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Abstract— In a recent result, Weitz [13] established equivalence
between the marginal distribution of a node, say v, in any binary
pair-wise Markov Random Field (MRF), say GG, with the marginal
distribution of the root node in the self-avoid walk tree of the
G starting at v. Analogous result for max-marginal distribution
holds for the reason that addition and multiplication commute
in the same way as addition and maximum. This remarkable
connection suggests a message-passing algorithm for computing
exact marginal and max-marginal in any binary MRF.

In this paper, we exploit this property along with appropri-
ate graph partitioning scheme to design approximate message
passing algorithms for computing max-marginal of nodes or
maximum a-posteriori assignment (MAP) in a binary MRF G.
Our algorithm can provide provably arbitrarily small error for
a large class of graphs including planar graphs.

Our algorithms are linear in number of nodes GG with constant
dependent on the approximation error. For precise evaluation
of computation cost of algorithm, we obtain a novel tight
characterization of the size of self-avoiding walk tree for any
connected graph as a function of number of edges and nodes.

[. INTRODUCTION

Markov Random Field (MRF) [7] based exponential family
of distribution allows for representing distributions in an
intuitive parametric form. Therefore, it has been successful for
modeling in many applications [10]. Specifically, consider an
exponential family on n random variables X = (X1,..., X,)
represented by a pair-wise (undirected) MRF with graph
structure G = (V, E), where vertices V = {1,...,n} and
edge set £ C V x V. Each X; takes value in a finite set 3
(e.g. ¥ = {0,1}). The joint distribution of X = (X;): for
x = (z;) € X",

PX =x] Hgb,(l‘z) H Vij (@3, ;). e)
eV (i,))€E
Here, functions ¢; : X — [l,00), and v : ¥* —

[1,00) are assumed to be arbitrary non-negative (real-valued)
functions. An important computational question of inter-
est is finding maximum a-posteriori (MAP) assignment X*,
where x* = argmaxyxexn» P[X = x]. MAP is equivalent
to a minimal energy assignment (or ground state) where
energy, £(x), of state x € X" is defined as &£(x) =
—H(x) + Constant, where H(x) = >, loggi(z;) +
> (i.jyer 08 ¥ij (i, ;). For ease of implementation and scal-
ability, message passing algorithms have emerged as canonical
solutions. In this paper, we present message passing algorithm
that will find e-approximation solution of MAP for a class of
graphs.
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Previous Work. The question of finding MAP (or ground
state) comes up in many important application areas such
as coding theory, discrete optimization, image denoising.This
problem is NP-hard for exact and even (constant) approximate
computation for arbitrary graph G. However, applications
require solving this problem using very simple algorithms. A
plausible approach is as follows. First, identify wide class of
graphs that have simple algorithms for computing MAP and
log-partition function. Then, try to build system (e.g. codes)
so that such good graph structure emerges and use the simple
algorithm or else use the algorithm as a heuristic.

Such an approach has resulted in many interesting recent
results starting the Belief Propagation (BP) algorithm designed
for Tree graph [7]. Since there a vast literature on this topic,
we will recall only few results. Two important algorithms
are the generalized belief propagation (BP) [14] and the tree-
reweighted algorithm (TRW) [11], [12]. Key properties of in-
terest for these iterative procedures are the correctness of fixed
points and convergence. Many results characterizing properties
of the fixed points are known starting from [14].Various
sufficient conditions for their convergence are known starting
[9]. However, simultaneous convergence and correctness of
such algorithms are established for only specific problems, e.g.
[1]. We take note of recent advances in the context of TRW
algorithm by by Kolmogorov [3], Kolmogorov and Wainwright
[4] where they made a predicted connection between TRW
for MAP estimation and specific Linear Programming (LP)
relaxation of the problem [12] precise.

Contribution. We propose a novel message passing algorithm
for approximate computation of MAP. For any ¢ > 0, our
algorithm can produce an e-approximate solution for MAP
for arbitrary binary MRF G as long as G admits a good
partitioning property (defined precisely later in the paper).
Class of graphs that admit this property as well as allow for
message passing algorithm for finding such partition include
include those that exclude a finite graph as a minor: planar
graph is special case of such graphs.

