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We consider the problem of static assortment optimization, where the goal is to find the assortment of size at
most C that maximizes revenues. This is a fundamental decision problem in the area of Operations Manage-
ment. It has been shown that this problem is provably hard for most of the important families of parametric
of choice models, except the multinomial logit (MNL) model. In addition, most of the approximation schemes
proposed in the literature are tailored to a specific parametric structure. We deviate from this and propose
a general algorithm to find the optimal assortment assuming access to only a subroutine that gives revenue
predictions; this means that the algorithm can be applied with any choice model. We prove that when the
underlying choice model is the MNL model, our algorithm can find the optimal assortment efficiently.

1. Introduction
This paper deals with the application of choice models to make decisions. There are several important

practical applications where the end-goal is to make a decision, and a choice model is a critical

component to making that decision. The main application area of our focus is the set of decision

problems faced by operations managers. In this context, a central decision problem is the static

assortment optimization problem in which the goal is to find the optimal assortment: the assortment of

products with the maximum revenue subject to a constraint on the size of the assortment. Solving the

decision problem requires two components: (a) a subroutine that uses historical sales transaction data

to predict the expected revenues from offering each assortment of products, and (b) an optimization

algorithm that uses the subroutine to find the optimal assortment. This paper deals with desigining

an efficient optimization algorithm.

As one can imagine, the problems of predicting revenues and finding the optimal assortment are

important in their own right, and their consideration is motivated by the fact that any improvements

to existing solutions will have significant practical implications. Specifically, solutions to these two

problems lead to a solution to the single-leg, multiple fare-class yield management problem; this

problem is central to the area Revenue Management (RM) and deals with the allocation of aircraft

seat capacity to multiple fare classes when customers exhibit choice behavior. In particular, consider

an airline selling tickets to a single-leg aircraft. Assume that the airline has already decided the

fare classes and is trying to dynamically decide which fare-classes to open as a function of the

remaining booking time and the remaining number of seats. This dynamic decision problem can be

cast in a reasonably straightforward manner as a dynamic program with one state variable. As shown

in Talluri and van Ryzin (2004), the solution to the dynamic program reduces to solving a slight

variant of the static assortment optimization problem. Thus, solution to the two problems effectively

solves the single-leg, multiple fare-class yield management problem âŁ” a central problem to RM

with huge practical implications.
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Given the subroutine to predict revenues, we need an efficient algorithm to search for the optimal
assortment. In particular, we are interested in solving

arg max
|M|≤C

R(M),

where R(M) is the expected revenue from offering assortmentM. In this chapter, we assume access
to a subroutine that can efficiently generate revenue predictions for each assortmentM, and our goal
is to design an optimization algorithm that minimizes the number of calls to the subroutine. The
revenue predictions can themselves be generated either using a specific parametric choice model or
using the nonparametric approach described in the previous chapter. Assuming there are N products
and a constraint of C on the size of the optimal assortment, exhaustive search would require O(NC)
calls to the revenue subroutine. Such an exhaustive search is prohibitive in practice whenever N or
C is large. Therefore, our goal is to propose an algorithm that can produce a “good” approximation
to the optimal assortment with only a “few” calls to the revenue subroutine. Existing approaches
focus on exploiting specific parametric structures of choice models to solve the decision problem
efficiently. In this context, Rusmevichientong et al. (2010a) have proposed an efficient algorithm
to find the optimal assortment in O(NC) operations whenever the underlying model is the MNL
model. Unfortunately, beyond the simple case of the MNL model, the optimization problem or its
variants are provably hard (like the NL and MMNL models; see Rusmevichientong et al. (2009)
and Rusmevichientong et al. (2010b)). In addition, the algorithms proposed in the literature (both
exact and approximate) heavily exploit the structure of the assumed choice model; consequently, the
existing algorithms – even without any guarantees – cannot be used with other choice models like the
probit model or the mixture of MNL models with a continuous mixture. Given these issues, our goal
is to design a general optimization scheme that is (a) not tailored to specific parametric structures
and (b) requires only a subroutine that gives revenue estimates for assortments.

Overview of our approach. We propose a general set-function optimization algorithm, which
given a general function defined over sets, finds an estimate of the set (or assortment) where the
function is maximized. This set-function optimization algorithm clearly applies to the static assort-
ment optimization problem, thereby yielding the optimization scheme with the desired properties.
Note that since we are considering a very general setup, there is not much structure to exploit.
Hence, we adopt the greedy method – the general technique for designing heuristics for optimization
problems. However, a naive greedy implementation algorithm fails even in the simple case of the
MNL model. Specifically, consider the simpler un-capacitated decision problem. Here, a naive greedy
implementation would start with the empty set and incrementally build the solution set by adding at
each stage a product that results in the maximum increase in revenue; this process would terminate
when addition of a product no longer results in an increase in revenue. It is easy to see that the
naive implementation would succeed in solving the decision problem only if the optimal assortments
exhibit a nesting property: the optimal assortment of size C1 is a subset of the optimal assortment
of size C2 whenever C1 < C2. Unfortunately, the nesting property does not hold even in the case
of the MNL model. In order to overcome this issue, we allow for greedy “exchanges” in addition to
greedy “additions.” Particularly, at every stage, we allow a new product to be either added (which we
call an “addition”) to the solution set or replace an existing product (which we call an “exchange”)
in the solution set; the operation at each stage is chosen greedily. The termination condition now
becomes an interesting question. As in the naive implementation, we could terminate the process
when addition or exchange no longer results in an increase in revenue. However, since we never run
out of products for exchanges, the algorithm may take an exponential (in the number of products)
number of steps to terminate. We overcome this issue by introducing a control parameter that caps
the number of times a product may be involved in exchanges. Calling that parameter b, we show that
the algorithms calls the revenue subroutine O(N 2bC2) times for the capacitated problem. We thus
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obtain a general algorithm with the desired properties to solve the static assortment optimization
problem.

