bridgeless or F1ð1Þ has
a bridge. In case F1ð1Þ is bridgeless, eð1Þ is the desired bridge of F . Otherwise if F1ð1Þ
has a bridge, then we can recursively find a new bridge eð2Þ in F1ð1Þ. However, the size of
F1ð1Þ is strictly smaller than that of the previous component F1ð0Þ since e ∈ F2ð1Þ. We
can recursively reduce the size of F1ð⋅Þ until we find the desired bridge eð⋅Þ ∈ F1ð⋅Þ. Since
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the size of F1ð⋅Þ is always greater than 1 (otherwise one of the vertices in the bridge eð⋅Þ
has a degree 1, hence contradicting the fact that F is a generalized loop), this recursive
procedure eventually finds the desired eð⋅Þ ∈ F1ð⋅Þ.

Let e ¼ ðu; vÞ be the bridge in the claim (*), where u ∈ F1 and v ∈ F2. There are two
cases: (a) dF ðvÞ ¼ 2, and (b) dFðvÞ ≥ 3. First consider the case (a), and let w be another
neighbor of v other than u. If we remove v and add a new edge ðu;wÞ in F , the new graph
F  0 is also a generalized loop. Since jVF  0 j ¼ jVF j− 1, we can apply the induction hypoth-
esis and find a list fC  0

ig of apples with Nmax ≤ 4 on VF  0 . The desired list fCig to cover F
is naturally constructible from fC  0

ig by adding the vertex v to C  0
i, which includes ðu;wÞ.

Now consider the case (b). In this case, F2 is a generalized loop. Hence from the induc-
tion hypothesis, we can find the desired list fC2

i g of apples to cover F2. On the other
hand, since F1 is a bridgeless graph, F1 is covered by a list fC 1

i g of cycles with Nmax ≤ 4
from Theorem 8. Without loss of generality, let C 1

1 be the
cycle which covers the vertex u. Then, the desired list of apples is fC 1

1

Sðu; vÞgS
fC 1

i∶i ≥ 2gSfC 2
i g. This completes the induction. ▯

Finally, to complete the proof of Lemma 5, consider the list of apples produced by
Proposition 9 and observe that

Y
i

ŵðCiÞ ¼
0
@Y

i

Y
ðu;vÞ∈Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

s 1
A1∕ 2d

≥

0
@Y

i

Y
ðu;vÞ∈Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

s 1
A2∕ ðNmax⋅dÞ

¼
0
@Y

ðu;vÞ∈F

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

s �N ðu;vÞ
1
A2 ∕ ðNmax⋅dÞ

≥

 Y
ðu;vÞ∈F

τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

!
1 ∕ d

;

where we use τvð1Þ
τvð0Þ ≤ 1 and Nmax ≤ 4 for the inequalities. Hence, we obtain the desired

bound:

Y
i

ŵðCiÞ ≥
�Y

ðu;vÞ∈F
τuð1Þ
τuð0Þ

τvð1Þ
τvð0Þ

�
1 ∕ d

¼
�Y

v∈VF

�
τvð1Þ
τvð0Þ

�
dF ðvÞ�1 ∕ d

≥
Y
v∈VF

τvð1Þ
τvð0Þ

¼
Y
v∈VF

τvð1Þ
�
1þ τvð1Þ

τvð0Þ
�
≥
Y
v∈VF

τvð1Þ
�
1þ ð−1ÞdF ðvÞ

�
τvð1Þ
τvð0Þ

�
dF ðvÞ−1

�

¼ jwðFÞj;

where the inequalities follow from τvð1Þ
τvð0Þ ≤ 1.

6. Correctness of ZB for random 3-regular graphs. In this section we consider
the error in the Bethe approximation for a random 3-regular graph. To obtain sharp
results, we will utilize the SCCC of Alon and Tarsi [1].

CONJECTURE 10 (SCCC). Given a bridgeless graph G with m edges, all of its edges
can be covered by a collection of cycles with the sum of their lengths being at most
7m ∕ 5 ¼ 1.4m.

We have the following result that implies that the difference between the Bethe ap-
proximation ln ZB and ln Z is uniformly bounded, independent of n, with probability 1.