The running time of the algorithm is ©(n), with constant
dependent on ¢ and the maximum vertex degree of G. In order
to evaluate this constant for our message passing algorithm, we
need to evaluate size of the self-avoiding walk tree of a graph.
We show that the size of self-avoiding walk tree for arbitrary
connected graph with n nodes and n+ k£ — 1 edges is no more
than (n+k—1)2%+1, Using this, in the specific case of Planar



graph with bounded degree we show that algorithm performs
< C(e)n operations to find an e-approximate solution with
loglog C(e) = O(1/e).

It is worth noting that, algorithm will work for any binaryTSAW( G, 1)

G with quantifiable error bound. We also note that, MAP
computation for arbitrary pair-wise finite valued exponential
family is equivalent to computing MAP for a specific binary
MREF. Thus, in principle our algorithm extends for arbitrary
finite valued exponential family MAP estimation.

Techniques. Our algorithm is primarily based on the following
idea: First, decompose G into small-size connected compo-
nents say G, ..., G by removing few edges of G. Second,
compute exact MAP in each of G; separately. This computa-
tion is performed through a message passing algorithm using
an adaptation of result of Weitz [13] for MAP. Third, combine
these estimates to produce a global estimate while taking care
of the effect induced by removed edges. This can be done in
a local manner.

The error produced by the above method is primarily due to
the edges removed and the computation time depends on the
size of the components. For small error, we need to remove
appropriately selected edges while for small computation
time we need small size of components. The graphs with
good partition property (defined later) posses both of these
properties.

II. PRELIMINARIES

This section contains two main ingredients for the results
of this paper. The first result is about equivalence of max-
marginal of a node, say v, in G and max-marginal of root of
self-avoiding walk tree with respect to v. This result follows
by a direct adaption of result by Weitz [13]. The second result
is about existence of good graph partitioning property for a
class of graphs. Here we describe graph partitioning schemes
for minor-excluded graphs (based on result of Klein, Plotkin
and Rao [2]).

A. Equivalence: MRF and Self-Avoiding Walk Tree

Given binary pair-wise MRF G of n nodes, our interest is
in finding

max  P(o), for vy € {0,1} for all v.

c€{0,1}":0,=v

Definition 1 (Self-Avoiding Walk Tree): Consider graph
G = (V, E) of pair-wise binary MRF. For v € V, we define
the self avoiding walk tree Tsaw (G, v) as follows. First, for
each u € V, give an ordering of its neighbors N(u). This
ordering can be arbitrary but remains fixed forever. Given
this, T'saw (G, v) is constructed by the breadth first search
of nodes of G starting from v without backtracking. Then
stop the bread-first search along a direction when an already
visited vertex is encountered (but include it in Tsaw (G, v)
as a leaf). Say one such leaf be w of T'saw (G,v) and let
it be a copy of a node w in G. We call such a leaf node
of T'saw (G,v) as Marked. A marked leaf node is assigned
color Red or Green according to the following condition: The

() =

225

¢1 1/J13
2 3
W3 Tcomp(G,1)
4
Graph G
1
)13
2 3
aa/ \ Y23
4 2

12

N
\

N

P13 (G
A A

Fig. 1. A graph G of 4 nodes with one loop is given. On left, we have the
self-avoiding walk tree of G for node 1, i.e. T's ey (G, 1) with green and red
being special nodes. On right, we have computation tree Tconrp (G, 1) for
node 1’s computation under Belief Propagation (or Max-Product) algorithm.
The grey nodes of Tconmp(G,1) correspond to green and red node of
Tsaw (G, 1) on the left.

leaf w is marked since we encountered node w of G twice
along our bread-first search excursion. Let the (directed)
path between these two encounters of w in G be given by
(w,v1,...,v,, w). Naturally, v1, v, € N(w) in G. We mark
the leaf node w as Green if according to the ordering done
by node w in G of its neighbors, if vy is given smaller
number than that of vy. Else, we mark it as Red. Let V,, and
E, denote the set of nodes and vertices of tree Ts aw (G, v).
With little abuse of notation, we will call root of Tsaw (G, v)
as v.