Guarantees for our algorithm. We derive guarantees to establish the usefulness of our opti-
mization procedure. For that, we first consider the case of the MNL model, where the decision
problem is well-understood. Specifically, we assume that the underlying choice model is an instance
of the MNL family and the revenue subroutine yields revenue estimates for assortments under the
specific instance. We can show that the the algorithm we propose, when run with b≥ C, succeeds
in finding the optimal assortment with O(N 2C3) calls to the revenue subroutine. Therefore, in the
special case when the underlying choice model is the MNL model, our algorithm captures what is
already known. It also provides a simpler alternative to the more complicated algorithm proposed by
Rusmevichientong et al. (2010a). We also consider the case when noise corrupts the available revenue
estimates – a common practical issue. In this case, we show that our algorithm is robust to errors in
the revenue estimates produced by the subroutine. Particularly, if the underlying choice model is the
MNL model and the revenue estimate produced by the subroutine may not be exact but within a
factor 1− ε of the true value, then we can show that our algorithm finds an estimate of the optimal
assortment with revenue that is within 1− f(ε) of the optimal value; here f(ε) goes to zero with
ε and also depends on C and the parameters of the underlying model. In summary, our theoretical
analysis shows that our algorithm finds the exact optimal solution in the noiseless case or a solution
with provable guarantees in the noisy case, whenever the underlying choice model is the MNL model.
In this sense, our results subsume what is already known in the context of the MNL model.

In the context of the more complicated models like the nested logit (NL) and the mixtures of MNL
models, the decision problem is provably hard. As discussed above, even obtaining a PTAS can be
very complicated and requires careful exploitation of the structure. We however believe that it is
possible to obtain “good” approximations to the optimal assortments in practice.

Organization. Next, we describe in detail the optimization algorithm we propose and the guar-
antees we can provide. The rest of the chapter is organized as follows. The optimization algorithm,
which we call GreedyOPT is described in Section 2. We then describe the precise guarantees we
can provide on the algorithm in Section 3. Finally, we present the proofs of our results in Section 4
before concluding in Section 5.

2. Description of GreedyOPT

We now provide the detailed description of our optimization algorithm GreedyOPT. As noted
above, most of the algorithms proposed in the literature – both exact and approximate – are based on
heavily exploiting the structure of the assumed choice model. Unfortunately, since we are considering
a very general setup, there is not much structure to exploit. Hence, we adopt the greedy method –
the general technique for designing heuristics for optimization problems.

A naive greedy implementation however fails even in the simple case of the MNL model. Specifically,
consider the simpler un-capacitated decision problem. Here, a naive greedy implementation would
start with the empty set and incrementally build the solution set by adding at each stage a product
that results in the maximum increase in revenue; this process would terminate when addition of a
product no longer results in an increase in revenue. It is easy to see that the naive implementation
would succeed in solving the decision problem only if the optimal assortments exhibit a nesting
property: the optimal assortment of size C1 is a subset of the optimal assortment of size C2 whenever
C1 < C2. Unfortunately, the nesting property does not hold even in the case of the MNL model.

In order to overcome this issues associated with the naive greedy implementation, we allow for
greedy “exchanges” in addition to greedy “additions.” Particularly, at every stage, we allow a new
product to be either added (which we call an “addition”) to the solution set or replace an existing
product (which we call an “exchange”) in the solution set; the operation at each stage is chosen greed-
ily. The termination condition now becomes an interesting question. As in the naive implementation,
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we could terminate the process when addition or exchange no longer results in an increase in revenue.
However, since we never run of products for exchanges, the algorithm may take an exponential (in
the number of products) number of steps to terminate. We overcome this issue by introducing a
control parameter that caps the number of times a product may be involved in exchanges. Calling
that parameter b, we show that the algorithms calls the revenue subroutine O(N 2bC2) times for the
capacitated problem. We thus obtain a general algorithm with the desired properties to solve the
static assortment optimization problem.

The formal description of the algorithm is provided in Figures 2 and 2. For convenience, whenever
an exchange takes place, we call the product that is removed as the product that is exchanged-out and
the product that is introduced as the product that is exchanged-in. Now, the algorithm takes as inputs
the capacity C, the initial assortment size S, and a bound b on the number of exchange-outs. The
algorithm incrementally builds the solution assortment. Specifically, it searches over all assortments
of size S. For each such assortment, the algorithm calls the subroutine GreedyADD-EXCHANGE

(formally described in Figure 2) at most C −S times to construct an assortment of size at most C.
Of all such constructed assortments, the algorithm returns the one with the maximum revenue.

Figure 1 GreedyOPT

Input: Initial size S, capacity constraint C such that 1≤ S ≤C ≤N , and revenue function R(·).