THEOREM 11. Let G be chosen uniformly at random among all 3-regular graphs with
n vertices. Assuming that the SCCC is true, there exists a function f∶ð0; 1Þ → Rþ so that
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j ln Z − ln ZBj ≤ f ðεÞ with probability 1− ε;

where 1
n ln ZB ≈ ln 1.545.

6.1. Proof of Theorem 11. From (6) it is equivalent to show that����� ln
 
1þ

X
∅≠F⊆E

wðFÞ
!����� ≤ f ðεÞ with probability 1− ε.

Similar to the case of large-girth graphs, we consider
P

∅≠F⊆E jwðFÞj. First, we show that
it is less than hðεÞ with probability 1− ε for some function h∶ð0; 1Þ → Rþ. This gives us
an upper bound, i.e.,

ln

 
1þ

X
∅≠F⊆E

wðFÞ
!

≤ ln

 
1þ

X
∅≠F⊆E

jwðFÞj
!

≤ ln ð1þ hðεÞÞ.ð27Þ

The details are explained in section 6.2.
If we have hðεÞ uniformly bounded below 1, say always at most 1 ∕ 2, for example,

then (27) would be sufficient to establish the claim of Theorem 11. In order to show this,
we need additional proof techniques to obtain an appropriate lower bound on the quan-
tity of interest. This lower bounding technique needs a longer explanation and is pre-
sented in section 6.3. Note that our lower bounding technique is essentially an algorithm
that tries to “correct” the error in the Bethe approximation in a systematic manner by
means of the loop series characterization.

6.2. Upper bound. As discussed in section 6.1, we show that
P

∅≠F⊆E jwðFÞj is
less than hðεÞ with probability 1− ε. To this end it is enough to prove that

E

"
ln

 
1þ

X
∅≠F⊆E

jwðFÞj
!#

¼ Oð1Þ.ð28Þ

If (28) holds, we can choose hðεÞ ¼ eOð1∕ εÞ − 1 byMarkov’s inequality. IfG is a 3-regular
graph, we can find the explicit homogeneous stationary point of FB . From 4 and setting
y�v ¼ z for all v ∈ V , we obtain

ð1− 2zÞ3
ð1− zÞ2z ¼ 1;

where such a z can be found numerically to be z ≈ 0.241. Furthermore, the correspond-
ing ZB can be calculated as ln ZB ≈ n ln 1.545.

LEMMA 12. If G is a 3-regular graph and the SCCC is true, then

ln

 
1þ

X
∅≠F⊆E

jwðFÞj
!

≤
X
C⊂E

~wðCÞ

over all apples C and where ~wðCÞ ¼ αjC j and α ≜ ðzð1− zÞÞ2 ∕ ð3×1.4Þ ≈ 0.48.
Proof. The proof of this lemma uses arguments similar to those used to establish

Lemma 5. Specifically, it suffices to find a good decomposition (list of apples) fCig for
any generalized loop F such that

F ¼
[

Ci and jwðFÞj ≤
Y
i

~wðCiÞ.
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Using arguments similar to those used to establish Proposition 9, but with SCCC re-
placing Theorem 8, it can be guaranteed that there exists a list of apples, fCig, such that

F ¼
[

Ci and
X
i

jCij ≤ 1.4× jF j.ð29Þ

Then Y
i

~wðCiÞ ¼
Y
i

αjCij

¼ α
P

i
jCij.ð30Þ

On the other hand, jwðFÞj can be bounded in terms of α as follows:

jwðFÞj ¼
Y
v∈VF

τvð1Þ
�
1þ ð−1ÞdF ðvÞ

�
τvð1Þ
τvð0Þ

�
dF ðvÞ−1

�

≤
ðaÞ Y

v∈VF

ðzð1− zÞÞðdF ðvÞÞ ∕ 3

¼
Y
v∈VF

αðð3×1.4Þ∕ 2Þ×ððdF ðvÞÞ ∕ 3Þ

¼ α
P

v∈VF
ð1.4×dF ðvÞÞ ∕ 2 ¼ α1.4×jF j;ð31Þ

where the inequality (a) can be established in each of the possible cases dF ðvÞ ¼ 0; 1; 2; 3
using the explicit values of τvð0Þ ¼ 1− z ≈ 0.759 and τvð1Þ ¼ z ≈ 0.241. Further, the
inequality (a) is tight only when dF ðvÞ ¼ 3. Therefore, from (29)–(31) (and the fact that
α < 1) we have

jwðFÞj ≤
Y
i

~wðCiÞ. ▯

It follows from Lemma 12 that to establish (28) we need

E

"X
C⊂E

~wðCÞ
#
¼ Oð1Þ.ð32Þ

Let Rk;Ak be the number of cycles and apples, respectively, of size k in a 3-regular
graph. Then

