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Abslrucr -- Packet switches (e.g., I P  routers, ATM switches and Ethernet 
switches) maintain statistics for a variety of reasons: performance monitor- 
ing, network management, security, network tracing, and traffic engineering. 
The statistics a re  usually collected by colrnters which might, for example, 
count the number of arrivals of a specific type of packet, or count particular 
events, such as when a packet is dropped. The arrival of a packet may lead to 
several different statistics counters being updated. The number of statistics 
counters and the rate a t  which they are  updated is often limited by memory 
technology. A small number of counters may be held in on-chip registers or 
in (on- or off-chip) S U M .  But often, the number of counters is very large, 
and hence they need to be stored in off-chip DRAM. However, the large ran- 
dom access times of DRAMs make it difficult to support high bandwidth 
links. The time taken to read, update and write a single counter would be too 
large, and worse still multiple counters may need to be updated for  each 
arriving packet. In this paper we consider a specific architecture for storing 
and updating statistics counters. Smaller sized counters are  maintained in 
fast (potentially on-chip) SRAR.1, while a large, slower DRAM maintains the 
full-sized counters. The  problem is to ensure that the counter values are 
always correctly maintained at  line-rate. We describe and analyze an  optimal 
cuunter management algorithm (LCF-CMA), which minimizes the size of the 
S U M  required while ensuring correct line-rate operation of a large number 
of counters. 

Ke~words--packet-switch, statistics, counters, largest counter first (LCF).  

I. INTRODUCTION 

Packet switches perform many processing tasks on each arriv- 
ing packct. These include address-lookup, classification, buffer- 
ing. QoS schcduling, header editing and statistics maintenance. 
Each of these tasks arc typically performed on the line cards of 
switches and routers. and therefore need to be done at line rate. 
With line rates expected to increase beyond OC192 (IOGb/s) to 
OC768 (40Gb/s), each of the above packet processing tasks 
becomes more difficult. There have been several different tech- 
niques proposed for address-lookup [ I ] ,  packet-classification [’], 
packet buffering [3][4][5], and QoS scheduling [6]. We are not 
aware of papers that describe the problem of maintaining a large 
number of statistics counters. 

Packet switches maintain statistics for many reasons. These 
include firewalling (especially stateful firewalling), intrusion 
detection. performance monitoring (e.g. RMON), network trac- 
ing, load balancing and traffic engineering (e.g. policing and 
shaping). In addition, most packet switches maintain statistics 
counters to facilitate network management. 

The general problem of statistics maintenance can be charac- 
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terized as follows: When a packet arrives, i t  is first classified to 
determine what actions will be performed on the packet. For 
example, whether the packet should be accepted or dropped, 
whether it should receive expedited service or not, and so on. 
Depending on the chosen action, some statistics counters are 
updated. 

The statistics we are interested in here are those which count 
events. For example. the number of fragmented packets, the 
number of dropped packets, the total number of packets arrived, 
the total number of bytes forwarded etc. In the rest of this paper 
we shall refer to these as counters. It is our goal to study and 
quantitatively analyze the problem of maintaining these counters. 

We are particularly interested in applications that maintain a 
large number of counters. For example, a routing table that keeps 
a count of how many times each prefix is used. or a router that 
keeps a count of packets belonging to each TCP connection. Both 
examples would require several hundreds of thousands, or even 
millions of counters to be maintained simultaneously, making it 
infeasible (or at least very costly) to store them in SRAM. 
Instead, it becomes necessary to store the counters in off-chip, 
relatively slow DRAM. 

Furthermore. we are interested in applications in which 
updates are frequent. For example, an OC192c link in which mul- 
tiple countcrs are updated upon each packet arrival. These read- 
modify-write operations must be conducted at the same rate as 
packets arrive. 

If each counter is M bits wide, then a counter update operation 
is as follows: 1) Read the M bit value stored in the counter, 2) 
increment the M bit value. and 3 )  write the updated M bit value 
back. If packets arrive at a rate R Gb/s, the minimum packet size 
is P bits. and if we update C counters each time a packet arrives, 
the memory may need to be accessed (either read or written) 
every P / 2 C R  nanoseconds. Let’s consider the example of 
4Obyte TCP packets arriving on a 10Gb/s link, each leading to 
the updating of two counters. The memory needs to be accessed 
every 8ns, about eight times faster than the random-access speed 
of commercial DRAMs today. 