Output: Estimate of optimal assortment M̂ OPT of size |M̂ OPT| ≤C

Algorithm:

Initialization: M̂ OPT←∅
for each M⊂N such that |M|= S

for S + 1≤ i≤C
M←GreedyADD-EXCHANGE(M,N , b, R(·))

end for

if R(M̂ OPT) < R(M)
M̂ OPT←M

end if

end for

Output: M̂ OPT

Running-time complexity: It is easy to see that the number of times GreedyOPT calls the
revenue function R(·) is equal to (C−S)

(

N

S

)

times the number of times GreedyADD-EXCHANGE

calls the revenue function. In order to count the number of times GreedyADD-EXCHANGE

calls the revenue function R(·), we first count the number of times the while loop in GreedyADD-

EXCHANGE is executed. The number of times the while loop runs is bounded above by the
maximum number of iterations before the set Ñ becomes empty. In each iteration either an addition
or an exchange takes place. Since there is at most one addition that can take place and |Ñ | decreases
by 1 whenever exchange-outs(i) of a product i reaches b, it follows that the while loop runs for at most
Nb + 1 iterations. In each iteration of the while loop, the revenue function is called at most O(CN)
times. Thus, GreedyADD-EXCHANGE calls the revenue function at most O(CbN 2) times. Since
(

N

S

)

= O(NS), we can now conclude that GreedyOPT calls the revenue function O(C2bNS+2). The
choice of S will depend on the accuracy of revenue estimates we have access to. Next, we provide
guarantees on GreedyOPT, which provide guidance on the choice of S.
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Figure 2 GreedyADD-EXCHANGE

Input: assortmentM, product universe N , revenue function R(·), maximum number of exhange-
outs b

Output: Estimate of optimal assortment of size at most |M|+ 1

Algorithm:

Initialization: M̂←M, Ñ ←N , exchange-outs(i) = 0 for each i∈N
while Ñ 6= ∅

//try exchanging products

i∗, j∗ = arg maxi∈M̂,j∈Ñ R
(

(M̂\ {i})∪{j}
)

M̃exchange← (M̂ \ {i})∪{j}

// try adding a product
k∗ = arg maxk∈Ñ R(M̂∪{k})
M̃add←M̂∪{k

∗}

if |M̂|< |M|+ 1 and R(M̃add > R(M) and R(M̃add) > R(M̃exchange)
// add the product k∗

M̂←M̃add

Ñ ← Ñ \ {k∗}
else if R(M̃exchange) > R(M)

// exchange products i∗ and j∗

M̂←M̃exchange

exchange-outs(i∗)← exchange-outs(i∗) + 1
if exchange-outs(i)≥ b
Ñ ← Ñ \ {j∗}

else

Ñ ←
(

Ñ \ {j∗}
)

∪{i∗}
else

break from while

end if

end while

Output: M̂

3. Theoretical guarantees for GreedyOPT

We now give a precise description of the main results we can establish for the GreedyOPT algo-
rithm. Specifically, suppose that the underlying choice model is an MNL model with weights w0 = 1
for product 0 and wi for product i∈N ; recall that the choice probabilities are given by

P(i|M) =
wi

1 +
∑

j∈M wj

.

Note that 1 appears in the denominator because of the no-purchase option. In particular, the proba-
bility that an arriving customer leaves without purchasing anything when assortmentM is on offer
is given by

P(0|M) =
1

1 +
∑

i∈M wi

.
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Let R(M) denote the expected revenue from assortmentM. Under the MNL model, we have

R(M) =

∑

i∈M
piwi

1 +
∑

i∈M
wi

,

where pi is the price or the revenue obtained from the sale of product i.
We now have the following theorem when the revenue subroutine provides exact revenues:

Theorem 1. Suppose the underlying model is the MNL model with weights w1, w2, . . . , wN and the

revenue subroutine provides exact revenues. Then, for any S ≥ 0 and b≥C + 1, the GreedyOPT

algorithm finds the optimal solution to Capacitated OPT problem.

Therefore, taking S = 0 and b = C + 1, GreedyOPT finds the optimal assortment of size at most
C by calling the revenue function O(N 2C3). Thus, our algorithm provides a simpler alternative to
the more complicated algorithm proposed by Rusmevichientong et al. (2010a).

We next show that the GreedyOPT algorithm is robust to errors in the available revenue esti-
mates. Specifically, we consider the more realistic setting where one has access to only approximate
estimates of revenues i.e., we assume access to a function R̃(·) such that for any assortment M we
have

(1− ε(M))R(M)≤ R̃(M)≤R(M)

for some parameter 0 < ε(M) < 1. Naturally, the parameter ε(M) determines the quality of revenue
estimates we have available. Assuming that we have access to only approximate revenues, we find
the optimal assortment by running GreedyOPT with approximate revenues. In order to describe
the result, we need some notation. For any assortmentM, let w(M) denote 1 +

∑

i∈M wi. Further,
let

εmax
def
= max

M : |M|≤C
ε(M) and W max

C

def
= max

M : |M|≤C
w(M).

Finally, we defer to the next section the precise definitions of two quantities C̄(δC) and δC that we
need to describe the theorem; it suffices to say that as εmax→ 0, we have δC→ 0 and C̄(δC)→C.

With these definitions, we can now state our result.

Theorem 2. Let M OPT
C denote the optimal assortment of size at most C and M̂ OPT

C denote the

estimate of the optimal assortment produced by GreedyOPT when run with inputs S ≥ 0 and

b≥ C̄(2δC) + 1. Then, we must have

R(M OPT
C )−R(M̂ OPT

C )

R(M OPT
C )

≤ f(w, εmax),

where w denotes the vector of weights (w1, w2, . . . , wN) and

f(w, εmax)
def
=

W max
C

w(M OPT
C )

η(εmax)

with η(εmax)
def
= 4Cεmax/(1− εmax).

