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ALOHA THAT WORKS

By S. RAajaAcorPALAN D. SHAH J. SHIN*

MIT

The popularity of Aloha(-like) algorithms for resolution of con-
tention between multiple entities accessing common resources is due
to their extreme simplicity and distributed nature. Example applica-
tions of such an algorithm include Ethernet and recently emerging
wireless multi-access networks. For more than four decades, various
researchers have established the inefficiency of (the known versions
of) such algorithms to varying degrees in various setups. However,
the question that has remained unresolved is that of designing an
algorithm that is essentially as simple and distributed as Aloha while
being efficient.

In this paper, we resolve this question successfully for a network
of queues when contention is modeled through independent set con-
straints over the network graph. The work by Tassiulas and Ephremides
(1992) suggests that an algorithm that schedules queues so that the
summation of “weight” of scheduled queues is maximized subject to
constraints, is efficient. However, implementing such an algorithm us-
ing Aloha like mechanism has remained a mystery. We design such
an algorithm building upon a Metropolis-Hastings sampling mech-
anism along with selection of “weight” as an appropriate function
of the queue size. The key ingredient in establishing the efficiency
of the algorithm is a novel adiabatic-like theorem for the underlying
queueing network, which may be of general interest in the context of
dynamical systems.

1. Introduction. A multiple-access channel is a broadcast channel that allows multiple
users to communicate with each other by sending messages onto the channel. If two or more
users simultaneously send messages, then the messages interfere with each other (collide), and
the messages are not transmitted successfully. The channel is not centrally controlled. Instead,
the users need to use a contention-resolution protocol to resolve collisions. The popular Aloha
protocol or algorithm was developed more than four decades ago to address this (e.g. see [1]). The
key behind such protocols is using collision or busyness of the channel as a signal of congestion
and then reacting to it appropriately.

Although the most familiar multiple-access channels are wireless multiple-access medium (a la
IEEE 802.11 standards) and local-area networks (such as the Ethernet network) which are wired,
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multiple-access channels are being implemented using a variety of technologies including packet-
radio, fibre-optics, free-space optics and satellite transmission (e.g. see [12]). These multiple-
access channels are used for communication in many distributed networked systems, including
emerging communication networks such as the wireless mesh networks [27].

Despite the long history and great importance of multi-access contention resolution protocols,
the question of designing an efficient Aloha-like simple algorithm or protocol' has remained
unresolved in complete generality so far even for one multiple-access channel. In this paper, we
are interested in designing a distributed contention resolution protocol for a network of multiple-
access channels in which various subsets of these network users (nodes) interfere with each other.
For example, in a wireless network placed in a geographic area two users interfere with each other
if they are near by and do not interfere if they are far apart. Such networks can be naturally
modeled as queueing networks with contentions modeled through independent set constraints
over the interference network graph. For this setup, we will design a simple randomized, Aloha-
like, algorithm that is efficient. Indeed, as a special case, it resolves the classical multiple-access
single broadcast channel problem as well.

1.1. Related work. Design and analysis of multiple-access contention resolution algorithms
have been of great interest for four decades across research communities. Due to its long and
rich history, it will be impossible for us to provide a complete history. We will describe a few of
the related works that are closer to our results. An interested reader is referred to an excellent
online survey of literature (until October 2002) on contention resolution that is maintained by
Leslie Ann Goldberg [11].

The research on contention resolution in earlier work concentrated on a single broadcast
channel while more recently it has been addressing the network version. First we start with
literature on the protocol design for a single channel and then we will discuss the recent work
on the protocol design for the network version.

1.1.1. Single multiple-access channel protocols. For a single broadcast channel, there are two
broad classes of models that are considered: (1) The Queue-free model, where users arrive to
the system over time with each user willing to transmit exactly one message. A user leaves the
system once it has transmitted its message successfully. Here the goal is to keep the number of
waiting users, i.e. number of messages to be transmitted, as small as possible. (2) The Queuing
model, where the number of users is fixed but each user has messages arriving to it over time.
The messages not transmitted are queued at the user where they arrive. The goal is to keep the
total queue size over users as small as possible.