Ak ≤
X
i≤k

Ri × i× 2k−i;ð33Þ

since apples can be made only by attaching a line to a cycle. It is well known [19], [8] that
the expected value of Rk for random 3-regular graphs is at most 2k−1 ∕ k. Using this fact
and (33), it follows that the expected value of Ak for random 3-regular graphs is at most
k2k−1. Therefore, the desired bound (32) can be obtained as

E

"X
C⊂E

~wðCÞ
#
¼ E

"X
k

Akα
k

#
≤
X
k

k2k−1αk ¼ Oð1Þ;

where the last inequality follows from α≈ 0.48 in Lemma 12.
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6.3. Lower bound. Using (33), it follows that

X
C⊂E

~wðCÞ ¼
X
k

Akα
k ≤

X
k

X
i≤k

Ri × i× 2k−iαk

¼
X
i

X
k≥i

Ri × i× 2k−iαk

¼
X
i

Ri

i

2i

X
k≥i

ð2αÞk ≤
X
i

Ri

i

2i
ð2αÞi
1− 2α

¼ 1

1− 2α

X
i

RiiðαÞi ≤ cα ×
X
i

Rið0.49Þi ≜ ρðGÞ;ð34Þ

where cα is a constant that depends on α and the last inequality is due to α≈ 0.48. One
naive way to define cα is as follows:

cα ¼ 1

1− 2α
max

i

iðαÞi
ð0.49Þi ;

where cα is a finite constant since α≈ 0.48 < 0.49. Once cα is defined in this manner, the
last inequality in (34) holds trivially since each term 1

1−2αRiiðαÞi is dominated by the
corresponding term cα × Rið0.49Þi for all i. We state the following lemma, which is key
to the proof of the lower bound.

LEMMA 13. Given a random 3-regular graph G on n vertices, there exists another
3-regular graph G  0 ¼ ðV  0; E  0Þ with V ⊂ V  0 such that with probability (over the random
choice of G) 1− ε, we have

1. j ln ZBðG 0Þ− ln ZBðGÞj < ΓðεÞ,
2. j ln ZðG 0Þ− ln ZðGÞj < ΓðεÞ, and
3. ρðG  0Þ < 0.5.
Here ΓðεÞ is some ε dependent constant, independent of n.
The proof of this lemma is deferred to section 6.3.1. We show how it implies the

desired lower bound. Since ρðG  0Þ < 0.5,

ZðG  0Þ
ZBðG  0Þ ¼ 1þ

X
∅≠F⊆E  0

wðFÞ

≥ 1−
X

∅≠F⊆E  0
jwðFÞj

≥
ðaÞ
1− ðePC⊂E  0 ~wðCÞ − 1Þ

>
ðbÞ
2− e0.5 > 0.3;

where (a) is from Lemma 124 under the SCCC assumption, and (b) follows from (34) and
ρðG  0Þ < 0.5. Using properties 1 and 2 of Lemma 13, it follows that ln ZðGÞ−
ln ZBðGÞ > −2ΓðεÞ−Oð1Þ, which completes the proof of the lower bound.

4Recall that Lemma 12 uses only the fact that the graph under consideration is 3-regular, but does not
require it to be “random.”
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6.3.1. Proof of Lemma 13. We start by defining the operator ⨀ on 3-regular
graphs. Figure 1 illustrates the definition of ⨀.