It is easy to see that the algorithm calls the revenue function O(N 2C2C̄(2δC)) times. Note that as
εmax→ 0, η(εmax) and hence f(w, εmax) go to zero. In addition, it follows from our definitions that
as εmax→ 0, C̄(2δC)→ C. Consequently, taking the error in revenues εmax = 0 yields in Theorem 2
yields the result of Theorem 1 as the special result. Therefore, we only prove Theorem 2 in the next
section.
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4. Proofs of the main results
In this section we prove Theorem 2; specifically, we establish that the revenues of the optimal assort-
ment and the estimate of the optimal assortment produced by GreedyOPT are “close”. In order to
establish this result, for the rest of the section, fix a capacity C. Let M OPT and M̂ OPT respectively
denote the optimal assortment and the estimate of the optimal assortment produced by Greedy-

OPT. Then, our goal is to show that R(M OPT) and R(M̂ OPT) are “close” to each other. We assume
that the underlying choice model is the MNL model with parameters w1, w2, . . . , wN . Recall that for
any assortmentM,

R(M) =

∑

i∈M
piwi

1 +
∑

i∈M
wi

,

where pi is the price of product i. The term in the denominator makes comparison of the revenues of
two different assortment difficult. Therefore, instead of dealing with the revenues of the assortment
directly, we consider the following transformation of the revenues of assortments: for any assortment
M and number u∈R,

R(M)−u =

∑

i∈M
piwi

1 +
∑

i∈M
wi

−u =

(

∑

i∈M
(pi−u)wi

)

−u

1 +
∑

i∈M
wi

=
HM(u)−u

w(M)
,

where HM : R→R is a function defined as HM(u) =
∑

i∈M(pi−u)wi and w(M)
def
= 1+

∑

i∈M wi. We
can now write

HM(u) = u + w(M)(R(M)−u). (1)

It is clear that HM(·) is directly related to the revenue R(M). Moreover, as will become apparent
soon, it is easier to compare the transformations HM1

(·) and HM2
(·) of two assortments M1 and

M2 than their revenues R(M1) and R(M2). Specifically, we can establish the properties stated in
the following proposition.

Proposition 1. For any two assortments M1 and M2, let H1(·) and H2(·) respectively denote

the functions HM1
(·) and HM2

(·). Further, let u1 and u2 denote the revenues R(M1) and R(M2)
respectively. We then have

1. H1(u2)≥H2(u2) ⇐⇒ R(M1)≥R(M2).
2. H1(u2)≥ (1 + δ(M1))H2(u2) =⇒ R̃(M1)≥ R̃(M2),

where δ(M1)
def
= ε(M1)w(M1)/(1− ε(M1)).

W e prove each of the properties in turn. First note that for any assortment M with revenue
R(M) = u, it immediately follows from our definitions that HM(u) = u+w(M)(R(M)−u) = u. The
first property now follows from a straightforward expansion of the terms involved:

H1(u2)≥H2(u2) ⇐⇒ u2 + w(M1)(u1−u2)≥ u2

⇐⇒ u1 ≥ u2

⇐⇒ R(M1)≥R(M2),

where the second equivalence follows from the fact that w(M1) > 0. The second property can also
be obtained through a similar straightforward expansion of the terms. In particular,

H1(u2)≥ (1 + ε(M1))H2(u2) ⇐⇒ u2 + w(M1)(u1−u2)≥ (1 + δ(M1))u2



Author: Assortment Optimization Under a Nonparametric Choice Model

8 Management Science 00(0), pp. 000–000, © 0000 INFORMS

⇐⇒ u1 ≥

(

1 +
δ(M1)

w(M1)

)

u2

⇐⇒ u1 ≥

(

1 +
ε(M1)

1− ε(M1)

)

u2

⇐⇒ (1− ε(M1))u1≥ u2, (2)

where the second equivalence follows from the definition of δ(M1). Moreover, it follows from our
definitions that R̃(M1)≥ (1− ε(M1))u1 and u2 ≥ R̃(M2). We now conclude from (2) that

R̃(M1)≥ (1− ε(M1))u1≥ u2 ≥ R̃(M2).

The result of the proposition now follows.
The above proposition establishes that if the transformation HM(·) of one assortment is “suffi-

ciently” larger than the other, then it follows that the revenues of one assortment should be larger
than the revenues of the other. Therefore, instead of keeping track of the revenues of the assortments
in our algorithm, we keep track of their respective transformations HM(·).

Next, we establish a loop-invariance property that arises due to greedy additions and exchanges in
our algorithms. We make use of this property to prove our theorems. In order to state the proposition,
we introduce the following notation:

δC
def
= max

M : |M|
δ(M) = max

M : |M|
w(M)

ε(M)

1− ε(M)
.

We then have

Proposition 2. Consider an iteration t of the while loop of the GreedyADD-EXCHANGE

algorithm. Let Mt and Mt+1 denote the estimates of the optimal assortments at the beginning and

the end of iteration t. Let Nt denote the universe of products at the beginning of iteration t. Then,

1. if a greedy exchange takes place i.e.,Mt+1 = (Mt \ {i
∗})∪{j∗}, then for u = R(Mt+1), we must

have

hi∗(u)≤ hi(u) + δCu, for all i∈Mt

hj∗ (u)≥ hj(u)− δCu, for all j ∈Nt \Mt;

2. if an addition takes place i.e., Mt+1 =Mt ∪{j
∗}, then for u = R(Mt+1) we must have

hj∗(u)≥ hj(u)− δCu, for all j ∈Nt \Mt.