Given a Tsaw (G,v) for a node v € V in G, an MRF
is naturally induced on it as follows: all edges inherit the
pair-wise compatibility function (i.e. ¢..(-,-)) and all nodes
inherit node-potentials (i.e. ¢.(-)) from those of MRF G in
a natural manner. The only distinction is the modification of
the node-potential of marked leaf nodes of T'ssw (G, v) as
follows. A marked leaf node, say w of Tsaw (G, v) modifies
its potentials as follows: if it is Green than it sets ¢, (1) =
buw(1),64(0) = 0 but if it is Red leaf node then it sets
¢w(0) = du(0), pu(1) = 0.

Example 1 (Self-avoiding walk tree): Consider 4 node bi-
nary pair-wise MRF G in Figure 1. Let node 1 gives number
a to node 2, number b to node 3 so that a > b. Given this
numbering, the bottom left of Figure 1 represents Tsaw (G, 1).
The Green leaf node essentially means that we set its value
permanently to 1.

With above description, Tsaw (G, v) gives rise to a pair-
wise binary MRF. Let Q¢ ., denote the probability distribution
induced by this MRF on boolean cube {0, 1}/V+|. Our interest



will be in the max-marginal for root v or equivalently

max Qc.v(0), where v € {0,1}.
N

a(y) = et

Here we present an equivalence between pZ(-) and ¢}(-).
This is a direct adaptation of result by Weitz [13].

Theorem 1: Consider any binary pair-wise MRF G =
(V,E). For any v € V, let p}(-) be as defined above with
respect to Pg. Let Tsaw (G,v) be the self-avoiding walk
tree MRF and let ¢} (-) be as defined above for root node
of Tsaw (G, v) with respect to Q¢ ,. Then,

) _ @)
<0 = (0) @)
p;(0) 7;(0)
Here we allow ratio to be 0, co.

Proof: The proof follows by induction. As a part of the
proof, we will come across graphs with some fixed vertices,
where a vertex w is said to be fixed to 0 (resp. 1) if ¢, (0) > 0
, &u(1) = 0 (resp. ¢yu(1) > 0, ¢,(0) = 0). The induction
is on the number of unfixed vertices of GG. We essentially
prove the following, which implies the statement of Lemma:
given any pair-wise MRF on a graph G (with possibly some
fixed vertices), construct corresponding T's aw (G, v) MRF for
some node v. If the number of unfixed vertex of G is at most
m, then the (2) holds. Next, inductive proof.

Initial condition. Trivially the desired statement holds for
any graph with exactly one unfixed vertex, by definition of
MREF, i.e. (1). The reason is that for such a graph, due
to all but one node being fixed, the max-marginal of each
node is purely determined by its immediate neighbors due to
Markovian nature of MRF. The immediate neighborhood of v
in Tsaw (G, v) and G is the same.

Hypothesis. Assume that the statement is true for any graph
with less than or equal to m € N unfixed nodes.

Induction step. Without loss of generality, suppose that our
graph of interest, GG, has m + 1 unfixed vertices. If v is a
fixed vertex, then (2) holds trivially. Let v € V' be an unfixed
vertex of G. Then we will show via inductive hypothesis that

¢ _ )
;(0)  p3(0)

Let d be the degree of v; vy, va,...,vq be the neighbors
of v where the order of neighbors is the same as that used
in definition of Tsaw (G,v). Let T; be the (th subtree of
Tsaw (G, 1) having vy as its root and Y (¢) be the binary pair-
wise MRF induced on T} by restriction of Tsaw (G,v). Let
q; (o) be the max-marginal of vertex v, taking value 0 € ¥ =
{0, 1} with respect to Y (¢). Note that when T, consists of a
single vertex, then ¢ (o) o< ¢y, (). Let A, = 92(1) " Then

. e 60 (0)"
from definition of pair-wise MRF and tree-structure,

g,(1) )