It is a strict requirement that the counter(s) be correctly 
updated every time a packet arrives. No packet must be left unac- 
counted for. If we do an update operation every time a packet 
arrives and update C counters per packet, then the minimum 
bandwidth R ,  required on the memory interface where the 
counters are stored would be at lcast 2 R M C / P .  Again this can 
become unmanageable as the size of the counters and the line 
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rates increase. 
In this paper, we propose an approach which uses DRAMs 

to maintain statistics counters and a small fixed amount of 
(possibly on-chip) SRAM. We assume that N counters of 
width M bits are to be stored in the DRAM, and that N 
counters of width m < M bits are stored in SRAM. The 
counters in SRAM keep track of the number of updates not 
yet reflected in the DRAM counters. Periodically, under the 
control of a counter management algorithm (CMA), the 
DRAM counters are updated by adding to them the values in 
the SRAM counters, as shown in Figure I .  The basic idea is 
that by updating the DRAM counters relatively infrequently. 
the memory bandwidth requirements are reduced. 

We are interested in deriving strict bounds on the size of the 

Amving 
Packets - OOOD 0000 0000 0000 0000 0000 0000 0000 
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bits and that each arriving packet updates a maximum of 10 
counters. Our results indicate that a statistics counter can be 
built with a DRAM of access time 5 1.2 ns, a DRAM memory 
bandwidth of 1.25 Gb/s and 9 Mb of SRAM. 

11. DEFINITIONS 

We will now describe the memory hierarchy used to hold the 
statistics counters, and in the following sections describe the 
LCF-CMA (Largest Counter First Counter Management Algo- 
rithm). 

A. Memoty Hierarchy 

Definition I :  Minimum Packet Size, P : Packets arriving at a 
switch have variable lengths. We shall denote by P the mini- 
mum length that a packet can have. 

Definition 2: Time Slot: - The time taken to receive a mini- 
mum-sized packet at a link rate R . 

The SRAM is organized as a statically allocated memory. 
consisting of separate storage space for each of the N counters. 
We will assume from here-on that an arriving packet incre- 
ments only one counter. If instead we wish to consider the case 
where C counters are updated per packet, we can consider the 
line rate on the interface to be C R .  

Each counter is represented by a large counter of size M bits 
in the DRAM, and a small counter of size m < M  bits in 
SRAM. The small counter counts the most recent events, while 
the large counter counts events since the large counter was last 
updated. At any time instant the correct counter value is the 
sum of the small and large counters. 

Updating a DRAM counter consists of a read-modify-write 
operation: 1 )  Read an M bit value from the large counter. 2 )  
Add the m bit value of the corresponding small counter to the 
large counter, 3) Write the new M bit value of the large 
counter to DRAM, and 4) Reset the small counter value. 

In this paper, we take it  as a requirement to decrease the 
DRAM bandwidth by a factor b ,  i.e. R ,  = 2 R M / P b  and 
increase the access time of the DRAMs accordingly, i.e. 
A, = P b / 2 R .  Thus the CMA will update a large counter only 
once every b time slots. We will derive the minimum size of 
the SRAM as a function g (.) and show that it is dependent on 
N ,  M and b .  Thus the system designer is given a choice of 
trading off the SRAM size g ( N ,  M, b )  with the DRAM band- 
width R ,  and access time A,  . '  
Definition 3: Count C ( i ,  t )  : At time t. the number of times 
that the ith small counter has been incremented since the i th 
large counter was last updated. 

' The variable h ( h  > I ) is chosen by the system designer. If 
b = I . no SRAM is required. but the DRAM must be fast enough 
for all counters to be maintained in DRAM. 
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Definition 4: Empty Counter: A counter i is said to be empty 
attime t i f C ( i , t )  = 0 .  

We note that the correct value of a large counter may be lost 
if the small counter is not added to the large counter in time, 
i.e. before an overflow of the small counter. Our goal is to find 
the smallest sized counters in the SRAM, and a suitable 
CMA, such that a small counter cannot overflow before its 
corresponding large counter is updated. 

111. NECESSITY CONDITIONS ON ANY CMA 

Theorem l:(Necessity) Under any CMA, a counter can 

I n [ ( N - 1 )  ( b / ( b - l ) ) ( b - l ' ]  
I n ( b / ( b -  I ) )  reach a count C ( i ,  t )  of 

Proof: We will argue that we can create an arrival pattern for 
which, after some time, there exists k such that there will be 
( N -  1) / ( (6  - 1 )  /b )  counters with count k + 1 irrespec- 

tive of the CMA. 