W e prove this proposition by contradiction. First consider the case when exchange happens i.e.,
Mt+1 = (Mt \ {i

∗}) ∪ {j∗}. Note that for any assortment M = (Mt \ {i}) ∪ {j} with i ∈Mt and
j ∈Nt \Mt, letting u denote R(Mt+1), we can write

HM(u)−HMt+1
(u) = hj(u)−hj∗(u) + hi∗(u)−hi(u). (3)

Now, if the hypothesis of the proposition pertaining to exchange is false, then at least one of the
following should be true: either (1) there exists a product i∈Mt and i 6= i∗ such that hi∗(u) > hi(u)+
δCu, or (2) there exists a product j ∈Nt \Mt and j 6= j∗ such that hj∗ (u) < hj(u) + δCu. In the first
case when hi∗ (u) > hi(u) + δCu, by taking j = j∗, we can write from (3) that HM(u)−HMt+1

(u) >
δCu. Similarly, in the second case when hj∗ (u) < hj(u) + δCu, by taking i = i∗, we can write from (3)
that HM(u)−HMt+1

(u) > δCu. Therefore, in both the cases, we have exhibited an assortment M
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distinct from Mt+1 that can be obtained from Mt through an exchange and has the property that
HM(u)−HMt+1

(u) > δCu. We can now write

HM(u) > HMt+1
(u) + δCu (4a)

=⇒ HM(u) > HMt+1
(u) + δ(M)u since δC ≥ δ(M) by definition (4b)

=⇒ HM(u) > (1 + δ(M))HMt+1
(u) since HMt+1

(u) = u by definition (4c)

=⇒ R̃(M) > R̃(Mt+1) by Proposition 1. (4d)

This clearly contradicts the fact thatMt+1 is chosen greedily.
The case when addition happens can be proved in the exact similar way. Particularly, suppose

there exists a product j ∈Nt \Mt and j 6= j∗ such that hj∗(u) < hj(u)− δCu, where u = R(Mt+1)
with Mt+1 =Mt ∪{j}. LettingM denote the setMt ∪{j}, we can then write

HM(u)−HMt+1
(u) = hj(u)−hj∗ (u) > δCu.

This implies – following the sequence of arguments in (4) – that R̃(M) > R̃(Mt), contradicting the
fact thatMt+1 is chosen greedily.

The result of the proposition now follows.
The above proposition establishes a key loop-invariance property that results from greedy additions

and exchanges. Specifically, let u denote the revenue of the estimate of the optimal assortment
obtained at the end of an iteration of the while loop in GreedyADD-EXCHANGE. Then, the
proposition establishes that whenever a product j∗ is introduced (either through addition or an
exchange-in) greedily, it must be that hj∗ (u) is “close” to the maximum hj(u) of all products j
that have been considered for an addition or exchange-in. Similarly, the product i∗ that is greedily
exchanged-out must be such that hi∗(u) is “close” to the minimum hi(u) of all products i that have
been considered for an exchange-out.

Using the propositions above, we can establish a key property of the subroutine GreedyADD-

EXCHANGE. For that, we need the following notation. For any u, define

BS(u)
def
= arg max

M : |M|≤S
HM(u) = arg max

M : |M|≤S

∑

i∈M

hi(u).

It is easy to see from the above definition that BS(u) consists of the top at most C products according
to hi(u) such that hi(u) > 0. Since hi(·) is monotonically decreasing, it is easy to see that

|BS(u1)| ≥ |BS(u2)|, whenever u1≤ u2. (5)

Under appropriate technical assumptions, Rusmevichientong et al. (2010a) showed that for any 1≤
S ≤N , the optimal assortment of size at most S under the MNL model is one of the assortments in

the collection BS
def
= {BS(u) : u∈R}. In fact the authors show that if uS denotes the optimal revenue,

then BS(uS) is the optimal assortment. An immediate consequence of this result and (5) is that for
any u≤ uS

S ≥ |BS(u)| ≥ |M OPT
S |. (6)

It has been established by Rusmevichientong et al. (2010a) that there can be at most O(NC) distinct
assortments in the collection BS allowing one to find the optimal assortment by restricting one’s search
to O(NC) assortments. The following lemma shows that the assortment found by the subroutine
GreedyADD-EXCHANGE is “close” to one of the assortments in BS. Before we describe the
lemma, we need the following notation. For any δ > 0 and u∈R, let

iS(u)
def
= min

i∈BS(u)
hi(u).
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Moreover, let

B̄S(δ, u)
def
= BS(u)∪

{

j ∈N \BS(u) : hiS(u)(u)−hj(u)≤ δu
}

,

Also, let

C̄(δ)
def
= max

u∈R+

|B̄S(δ, u)|,

We then have

Lemma 1. Suppose GreedyADD-EXCHANGE is run with some input assortmentM and b≥
C̄(δC) + 2, where C ≥ S + 1. Further, suppose that |M OPT

S+1 |= S + 1. Then, there exists an iteration

t∗ of the while loop such that if M∗ denotes the assortment Mt∗+1 and u∗ denotes R(M∗), then

HB(u∗)(u
∗)−HM∗(u∗)≤ 2C̃u∗δCu∗,

where B(u∗) denotes the assortment BS+1(u∗) and C̃∗ is a constant denoting 1 + |B(u∗) \M∗|.

We defer the proof of Lemma 1 to the end of the section. We now present the proof of Theorem 2.

4.1. Proof of Theorem 2

Let M OPT
C denote the true optimal assortment, and M̂ OPT

C denote the estimate of the optimal assort-
ment produced by GreedyOPT. Furthermore, let C∗ ≤C denote the size of M OPT

C . It follows from
Lemma 1 that in the C∗th invocation of the subroutine GreedyADD-EXCHANGE, there exists
an assortmentM∗ such that R̃(M̂ OPT

C ) > R̃(M∗) and M∗ is such that

HB(u∗)(u
∗)−HM∗(u∗)≤ 2C̃u∗δCu∗,

where C̃∗ denotes |B(u∗) \M∗|+ 1 and B(u∗) denotes the set BC∗(u∗). It follows by the definition
of B(u∗) that HB(u∗)(u

∗)≥HMOPT
C

(u∗). Thus, we can write

HMOPT
C

(u∗)−HM∗(u∗)≤ 2C̃u∗δCu∗ ≤ 2CδCu∗. (7)

Let uC denote R(M OPT
C ). Then, it follows by definition that HMOPT

C

(uC) = uC . Thus,

HMOPT
C

(uC)−HMOPT
C

(u∗) =
∑

j∈MOPT
C

wj(u
∗−uC) = (u∗−uC)(w(M OPT

C )− 1).