DEFINITION 3. Given connected 3-regular graphs G1 ¼ ðV 1; E1Þ, G2 ¼ ðV 2; E2Þ and
an edge e ¼ ðv1; v2Þ ∈ E1, create a new 3-regular ðG1; eÞ ⨀ G2 as follows:

1. Construct the union of G1 and G2, G ¼ G1

S
G2—a disconnected graph with

connected components as G1 and G2.
2. Add the two vertices v1; v2 that compose the edge e, and remove an edge, say

ðv3; v4Þ, from G2 arbitrarily.
3. Remove edge ðv1; v2Þ from G1 and add edges e1 ¼ ðv1; v3Þ, e2 ¼ ðv2; v4Þ.
4. Finally, contract e1 and e2.
We study the effect of operator ⨀ on the function ρ defined in (34). Let

G3 ¼ ðG1; eÞ ⨀ G2; we are interested in bounding ρðG3Þ in terms of ρðG1Þ and
ρðG2Þ. By the definition (34) we have that ρðG3Þ is a summation of terms over simple
cycles of G3. Simple cycles in G3 can be classified into three types: (a) cycles in G1 \ feg,
(b) cycles in G2, and (c) cycles which intersect both G1 and G2. For cycles of types (a)
and (b), the contribution to ρðG3Þ is at most ρðG1 \ fegÞ and ρðG2Þ, respectively. On
the other hand, consider simple cycles of type (c). Specifically, let R3 be one such simple
cycle. Then it can be thought of as the union of R1 \ feg and R2 \ fe2g for some e2 ∈ R2,
whereR1 andR2 are cycles inG1 andG2, respectively. For this reason jR3j ¼ jR1j þ jR2j,
and it follows that the contribution of R3 to ρðG3Þ is at most

ð0.49ÞjR3j ¼ ð0.49ÞjR1j × ð0.49ÞjR2j.

Using this, the contribution of the cycles of type (c) to ρðG3Þ can be bounded as

cα ×
ðρðG1Þ− ρðG1 \ fegÞÞ

cα
×

ρðG2Þ
cα

¼ ðρðG1Þ− ρðG1 \ fegÞÞ× ρðG2Þ
cα

;

where ρðG1Þ− ρðG1 \ fegÞ describes the contribution of cycles containing feg to ρðG1Þ.
Thus

ρðG3Þ ≤ ρðG1 \ fegÞ þ ρðG2Þ þ ðρðG1Þ− ρðG1 \ fegÞÞ× ρðG2Þ×
1

cα
.ð35Þ

Therefore, if ρðG2Þ < minfρðG1Þ−ρðG1\fegÞ
B ; cαBg with B ≥ 2, ρðG3Þ can be bounded as

follows:

FIG. 1. 3-regular ðG1; eÞ ⨀ G2 is created from 3-regular graphs G1 and G2 as per Definition 3.
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ρðG3Þ ≤ ρðG1 \ fegÞ þ
ρðG1Þ− ρðG1 \ fegÞ

B
þ ρðG1Þ− ρðG1 \ fegÞ

B

¼ ρðG1 \ fegÞ þ
2

B
ðρðG1Þ− ρðG1 \ fegÞÞ

¼ ρðG1Þ−
�
1−

2

B

�
ðρðG1Þ− ρðG1 \ fegÞÞ.ð36Þ

Equipped with our understanding of the effect of ⨀ on ρ and (36), we describe the
following procedure for constructing the graphG  0 desired in Lemma 13. Given a random
3-regular graph G, generate G  0 iteratively as follows:

• Initially, let t ¼ 0, and let G  0ð0Þ ¼ G.
• Let g be the smallest number such that cα

P
i≥gRið0.49Þi < 0.25, where Ri is the

number of cycles of length i in G.
• Repeat the following until G  0ðtÞ is left with no cycle of length less than g:

1. Let R be the smallest cycle in G  0ðtÞ. Choose an edge et ∈ R arbitrarily.
2. Set G  0ðtþ 1Þ ¼ ðG  0ðtÞ; etÞ ⨀ G2, where G2 has a 3-regular graph that will

be chosen later.
3. Increment t by 1.

• Output G  0 ¼ G  0ðtÞ.
First observe the following properties (*) and (**):

(*) ln ZBðG 0ðtþ 1ÞÞ ¼ ln ZBðG 0ðtÞÞ þ ln ZBðG2Þ
since G  0ðtþ 1Þ,G  0ðtÞ, G2 are all 3-regular and ln ZB is just a linear function in the num-
ber of their vertices.