Consider the following arrival pattern. In time slot 
t = 1, 2, 3 ... N ,  small counter t is incremented. Every b 
time slot one of the large counters is updated, and the corre- 
sponding small counter reset to 0 .  So at the end of time slot 
N ,  there are N ( b  - 1 )  / b  counters with count 1 , and N/b  
empty counters. During the next N time slots, the y / b  
empty counters are incremented once more, and N/b- of 
these counters are now used to update the large counter and 
reset. So after 2N time slots there are 
[ N ( b -  l ) / b ]  + [ N ( b -  l ) /b ' ]  counters which have 

count 1 .  
In a similar way. we can make N -- 1 counters have a count 

of 1 at time .slot N - 1 . During the next N - 1 time slots. all 
N -  1 counters are incremented once and I / b  of them are 
served and reset to zero. Now assume that all of the remaining 
approximately N/b empty counters are incremented twice in 
the next 2N/b  time slots, while 2N/b2 counters become 
empty due to service. Note that the empty counters decreased 
to 2N/b- from N / b  (if b = 2 ,  there is no change). In this 
way, after some time, we can have N - 1 counters of count 2 . 

By continuing this argument, we can arrange for all N - 1 
counters to have a count b - I . Let us denote by T the time 
slot at which this first happens. 

During the interval from time slot 2 ( N  - 1) to 3 ( N  - 1) , 
all of the counters are again incremented, and l / b  of them 
are served and reset to 0 ,  while the rest have a count of two. 
In the next N - 1 time slots each of the counters with size 2 
is incremented and again 1 / b  are served and reset to 0 .  
while the rest have count of three. Thus there are 
( N -  1) / ( ( 6  - 1) 1 6 )  - counters with a count of three. In a 

similar fashion, if only non-empty counters keep being incre- 
mented, after a while there will be ( N -  1 )  / ( ('b - 1) /b ) '  
counters with count k +  I . Hence there will be one counter 
with count: 

rh 

l n ( N -  1)  
In (b /  ( b  - 1)  ) 

- In ( N -  1) + ( b -  1)  In ( b / ( b -  1 ) )  
l n ( b / ( b - l ) )  

( N -  1) 1 

- 

In I ( b / ( b -  
In ( b / ( b -  1 ) )  - - 

Thus, there exists an arrival pattern for which a counter can 

reach a count C ( i ,  t )  o f  I n [ ( N - 1 )  ( 6 / ( b - l ) ) ( b - 1 ) ]  . o  
l n ( b / ( b - 1 ) )  

Iv. A CMA WHICH MINIMIZES THE SIZE OF THE SRAM. 

A. LCF-CMA 

Algorithm Description: Every b time slots, LCF-CMA 
selects the counter 1 which has the largest count If multiple 
counters have the same count, LCF-CMA picks one arbitrarily 
LCF-CMA updates the value of the corresponding counter I in 
the DRAM and sets ( 1 ,  f) = 0 in  the SRAM 

B. Optimality 

Definition 5: Dominatio,n:, Let  v = ( v I ,  v?, ... v . ~ )  , and 
= ( U  ], u l ,  . . . u , ~ )  denote the values o j  (i, t )  for  two differ- 

ent systems of N counters at any time t .  Let X. CY be an order- 
ing of  the counters  ( 1 , 2 ,  3, ... N) such that  the? are  in  
d e s c e n d i n g  o r d e r  i . e .  f o r  v w e  h a v e ,  
V X ( l )  2 V Z ( 1 )  2 V , ( 3 )  2 '.. 2 v x ( N )  a n d  f o r  u nje h a v e  

We say that, v dominates u denoted v N I I  , if v,(,) 2 U ,  (,), V i .  
Every arrival can possibly increment any of N different 
counters. The set of all possible arrivals patterns at time t can 
be defined as: RI = { (w,, wl, w3, , .., w,). 1 5 w I  5 N, V i }  . 

U O ( ] )  2U0(') LL10(3) 2'.. 2 U 0 ( N )  . 

Theorem 2:(Optimality of LCF-CMA) Under arrival 
s e  q ii e n c e l e t  

q ( a ( t ) ,  Pc)  = ( q , ,  q2, q3, ..., qN) d e n o t e  t h e  c o u n t  

C ( i ,  t )  of N counters at time t under senice policy P ,  . For 

a n y  s e r v i c e  p o l i c y  P .  there  e x i s t s  a 1 - 1 f u n c t i o n  

f P L C F : ( Q , + R , ) ,  f o r  an?. t s u c h  t h a t .  