7;(0) )
Now to calculate %:%, we define a new graph G’ and

the corresponding pair-wise MRF X’ as follows. Let G’

d *
_ H maxgyes Yo, (0, 1)q; ( 3)
=1

o
B = maXsey wvg,v(o-: O)Q; (U
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be the same as G except that v is replaced by d vertices
v, vh, ..., v); each v, is connected only to vy, 1 < £ < d.
The X' is defined same as X except that ¢, (1) = )\Il,/d(j),u(l),
(]5”2 (0) = (]51,(0) and ’(ﬂwvé = 1/11151)- Then,

max - , , IEDG’(X/)
p:‘}(l) _ {X .Xv,lfl,XU,zfl,...,Xvéfl}
*(0 Pa (X!
r;(0) maX{X’X',:O,X;/:O ..... X’,:O} ar(X')
1 2 d
d
pe(1
- T2 )
=1 M
where define py(0) = max(x.x/, - P[X’| Xl’),1 =

= 1,...,X[’, = 1]. The second

v,

0,.... X'

I =0,X],
equality ir(lé 7(2) follows g;)standard trick dof Telescoping mul-
tiplication and Lemma 2.

Now for 1 < ¢ < d, consider MRF X’(¢) induced on
G'(0) = G’ — {v;} by fixing {v],...v,} —{v}} as follows:
let (¢v’1 0) =1, d)v{ (1) =0);..; (¢v271 (0) =1, ¢véfl(1) =
0); (¢v;+1 (O) =0, ¢v2+1(1) = 1)» cees ((ﬁvé (0) =0, ¢v:l(1) =
1). Then let v;(0),0 € ¥ denote the max-marginal of v, for
taking value o with respect to X’(¢). Given this, by definition
of MRF X’ as well X’(¢) and noting that v, is a leaf (only

connected to vy) with respect to graph G’, we have

ﬂ[(l) _ 1/dmaXO'€E 1/)1)@,1}2(0-’ ]-)VZ(U) (5)
/1/(0) v maXsey 1#11@,1;2 (07 O)VZ(U) .
From (3), (4) and (5) it is sufficient to show that
ve(0) q;(0)

Now, note that T} is the same as Tsaw (G(¢)) with respect
to X'(¢). Because for each ¢ = 1,...d, G'({) has one less
unfixed node than G, the desired result (6) follows by induction
hypothesis. |

Lemma 2: Consider a distribution on X = (Xq,...,X,,)
where X; are binary variables. Let p; = P[X = s|,s € ¥".
Let pyjas,....as = P[X = 5|Xo = ag,..., X4 = a4 for any
d > 1. Let S(a1,...,aq) = {s = (s1,...,8,) € T :
ai,...,84 = aq}. Then,

S§1 =

MmaXseS(ay,az...,aq) Ps

- maXsES(al,ag...,ad) ps\ag,...,ad

maXsesS(ay,az,..., aq) Ps maXsesS(ay,az,..., ag) Ps|as,..., aq

Proof: Let g =P(X2 = ag,..., X4 = aq). Then, by def-

inition of conditional probability for s € S(a1,az,...,aq)U
S(ay,az,...,aq), Ps = Pslas,...,auq- From this, Lemma fol-
lows immediately. |

B. Graphs with Good Partitioning Property

Here we discuss graph partitioning property and schemes
for finding such partitions. First, a definition.

Definition 2 ((0, A)-decomposition): Given graph G =
(V, E), a randomly chosen subset of edges B C F is called
(6, A) decomposition of G if the following holds: (a) For
any edge e € E, P(e € B) < 4. (b) Let S1,...,Sk be
connected components of graph G’ = (V, E'\B) obtained by



removing edges of B from G. Then, for any such component
S;j,1 < j < K and any u,v € S; the shortest-path distance
between (u,v) in the original graph G is at most A with
probability 1.

We call a graph admits good partitioning property if there
exists (9, A)-decomposition for any § > 0 and A independent
of n but with possible dependence on §. The existence of
(6, A)-decomposition implies that it is possible to remove &
fraction of edges so that graph decomposes into connected
components whose diameter is small.

We discuss two classes of graphs that posses this property:
(1) minor-excluded graphs and (2) graphs with low doubling
dimension. Next, we define these graph classes and quickly
recall the schemes that provide such decomposition.

Minor-excluded graphs. First we present the definition and
then a decomposition scheme for such graphs due to Klein,
Plotkin, Rao [2] and Rao [8].