Since HMOPT
C

(uC) = uC , we can write

HMOPT
C

(u∗) = uC + (uC −u∗)(w(M OPT
C )− 1). (8)

Since HM∗(u∗) = u∗, it now follows from (7) and (8) that

(uC −u∗)(w(M OPT
C )− 1) + uC −u∗ ≤ 2CδCu∗

=⇒ (uC −u∗)w(M OPT
C )≤ 2CδCu∗

=⇒ uC ≤ (1 + ε̃)u∗, (9)

where ε̃
def
= 2CδC/w(M OPT

C ). Now since R̃(M̂ OPT
C ) > R̃(M∗), it follows that

(1− ε(M∗))u∗≤ R̃(M∗) < R̃(M̂ OPT)≤ ûC ,

where ûC denotes R(M̂ OPT
C ). It now follows from (9) that

uC ≤ (1 + ε̃)u∗≤
1 + ε̃

1− ε(M∗)
ûC .
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Now since

δC = max
M : |M|≤C

ε(M)

1− ε(M)
w(M),

by letting εmax = maxM : |M|≤C ε(M) and W max
C = maxM : |M|≤C w(M), we have

δC ≤
εmax

1− εmax

W max
C .

Thus,

ε̃ =
2C

w(M OPT
C )

δC ≤
2C

w(M OPT
C )

εmax

1− εmax

W max
C

def
= f(w, εmax)/2.

With these definitions, it is easy to see that ε(M∗)≤ εmax≤ f(w, εmax)/2. It now follows that

uC − ûC

uC

≤ 1−
1− ε(M∗)

1 + ε̃
≤

ε̃ + ε(M∗)

1 + ε̃
≤ ε(M∗) + ε̃≤ f(w, εmax).

This establishes the result of the theorem.

4.2. Proof of Lemma 1

Suppose the while loop in the subroutine terminates at the end of iteration T . Then, it follows from
the description of the subroutine that at least one of the following conditions holds at the end of
iteration T :

1. The set of products NT +1 \MT +1 available for additions or exchanges is empty.
2. No further additions or exchanges can increase the revenues.

Our goal is to prove the existence of an iteration t∗ ≤ T such that

HB(u∗)(u
∗)−HM∗(u∗)≤ 2C̃u∗δCu∗,

whereM∗ denotes the assortmentMt∗+1 and u∗ denotes R(M∗). We prove this by considering two
cases corresponding to each of the two ways in which the subroutine terminates. Note that in order
to simplify the notation, we have dropped the subscript from the notation of BS+1(·).
Case 1: Subroutine terminates with NT +1 =MT +1. We first consider the case when the sub-
routine terminates when the set of products NT +1 \MT +1 becomes empty. In this case, we prove the
existence of an iteration t∗ ≤ T that satisfies the condition stated in the hypothesis of the lemma.
In fact, we prove something stronger; we shall show that the iteration t∗ ≤ T ∗, where T ∗ ≤ T is the
first iteration such that NT ∗ ⊂ N (recall that N1 =N ). We prove this result by contradiction. In
particular, suppose that after every iteration t≤ T ∗ of the while loop, we have

HB(u)(u)−HMt+1
(u) > 2C̃uδCu, (10)

where u denotes the revenue R(Mt+1) and C̃u denotes the constant 1 + |B(u) \Mt+1|. Note that a
product i would be removed from the universe Nt at the end of some iteration t only if it has been
exchanged-out b times. Since b≥ C̄(δC), it is easy to see that we arrive at a contradiction if we show
that as long (10) is satisfied at the end of each iteration, each product i can be exchanged-out at
most C̄(δC) + 2 times.

In order to bound the number of times a product can be exchanged-out, we establish a special
property that should be satisfied whenever an exchange happens. Specifically, suppose an exchange
happens during iteration t i.e., Mt+1 = (Mt \ {i

∗}) ∪ {j∗}. In addition, let u denote the revenue
R(Mt+1), and let product k∗ ∈Nt \Mt denote the product such that hk∗(u)≥ hk(u) for all products
k ∈Nt \Mt. Then, we claim that

hj∗(u)≥ hk∗(u)− δCu (11a)

hi∗(u)≤ hk∗(u)− δCu. (11b)
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We prove this claim as follows. Since k∗ ∈ Nt \Mt, (11a) follows directly from Proposition 2. We
now argue that hi∗ (u)≤ hk∗(u)− δCu. For that, we first note that

hi∗(u)−hj∗(u)≤ 2δCu. (12)

To see why, note that since an exchange has happened, it must be that R̃(Mt) ≤ R̃(Mt+1). This
implies by Proposition 1 that HMt

(u)≤ (1 + δ(Mt))HMt+1
(u). Since δ(M1)≤ δC and HMt+1

(u) = u
by definition, we can write

HMt
(u)≤ (1 + δ(Mt))HMt+1

(u) =⇒ HMt
(u)−HMt+1

(u)≤ δCu

=⇒ hi∗(u)−hj∗(u)≤ δCu < 2δCu.