(**) ln ZðG 0ðtþ 1ÞÞ ≤ ln ZðG 0ðtÞÞ þ ln ZðG2Þ
since any independent set in G  0ðtþ 1Þ can be decomposed into two independent sets in
G  0ðtÞ and G2, respectively. In other words (*) and (**) imply that ln ZBðG 0ðtÞÞ and
ln ZðG 0ðtÞÞ increase by at most a constant additive factor per round if the size ofG2 is a
constant. Equipped with these observations, for establishing that G  0 thus produced has
properties 1–3 of Lemma 13, it is sufficient to show that with probability 1− ε the re-
peat-loop in the above procedure terminates in Γ1ðεÞ steps, ρðG  0Þ < 0.5, andG2 is of size
Γ2ðεÞ. Here and in what follows Γ1ðεÞ, Γ2ðεÞ, : : : , are constants dependent on ε and
independent of n. Recall the definition of ρ in (34):

ρðGÞ ¼ cα
X
i

Rið0.49Þi.

For a random 3-regular graph, we have

E½Ri� ≤ 2i−1 ∕ i.

Therefore, if we define appropriately large constants g ¼ Γ3ðεÞ and Γ1ðεÞ so that

cα
X
i≥g

E½Ri�ð0.49Þi ≤ cα
X
i≥g

2i−1

i
ð0.49Þi < 0.25×

ε

2
and Γ1ðεÞ ¼

2

ε

X
i<g

E½Ri�;

the following two events happen simultaneously with probability 1− ε from Markov’s
inequality and the union bound:X

i<g

Ri ≤ Γ1ðεÞ and cα
X
i≥g

Rið0.49Þi < 0.25.
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Clearly, under these events the repeat-loop of the procedure to generate G  0 will termi-
nate in Γ1ðεÞ steps as long as the graph G2 is such that it has girth larger than g. There-
fore, the only remaining step toward completing the proof of Lemma 13 is to establish
existence of graph G2 such that (a) it has size Γ2ðεÞ, (b) it has girth larger than
g ¼ Γ3ðεÞ, and (c) the resulting G  0 has ρðG  0Þ < 0.5. Suppose G2 can be chosen so that
for all rounds t ≤ Γ1ðεÞ with B ≥ 2,

ρðG2Þ ≤ min

�
ρðG  0ðtÞÞ− ρðG  0ðtÞ \ fetgÞ

B
;
cα
B

�
.ð37Þ

Under this assumption, we obtain the following bound on ρðG  0Þ using (36) recursively:

ρðG  0Þ ≤ ρðGÞ−
X
t

�
1−

2

B

�
ðρðG  0ðtÞÞ− ρðG  0ðtÞ \ fetgÞÞ

≤ ρðGÞ−
�
1−

2

B

��X
t

ρðG  0ðtÞÞ− ρðG  0ðtÞ \ fetgÞ
�

≤
ð�Þ
ρðGÞ−

�
1−

2

B

�
cα

�X
i<g

Rið0.49Þi
�

<
ð��Þ

ρðGÞ−
�
1−

2

B

�
ðρðGÞ− 0.25Þ

≤
2

B
ρðGÞ þ 0.25.

Here, (*) is due to the fact that each cycle of length up to g is “broken” in one of the steps
t ≤ Γ1ðεÞ. Each term ρðG  0ðtÞÞ− ρðG  0ðtÞ \ fetgÞ accounts for all broken cycles in round
t. Therefore, the bound used in (*) follows. For (**), by definition of g we have
cα
P

i≥gRið0.49Þi < 0.25. Therefore, if we choose B ¼ 8ρðGÞ, the desired bound ρðG  0Þ <
0.5 follows.

In summary, we are now left with showing the existence of G2 which has properties
(a) size Γ2ðεÞ, (b) girth larger than g ¼ Γ3ðεÞ, and (c) the condition 37 with B ¼ 8ρðGÞ.
The choice of B suggests that B ¼ Γ4ðεÞ (due to selection of an event that has prob-
ability at least 1− ε). Consider

ρðG  0ðtÞÞ− ρðG  0ðtÞ \ fegÞ ≥ cαð0.49Þg ¼ Γ5ðεÞ;ð38Þ

where we have used the fact that for t ≤ Γ1ðεÞ, a cycle of length at most g is broken and
its corresponding contribution to ρð⋅Þ is accounted for in the above difference. Therefore,
we have

ρðG  0ðtÞÞ− ρðG  0ðtÞ \ fegÞ
B

≥ Γ5ðεÞ ∕ Γ4ðεÞ.ð39Þ

Hence to satisfy (c), it is sufficient to show that there exists G2 with arbitrarily small
ρðG2Þ and girth value with size dependent on the “smallness” of ρðG2Þ. But if we estab-
lish existence of such aG2, then the condition (a) about its size follows immediately, and
the girth condition (b) will follow from the definition of ρ. This is established precisely in
the following proposition.