Definition 3 (Minor Exclusion): A graph H is called minor
of G if we can transform G into H through an arbitrary
sequence of the following two operations: (a) removal of an
edge; (b) merge two connected vertices u, v: that is, remove
edge (u,v) as well as vertices v and v; add a new vertex and
make all edges incident on this new vertex that were incident
on u or v. Now, if H is not a minor of G then we say that G
excludes H as a minor.

MINOR(G, 1, A)

(0) Input is graph G = (V, F) and r, A € N. Initially, i = 0,
Go=G,B=0.
(1) Fori=0,...,r—1, do the following.

(a) Let Si,...,S], be the connected components of ;.
(b) For each S},ly < j < ki, pick an arbitrary node
v € S;
o Create a breadth-first search tree ’J;Z rooted at v;
in Sj. ‘
o Choose a number L’ uniformly at random from
{0,...,A—1}.
o Let B} be the set of edges at level L% A +
Ly 2A+ L5, ... in T},

o Update B = BUY, B.
(c) seti=1+ 1.
(3) Output B and graph G’ = (V, E\B).

As stated above, the basic idea is to use the following step
recursively (upto depth r of recursion): in each connected
component, say S, choose a node arbitrarily and create a
breadth-first search tree, say 7. Choose a number, say L,
uniformly at random from {0,...,A — 1}. Remove (add to
B) all edges that are at level L + kA, k > 0 in 7. Clearly,
the total running time of such an algorithm is O(r(n + |E|))
for a graph G = (V, E) with |V| = n. For message passing
implementation of this scheme, nodes can elect the arbitrary
root with the help of randomization (e.g. nodes choose random
number from large enough set and the one with maximum
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value becomes the root) and then the breadth-first search tree
can be created trivially through spreading message iteratively.
Therefore, it is easy to see that the algorithm MINOR can be
made message passing for any G.

The algorithm MINOR(G, 7, A) is designed to provide a
good decomposition for class of graphs that exclude a con-
nected graph S of r nodes. Figure 2 explains the algorithm
for a line-graph of n = 9 nodes, which excludes K52 as a
minor. The example is about a sample run of MINOR(G, 2, 3)
(Figure 2 shows the first iteration of the algorithm).

4 9
Go 1 2 3 5 6 7 8
A
4 6 1
=1 3" N7 7
2 8
1 9
G1 > —e—o *—e—» > —e—e
1 2 3 4 5 6 7 8 9
Sl SQ S3

Fig. 2. The first of two iterations in execution of MINOR(G, 2, 3) is shown.

Lemma 3: If G excludes a graph S with r nodes as a
minor, then algorithm MINOR(G,r, A) outputs B which is
(r/A, O(A))-decomposition of G.

It is known that Planar graph excludes K3 3 as a minor. Hence,
Lemma 3 implies the following.

Corollary 4: Given a planar graph G, the algorithm
MINOR(G, 3, A) produces (3/A,O(A))-decomposition for
any A > 1.

III. APPROXIMATE MAP

Now, we describe algorithm to compute MAP approxi-
mately. Essentially, the algorithm does the following: given
G, decompose it into (small) components Si,...,Sk by
removing (few) edges B C E (we use a term DECOMP to
obtain such 5; for minor-excluded graph use MiNORand LOW-
DDfor graphs with low doubling dimension). Then, compute
an approximate MAP assignment by computing exact MAP
restricted to the components. This exact computation for each
component is performed through a message passing mecha-
nism using the equivalence stated in Theorem 1: essentially,
growing self-avoiding walk tree is just sending messages along
a breadth-first search tree; computation over a self-avoiding
walk tree is essentially standard max-product (message pass-
ing) algorithm. The computation time and performance of the
algorithm depends on property of decomposition scheme. We
describe algorithm for any graph G.

MODE(G)




(1) Use DECOMP(G) to obtain B C F such that
(a) G' = (V,E\B) is made of connected components

S1,...,5k.
(2) For each connected component S;,1 < j < K, do the
following:

(a) Compute exact MAP x*7 for component S;, where
xI = (27 )ies,.

(b) Computation of x*7 is performed by growing self-
avoiding walk tree for each node in S; restricted
to induced graph by nodes of S; using a message
passing mechanism; then computing max-marginal
on self-avoiding walk tree using message passing
mechanism (i.e. standard max-product algorithm on
self-avoiding walk tree).