Now, consider

HB(u)(u)−HMt+1
(u) = HB(u)(u)−HMt

(u) + HMt
(u)−HMt+1

(u)

=
∑

j∈B(u)\Mt

hj(u)−
∑

i∈Mt\B(u)

hi(u) + (hi∗ (u)−hj∗(u)) .

We now collect terms in the above expression as follows. LetM1 denote the setMt \B(u). Further,
partition the set B(u) \Mt into Mscr2 ∪M3 such that M2 ∩M3 = ∅ and |M2|= |M1|; note that
such a partitioning is possible because |B(u)| = S + 1 (which follows from (6) and the hypothesis
that |M OPT

S+1 = S + 1|) and |Mt| ≤ S + 1. Also note that M3 6= ∅ if and only if |Mt|< S + 1. With
this partitioning, we can now write

HB(u)(u)−HMt+1
(u) =

∑

i∈M1,j∈M2

(hj(u)−hi(u)) +
∑

j∈M3

hj(u) + (hi∗(u)−hj∗ (u)) .

We now claim that at least on of the following must be true: either (1) there exists a pair of products
i ∈M1 and j ∈M2 such that hj(u)− hi(u) > 2δCu, or (2) if M3 6= ∅, then there exists a product
k ∈M3 such that h3(u) > 2δCu. Otherwise, it is easy to see from (12) that HB(u)(u)−HMt+1

(u)≤
2C̃uδCu, where C̃u = |B(u) \Mt+1|+ 1, contradicting (10). We now consider each of the cases in
turn.

First suppose that hj(u)−hi(u) > 2δCu for some i∈M1 and j ∈M2. It follows from Proposition 2
that hi∗(u)≤ hi(u) + δCu. Thus, we can write

hi∗(u)≤ hi(u) + δCu < hj(u)− 2δCu + δCu≤ hk∗(u)− δCu,

where the last inequality follows from the definition of k∗ and the fact that j ∈M2 ⊂N \Mt. Thus,
for this case, we have established (11b).

Now suppose that M3 6= ∅ and hk(u) > 2δCu for some k ∈M3. As noted above, in this case, we
should have |Mt+1|< S + 1. This means that an exchange has happened instead of addition, which
in turn implies that R̃(M̃)≤ R̃(Mt+1), where M̃ denotes the setMt∪{k}. Thus, by Proposition 1,
we should have

HM̃(u)≤ (1 + δ(M̃))HMt+1
(u)

=⇒ HM̃(u)−HMt+1
(u)≤ δ(M̃)HMt+1

(u)

=⇒ hk(u) + hi∗(u)−hj∗ (u)≤ δCu as HMt+1
(u) = u, δ(M̃)≤ δC

=⇒ hi∗(u)≤ hj∗(u)−hk(u) + δCu

=⇒ hi∗(u)≤ hj∗ (u)− 2δCu + δCu since hk(u) > 2δCu

=⇒ hi∗(u)≤ hk∗(u)− δCu since hj∗ (u)≤ hk∗(u).
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We have thus established that hi∗(u)≤ hk∗(u)− δCu for both the cases.
We now use (11) to bound the number of exchange-outs that can happen for each product.

Specifically, as mentioned above, we arrive at a contradiction by showing that each product can be
exchanged-out at most C̄(δC) + 2 times. For that, for any iteration t≤ T ∗, let kt denote the product
such that kt ∈Nt \Mt and hkt

(ut+1)≥ hj(ut+1) for all products j ∈Nt \Mscrt and ut+1 = R(Mt+1).
Now define the function

g(u) =

{

hkt
(u)− δCu for ut < u≤ ut+1, t≤ T ∗,

hk1
(u1)− δCu1 for u = u1.

Note that for the above definition to be meaningful, for any t≤ T ∗, we need to show that ut ≤ ut+1.
This should be true because by (11), it follows that for u = R(Mt+1), we have hi∗(u) ≤ hj∗ (u);
this in turn implies that HMt

(u) ≤HMt+1
(u), which implies by Proposition 1 that ut = R(Mt) ≤

R(Mt+1) = ut+1. It is easy to see that the function g(·) is piecewise linear. However, note that it may
not be continuous.

Now fix a product i, and for this product we argue that it can be exchanged at most C̄(δC) times.
For that let t1 be an iteration in which i is exchanged-out and t2 be the first iteration after t1 when
i is exchanged-in. Let u1, u2 denote R(Mt1+1) and R(Mt2+1) respectively. Furthermore, let k1 and
k2 respectively denote the products kt1

and kt2
. It now follows from (11) that

hi(u1)≤ hk1
(u1)− δCu1 = g(u1)

hi(u2)≥ hk2
(u2)− δCu2 = g(u2).

This implies that the line hi(·) is below g(·) at u1 and above g(·) at u2. We now argue that hi(·)
intersects g(·) at some u1 ≤ u ≤ u2 i.e., hi(u) = g(u). If g(·) were continuous, this assertion would
immediately follow from the intermediate value theorem. However, the way we have defined g(·), it
may be discontinuous at some ut with t1 < t≤ t2. Now the only way hi(·) and g(·) do not intersect
is if for some t1 < t≤ t2,

g(u−
t ) < hi(ut) < g(u+

t ) and hi(u) > g(u) for ut ≤ u≤ u2.

We argue that this cannot happen. For that consider iteration t. By definition i /∈Mt. Since Nt =N ,
it follows by our definition that hkt

(ut+1)≥ hi(ut+1), which in turn implies that g(ut+1)≥ hi(ut+1)
resulting in a contradiction. Thus, hi(·) intersects g(·) from below at some u such that u1 ≤ u≤ u2.