PROPOSITION 14. For any δ > 0, there exists a 3-regular graph G2 such that
ρðG2Þ < δ. Further, its girth is at least log1 ∕ 0.49 ðcαδ Þ.
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Proof. Recall that Ri is the number of cycles of length i in the graph G2. For a
random 3-regular graph, it is well known [19] that for 3 ≤ r ≤ 1

3 log n, Rr become
asymptotically independent Poisson random variables with mean μr ¼ 2r−1 ∕ r. Thus,
for g < 1

3 log n,

Pr ½R3 ¼ R4 ¼ · · ·¼ Rg ¼ 0� ≈ e−eΘðgÞ .ð40Þ

We divide the summation cα
P

iRið0.49Þi ¼
P

iai with ai ≜ cαRið0.49Þi into the follow-
ing three terms: A1 ¼

P
r<gar, A2 ¼

P
g≤r<1

3 log nar, and A3 ¼
P

g≥1
3 log nar. Define the

events E1, E2, and E3 such that E1 is the event A1 ¼ 0, E2 is the event
A2 ≤ 2E½A2�, and E3 is the event A3 ≤ ð3 log nÞE½A3�. From Markov’s inequality,
Pr ½E2� ≥ 1

2 and Pr ½E3� ≥ 1− 1
3 log n. For E1 one can choose g ¼ Θðlog log log nÞ from

40 such that Pr ½E1� ¼ 1
log n. Therefore, we have

Pr ½E1 ∩ E2 ∩ E3� ≥ Pr ½E1 ∩ E2� þ Pr ½E3�− 1 ≥
1

2 log n
þ 1−

1

3 log n
− 1 > 0;

where we use the union bound and the independence between E1 and E2.
5 In other

words, all events E1, E2, and E3 happen with strictly positive probability. Under
the events E1, E2, and E3,

ρðG2Þ ≤ 2E½A2� þ ð3 log nÞE½A3� ≤ Oð1Þ× ð0.98Þg þOð3 log nÞ× ð0.98Þ1 ∕ 3 log n → 0

as n goes to ∞ since g ¼ Θðlog log log nÞ also goes to ∞. Here, we have used the fact
that E½Rr� ≤ 2r−1 ∕ r. In conclusion, there exists a 3-regular graph G2 such that ρðG2Þ is
arbitrarily small. Finally, the bound on the girth follows immediately from the definition
of ρ. ▯

7. Conclusion. In this paper we considered the Bethe approximation for counting
independent sets in an arbitrary graph. We presented a simple message-passing algo-
rithm that converges to a near stationary point of the Bethe free energy for the inde-
pendent set problem for any graph. Our algorithm finds an ε-gradient point in
Oðn2ε−4 log3 ðnε−1ÞÞ iterations for bounded degree graphs on n nodes. The algorithm
can be viewed as a ``time-varying’’ modification of the usual BP algorithm. Therefore,
our algorithm (and its adaptation to other problems) provides a fast, convergent
message-passing alternative to BP.

Next, to quantify the error in the Bethe approximation based on an ε-gradient point
produced by our algorithm, we provide an ε-version of the loop series expansion ap-
proach of Chertkov and Chernyak. This does not naturally follow from the proofs in
[4], [15] since they crucially depend on the exactness of the stationary point of FB .

Finally using this ε-version of the loop calculus, we establish that for any graph with
sufficiently large girth the error in the Bethe approximation for the number of indepen-
dent sets is essentially Oðn−γÞ for some γ > 0. In addition we find that for random
3-regular graphs, the Bethe approximation of the log-partition function (i.e., the loga-
rithm of the number of independent sets) is within Oð1Þ (with high probability) of
the correct log-partition function assuming the SCCC of Alon and Tarsi; thus, either
the SCCC is false or the Bethe approximation is extremely good and stronger than
the prediction of physicists.

5For the independence between E1 and E2, we use the fact that events of cycles of length < 1
3 log n are

asymptotically independent from [19] as n → ∞.
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