(3) Produce output x*, which is obtained by assigning values
to nodes using x*7,1 < j < K. This is clearly local
operation.

A. Analysis of MODE

Here, we analyze performance of MODE for any G. Later,
we will specialize our analysis for minor excluded G when it
uses MINOR as the DECOMP algorithm.

Lemma 5: If G has maximum vertex degree D and the
DECOMP(G) produces B that is (J, A)-decomposition, then

E |H(x") = H(x")| < 6(D + HH(x"),

where expectation is w.r.t. the randomness in B. Further,
MODE takes time O(nD2DA+1) + Torcomp-

When G excludes minor, then we use MINOR as decompo-
sition scheme. The above lemma implies the following result.

Theorem 6: Let G exclude a graph of r nodes as a minor
and have D as the maximum vertex degree. Given € > 0, use
MODE algorithm with MINOR(G, r, A) where A = [T(Dfﬂ)]
Then,

(1 —e)H(x") < B[H(x")] < H(x").

Further, algorithm takes n - C(D,¢) time, where constant
C(D,s) = D277

Proof: The proof follows from Lemma 5, recalling that
the total running time of MINOR, is of the order of number
of edges which is < 2Dn. [ |

B. Proof of Lemma 5

The proof of Lemma 5 will use the Lemmas 7-9 stated
below. We will complete the proof of Lemma 5 at the end of
this section.

Lemma 7: Consider a connected graph G = (V, E) with
|V| = n nodes and |E| = n — 1+ k edges, k& > 0. Then for
any v € V, [Tsaw (G, v)| < (n+ k — 1)2k1. Further, there
exists a graph with n — 1 + k edges with k£ < n/2 so that for
any node v € V, |Tsaw (G, v)| > n2k—2.

Proof: The proof is divided into two parts. We first
provide the proof of lower bound. Consider a line graph of n
nodes (with n— 1 edges). Now add k < n/2 edges as follows.
Add an edge between 1 and n. Remaining k& — 1 edges are
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added between node pairs: (2,4), (4,6),...,(2(k —2),2(k —
1)), (2(k — 1),2k). Consider any node, say v. It is easy to
see that there are at least 2"~2 different ways in which one
can start walking on the graph from node v towards node 1,
cross from 1 to n via edge (1,n) and then come back to node
v. Each of these different loops, starting from v and ending
at v creates 2 distinct paths in the self-avoiding walk tree of
length at least?. Thus, the size of self-avoiding walk tree of
each node is at least n2°~2 for each node. This completes the
proof of lower bound.

Now, we prove the upper bound of 725! on the size of
self-avoiding walk tree for each node v € V. Given that G is
connected, we can divide the edge set £ = Ep U Ej, where
E, = {e1,...,ex} and T = (V, Er) forms a spanning tree
of G. Let S be the set of all subsets of £, = {e1,...,er}
(there are 2% of them including empty set). Now fix a vertex
v € V and we will concentrate on Tsaw (G, v). Consider any
u € V (can be v) and S € S. Next, we wish to count number
of paths in Tsaw (G, v) that end at (a copy of) u (however,
u need not be a leaf), contain all edges in S but none from
Ei\S. We claim the following.

Claim. There can be at most one path of T's aw (G, v) from
v to (a copy of) u and containing all edges from .S but none
from E;\S.

Proof: To prove the above claim, suppose it is not true.
Then there are at least two distinct paths from v to w that
contain all edges in S (but none from Fj\S). Consider the
symmetric difference of these two paths (in terms of edges).
This symmetric difference must be a non-empty subset of Ep
and also contain a loop (as the two paths have same starting
and ending point). But this is not possible as T = (V, Er)
is a tree and it does not contain a loop. This contradicts our
assumption and proves the claim. |

Given the above claim, for any node u, clearly the number
of distinct paths from node v to (a copy of) v in Tsaw (G, v)
are at most 2°. Now each edge has two end points. For each
appearance of an edge of G in Tsaw (G, v), a distinct path
from v to one of its end point must appear in Tsaw (G, v).
From above claim, this can happen at most 2 x 2% = 2k+1,
There are n + k — 1 edges of G in total. Thus, net number
of edges that can appear in Tsaw (G, v) is at most (n + &k —
1)25+1; thus completing the proof of Lemma 7. [