q[& LCF ( b v ) ,  P )  )) (7 (w, L C F ) ,  V Oc. E a,, , V t  

a ( 1 )  = ( a , ,  a?. a,, ..., a,) , 

Proof: See Appendix I. CI 

C. Suficiency conditions on LCF service polic? 

Theorem 3:(Suflciency) Under the LCF policy the count 
lnbN 

In ( b / ( b -  1 ) )  . 
C ( i ,  t )  of e v e n  counter is no more than 
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Proof: (By Induction) Let ( t )  denote 
the number of counters with count i at time at time t .  We 
define: 

= b/ ( b  - 1 ) .  Let 

F ( t )  = c d",(t) 
i t  1 

We claim that under LCF policy, F(r) I bN for every time 
f .  We shall prove this by induction. At time t = 0 ,  
F ( t )  = 0 I bN.  Assume that at time t = bk for some k ,  
F ( t )  I bN.  For the next b time slots, some b counters with 
count i ,  2 i, 2 . . . 2 i, are incremented. Even though not re- 
quired for the proof, we assume that the counter values are dis- 
tinct for simplicity. After the counters are incremented they 
have counts i, + 1. i ,  + I ,  . . ., i ,  + 1 respectively, and the larg- 
est counter amongst all the N counters is serviced. The largest 
counter has at least a value 

Case I :  If all the counter values at time t were nonzero, 
then the contribution of these b counters in F( t )  was: 

(.) 2 i ,  + 1. 

CL = dl' + 2 + . . .2 
After considering the values of these counters after they 
are incremented, their contribution to F(t  + b) becomes 
d a .  But a counter with a count C (.) 2 i, + 1 is served 
at time t + b and its count becomes zero. Hence, the 
decrease to F(t + b) is at least d a / b .  Thus, the net 
increase is at most da [ 1 - ( l / b ) ]  - a .  But 
d [ 1 - ( I / b )  ] = 1 . Hence, the net increase is at most 
zero; i.e. if arrivals occur to non-zero queues, F( t )  can 
not increase. 
Case 2:  Now we deal with the case when one or more 
counters at time r were zero. For simplicity assume all b 
counters which are incremented are initially empty. For 

these empty counters. their contribution to F( t )  was zero, 
and their contribution to F(r+ b) is d b .  Again, the 
counter with the largest count amongst all N counters is 
served at time t + b .  If F( t )  S bN - d b  , then the induc- 
tive claim holds trivially. If not. that is, F(t)  > bN - d b  , 
then at least one of the N - b counters, which did not get 

incremented, has count i' + 1 , such that, d' = b ; other- 
wise i t  contradicts the assumption F(t )  > bN - d b  . 

Hence, a counter with count at least i + 1 is served, 

which decreases F ( t  + b) by d' + '  = d b  . Hence the net 
increase is zero. One can argue the case when amvals 
occur to fewer than b empty counters similarly. 

Thus, we have shown that, for all time t when the counters 
are served, F(r)  5 b N .  This means that, the counter value can 

lnbN not be larger than i,, where, dl'" = Nb i.e. C(.)S - 
Ind . 

Substituting for d .  we get that the counter value is bounded 

* 

lnbN , o  
by l n ( b / ( b - 1 ) )  

T h e o r e m  4:(Sufficiency) A c o u n t e r  of size 
lnbN )bits is sufficient. 

Proof We know that in order to store a value x we need at 
most log2x bits. Hence the proof follows from Theorem 3. 0 

D. Choosing the correct value of b .  

We can see from Theorem 4 that the size of the counters in 

SRAM is bounded by log ) . However, since 
our goal is to keep only a small sized counter in the SRAM we 

lnbN 

lnbN ) < M .  
7 ( l n ( b / ( b - I ) )  

need that log 
This gives-us an upper bound on b .  Also, note that the 

access time on the DRAM is now A, = P b / 2 R .  Hence, if the 
DRAM technology being used supports a random access time 
T,, we need Pb/2R b T, .  This gives us a lower bound on b .  
Similarly, if the DRAM bandwidth is also a constraint, another 
lower bound on b is obtained from the fact that 2RM/Pb 
must be less than the maximum bandwidth available from a 
DRAM subsystem. The system designer can choose any value 
of b between the lower and upper bounds, and derive a corre- 
sponding value for the SRAM size. 

We note that for very large values of N and small values of 
M ,  it is possible that there is no suitable value of b ; i.e., one 
cannot optimize the system using the above technique. In such 
a case, the system designer is forced to store all the counters in 
SRAM. 