Hence, we can correspond each exchange-out with an intersection point corresponding to hi(·)
intersecting g(·) from below. This implies that the total number of exchage-outs can be bounded
above by one plus the number of times hi(·) intersects g(·) from below beyond ui, where ui is the
revenue of the assortment Mt immediately after i is added to it (either through an exchange-in or
addition). Note that hi(·) intersects g(·) at u ≥ ui if and only if wi ≤ wk(u) and hk(u)(ui) ≥ hi(ui),
where k(u) is the product such that k(u) = kt, where ut < u≤ ut+1. Thus, the number of intersection
points can be bounded above by the number of products k such that hk(ui)≥ hi(ui). We now argue
that i∈ B̄S+1(δC, ui). If this is true, then it implies that there can be at most |B̄S+1(δC, ui)| ≤ C̄(δC)
intersection points, which immediately implies that there can be at most 1 + C̄(δC) exchange-outs.

The only thing we are left with is to argue that i∈ B̄S+1(δC, ui). To see this, let M̃ be the assortment
obtained after i is added or exhanged-in for the first time. Then, according to our definition, we have
that ui = R(M̃). Further, since HB(ui)(ui)−HM̃(ui) > 0, there exists a product k ∈ B(ui) \ M̃. It
now follows by Proposition 2 that

hi(ui)≥ hk(ui)− δCui ≥ hiS+1(ui)− δCui,

where iS+1(ui) is as defined above i.e., iS+1(ui)
def
= arg minj∈B(ui) hj(ui). It now follows by the definition

of B̄S+1(δC, ui) that i∈ B̄S+1(δC, ui).
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Case 2: Subroutine terminates because no further additions or exchanges increase rev-

enue. We now consider the case when subroutine terminates at iteration T because no further
additions or exchanges increase the revenue. Now there are two possibilities: either Nt =N for all
t≤ T or not. In the latter case let T ∗ be the first iteration t when Nt ⊂N . It then follows from our
arguments for the above case that there exists an iteration t∗ ≤ T ∗ that satisfies the properties of the
lemma. Thus, we consider the case when Nt =N for all t≤ T ∗. Assuming this, we prove the result
by contradiction. In particular, suppose at the end of iteration T we have

HB(u)(u)−HMT +1
(u)≥ 2C̃uδCu, (13)

Now consider
HB(u)(u)−HMT +1

(u) =
∑

k∈M3

hj(u) +
∑

i∈M1,j∈M2

(hj(u)−hi(u)) ,

where as above,M1 denotes the assortmentMT +1 \B(u) and the set B(u)\MT +1 is partitioned into
M2 ∪M3 such that M2 ∩M3 = ∅ and |M2|= |M1|; such a partitioning is possible since |B(u)|=
S + 1 (which follows from (6) and the hypothesis that |M OPT

S+1 = S + 1|) and |MT +1| ≤ S + 1. It now
follows that one of the following conditions should hold: either (1) there exists a pair of products
i ∈M1 and j ∈M2 such that hj(u)− hi(u) > 2δCu, or (2) if M3 6= ∅, then there exists a product
k ∈M3 such that h3(u) > 2δCu. Otherwise, it is easy to see that HB(u)(u)−HMT +1

(u)≤ 2C̃uδCu,

where C̃u = |B(u) \MT +1|+ 1, contradicting (13). We consider each of the cases in turn.
First, suppose that there exist a pair of products i ∈M1 and j ∈M2 such that hj(u)− hi(u) >

2δCu. Let M̃ denote the assortment (MT +1 \ {i})∪{j}. We can then write

HM̃(u)−HMT +1
(u) = hj(u)−hi(u) > 2δCu.

Since HMT +1
(u) = u and δC ≥ δ(M̃), it follows that by Proposition 1 that R̃M̃ > R̃MT +1. This

contradicts the assumption that the subroutine terminates withMT +1 because no further additions
or exchanges result in an increase of revenue.

Next, suppose M3 6= ∅ and hk(u) > 2δCu for some k ∈M3. Now let M̃=MT +1 ∪ {k}; note that
since M3 6= ∅, it must be that |MT +1|= S. We can now write

HM̃(u)−HMT +1
(u) = hk(u) > 2δCu.

Since HMT +1
(u) = u and δC ≥ δ(M̃), it follows that by Proposition 1 that R̃M̃ > R̃MT +1. This

contradicts the assumption that the subroutine terminates withMT +1 because no further additions
or exchanges result in an increase of revenue. This finishes the proof of this case.

The proof of the lemma now follows.

5. Summary and discussion
This paper focused on using choice models to make decisions. Assuming that we have access to a
revenue prediction subroutine, we designed an algorithm to find an approximation of the optimal
assortment with as few calls to the revenue subroutine as possible.

We designed a general algorithm for the optimization of set-functions to solve the static assortment
optimization algorithms. Most existing algorithms (both exact and approximate) heavily exploit
the structure of the assumed choice model; consequently, the existing algorithms – even without
any guarantees – cannot be used with other choice models like the probit model or the mixture of
MNL models with a continuous mixture. Given these issues, we designed an algorithm that is (a)
not tailored to specific parametric structures and (b) requires only a subroutine that gives revenue
estimates for assortments. Our algorithm is a sophisticated form of greedy algorithm, where the
solution is constructed from a smaller assortment through greedy additions and exchanges. The
algorithm is proved to find the optimal assortment exactly when the underlying choice model is the
MNL model. We also showed that the algorithm is robust to errors in the revenue estimates provided
by the revenue subroutine, as long as the underlying choice model is the MNL model.
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