Lemma 8: Let z/)g = Max(y z)eo,1}2 Yij (2, 2'), ZLJ =
min, . efo,132 Yij(z,2') and G have maximum vertex de-

> loguy

gree D. Then
1 1
H(x™) > —— > —
—D+1 - D+1
+ LMEE + Lg)eE

Proof:  Assign weight w;; = logt] to an edge (i, j) €
FE. Using Vizing’s theorem and Pigeon hole principle, we
obtain that there exists a matching A/ C E such that

Z log wg

1
2 logv = 5oy
(i,))eE

(i.5)eM

> logwf; —log ¥



Now, consider an assignment x as follows: for each (i, ) €
M set (), 2}") = argmax(y uneqo1y> ¥ij(z,2'); for re-
maining i € V, set M to some value in ¥ arbitrarily. Note that
for above assignment to be possible, we have used matching
property of M. Therefore, we have

H(xM) = loggi(zl') + D log (!, z;")

iV (i,j)EE
= > loggi(zi)+ Y loggpy(all, )
i€V (i,j)EE\M
(a)
+ Y logdi(a,z)) = > log (el x)
(i,J)EM (i,j)EM
. U 1 U
= Z log;; > D1 Z log ;| . @)
(i,5)eM (i,j)EE

Here (a) follows because log1);;,log ¢; are non-negative
valued functions. Since H(x*) > H(x™) and logy > 0
for all (¢,7) € E, we obtain the Lemma 8. |

Lemma 9: Given an MRF G described by (1), the
MODE algorithm produces outputs x* such that H(x*) —
Z(i,j)eB (Ingg - IngiLj) < H(X*) < H(X*)

Proof: By definition of MAP x*, we have H(x*) <
H(x*). Now, consider the following: let ¥ = {0, 1},

H(x") = max D loggi(z) + D logtij(wi,zy)

eV (i,j)€eE

Z log ¢i(xi) +

i€V

> logtis(wi,xy)

(1,7)EE\B

xexn

+ Y log i (wi, ;)

(i,j)eB

<  max Zlogqﬁi(a:i)-i- Z log ¥ij (i, ;)

i = (i,))CE\B
+ Z logwg
(i,j)eB
K
® Z|: max H(x))| + Z log ¥5
o1 [iex!®il (i,j)EB
K
© ZH(X*’j)+ Z log ¥\
j=1 (i,j)EB
d
(_) H(Q)-!— Z logwg—logwfj . ®)
(i,J)€EB

We justify (a)-(d) as follows: (a) holds because for each
edge (i,j) € B, we have replaced its effect by maximal
value log wg ; (b) holds because by placing constant value
log 1/}% over (i,7) € B, the maximization over G decomposes
into maximization over the connected components of G/ =
(V, E\B); (c) holds by definition of x*/ and (d) holds because
when we obtain global assignment x* from x1<j<K
and compute its global value, the additional terms get added

for each (i,7) € B which add at least log wiLj amount. [ |
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Proof of Lemma 5. From Lemma 9, Lemma 8 and definition
of (9§, A)-decomposition, we have the following.

E[He) - HE)| <E| Y (ogul —logvh)
(i,5)€B
> P((,4) € B)(logj — log )

(i.j)eE

IN

5| Y (logyl —logepf)| < 6(D+1)H(x™). (9)
(i,7)EE
The running time bound is implied as follows: the decompo-
sition algorithm takes time Tpgcomp. The exact evaluation of
MAP in each component takes time of the order of size of self-
avoiding walk tree. Each component has at most D® nodes
and D?*! edges. Therefore, Lemma 7 implies the desired
bound since there are at most O(n) components. O

IV. CONCLUSION

In this paper, we presented message passing approximate
inference algorithm for computing MAP in arbitrary pair-
wise binary MRF. The algorithm provides arbitrarily good
approximation for minor-excluded graphs.

In principle, this algorithm extends for computing MAP for
any pair-wise MRF representing exponential family since it
can be reduced to computing Maximum Weighted Independent
Set. It will be of interest to obtain efficient such reduction in
order.
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