As an example, consider an OC192c linecard. Say that it 
maintains a million counters. Assume that the maximum size 
of a counter is P = 64 bytes and that each arriving packet 
updates a maximum of C = 10 counters. Hence the actual 
rate arriving rate can be considered to be R = 100 Gb/s. Sup- 
pose that the fastest available DRAM has an access time of 
T ,  = 51.2 ns. Since we require Pb /2R 2 TR , this means that 
b 2 2 0 .  

We will now consider two variants on the requirement of the 
size of the counter needed in the system. 

If M = 64, then log ( lnbN ) < M  and 
z In ( b / ( b -  1 ) )  

we design the iounter architecture with b = 20. We 
get that the minimum size of the counters in SRAM 
required for the LCF policy is 9 bits and this results 
in an SRAM of size 9Mb. The required access rate 
can be supported by keeping the SRAM memory on- 
chip. 

,L. I f  w e  r e q u i r e  M = 8 t h e n  w e  c a n  s e e  t h a t  

) > M .  Thus there lnbN 
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is no optimal value of b and all the counters are 
always stored in SRAM without any DRAM. 

by ( p l ,  p r ,  ...,p,,,). It is trivial to check that there exists such a 

function for r = 1 . Inductively assume that f p ,  LCF exists with 
V. CONCLUSIONS 

Packet switches need to maintain counters for gathering 
statistics on various events. The general method presented in 
this paper can be used to build a high bandwidth statistics 
counter for any arrival traffic pattern. An algorithm, called 
largest counter first (LCF), was introduced for doing t h s  and 
was shown to be optimal in the sense that it only requires a 
small optimally-sized SRAM, running at line rate, which tem- 
porarily stores the counters, and a DRAM running at slower 
than the line rate to store complete counters. For example, a 
statistics update arrival rate of 100 Gb/s on 1 million 
counters can be supported with currently available DRAMS 
(having a random access time of 51.2ns) and 9 M b  of 
S U M .  
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the desired property t i l l  time t ,  and we want to extend it to 

time r + 1 . This means that there exists ordering x‘, or such 
that, 1 I p d  (;), V i .  Now, at the time t + 1 , a counter may 

be incremented and a counter may be completely served. We 
consider both these parts separately below: 

x’ ( 1 )  

Part I :  (Arrival) Let a counter be incremented at time 

r + 1 in both systems. Suppose that counter XI ( k )  is in- 

cremented in the LCF system. Then extend fp, LcF for 

t + 1 by letting an amval occur in counter of ( k )  for the 
P system. By induction, we have 1 x l ( I )  ‘ P a  , ( 1 )  . , V i .  Let 

n‘”, or+’ be the new ordering of the counters of the 
LCF and P systems respectively. Since one arrival oc- 
curred to both the systems in a queue with the same rel- 
ative order, the domination relation does not change. 

Part 2 :  (Service) Let one of the counters be served at 

time t + 1 . Under the LCF policy, the counter IE’ ( 1) 

with count 1 will be served and its count is set to 

zero i.e. C(n‘ (  I ) ,  t + 1) = 0 ,  while under P any 
queue can be served out, depending on the CMA pre- 
scribed by P . Let P serve the counter with rank k , i.e. 

counter or ( k )  . Then we can create a new ordering 
n1 + I ,  or + 

X ’ ( 1 )  

as follows: 

APPENDIX A 
b . o ‘ + l ( i )  = o l ( i ) ,  l < i < k - - l ,  

I +  I Theorem 2: ( O p t  in in 1 it), of L CF- CMA ). Uti de r a rriva 1 o ( i )  = o l ( i + l ) . k I i I N - l ,  . .  

or+’ ( N )  = o‘(k) 

Under this definition, i t  is easy to check that. of N counters at rime t itrider service pol icy  P,. For any  ser- 

v i c e  p o l i c y  P ,  t h e r e  e x i s t s  a 1 - 1 f i i n c t i o n  $ * I  ‘ P a , + , , l ) >  V i  given L P o l ( l ) .  V i .  Thus we have 

shown explicitly how we can extend fp. L C F  to fp, L c F  with the 

‘ , ( . l : . , r c f ( ” . ) , P ~ ~ ~ q ( ~ l , . L C I ; ) . V ( n : €  R l ) , V t .  desired property. Hence i t  follows inductively that LCF is 
dominated by any other policy P . 0 

Proof: We prove the existence of such a function f f p , L C F  

inductively over time t . Let us denote the counters of the LCF 
system by (11, I,,  .... l ,v)  and the counters of the P system 

( 1 )  

fp,LCf: (R,  + R,) , , f o r  an!. t s i tc~ i  rt iar ,  + I  
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