There is no single definition which is used to determine whether or not a contention-resolution

protocol is “good” or “efficient”

or “stable” but the basic idea is that the protocol should allow
good enough utilization of the multiple-access channel. More formally, since typically such a
system can be modeled as a Markov chain (or process) the capacity region of a protocol can be

defined in terms of the problem parameters (say arrival rates of messages) for which the Markov

'In this paper, we will use words protocol and algorithm interchangeably.
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chain is positive recurrent or positive Harris recurrent. See a discussion in the paper by Hajek
and Ephremides [6].

Most research on the contention-resolution protocols has focussed on the design of simple
protocols because they are easiest to implement and hence relevant to practice, as well as (in a
sense) easiest to understand. The first such protocol is popularly known as Aloha (see [1]). In
what follows, we will describe certain Aloha-like protocols that are classified based on certain
key features.

The first class of protocols are the age-based protocols. In an age-based protocol [18] for a
discrete-time system, a message that is head-of-the-line of a queue decides to transmit data in a
given time slot with pre-determined probability p;,t > 0 if it has been waiting to be transmitted
for t time slots. In a queue-free model, each message is at the head-of-line of its own queue.
In such an age-based protocol, the transmission probabilities p;,t > 0, determine the protocol
completely. One of the general results on the inefficiency of age-based protocols was established
in a sequence of papers by Kelly and McPhee (see [18], [19] and [20]) which showed that in the
queue-free model, for any given age-based protocol the “critical” arrival rate is 0 if and only if
> i<t Pi = w(logt). Here “critical” arrival rate is the maximal rate at which messages arrive in
the queue-free model so that an infinite number of transmissions is possible. It does not imply
that the number of messages in the system remains finite.

The second class of protocols, closely related to the age-based protocols, are backoff protocols.
In a backoff protocol, a message that is head-of-the-line and has been unsuccessful in transmit-
ting for ¢ times so far, decides to transmit with a pre-determined probability p;. Again, in the
queue-free version of the model, the work by Kelly and MacPhee [19] implies that if 1/p, scales
sub-exponentially in ¢ then the “critical” arrival rate is 0. Therefore, even for infinitely many
transmissions, one should have p; scaling exponentially. A specific selection of such p; = 27 is
popularly known as binary exponential backoff protocol proposed in [23]. Using a very elegant
coupling argument, Aldous [2] established that for every positive arrival rate, the binary expo-
nential backoff protocol has o(t) expected transmissions in ¢ time slots. Thus, the system may
have infinitely many transmission over infinite time horizon, but the rate at which messages
are transmitted goes to 0. This led MacPhee [20] to pose the question of whether there exists
a backoff protocol which is recurrent for some positive arrival rate in the queue-free model. In
[10], Goldberg, Jerrum, Kannan and Paterson established that no backoff protocol is recurrent
for rates larger than 0.42, i.e. the capacity of every backoff protocol is at most 0.42. For the
queuing model, the backoff protocols were studied by Hastad, Leighton and Rogoff [15]. They
showed that if there are N users with each having rate A/, then binary exponential backoff
is unstable (i.e. the network Markov chain is not positive recurrent) if A > 0.568. But, if the
backoff probabilities are “polynomial” (i.e. p, = (1 +¢)~%, « > 1) then it is stable (i.e. Markov
chain is positive recurrrent) for any A < 1.

Finally, there is an extensive literature on the full-sensing protocol in the context of the
queue-free model. An important result in that context is due to Mosely and Humblet [26] which
found existence of a “tree protocol” with capacity 0.48776. This was followed up by a sequence
of results including that of Tsybakov and Likhanov [34] that established that no protocol can
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achieve capacity higher than 0.568 in the queue-free model.

In summary, for a single multiple-access channel, in the queue-free model there is no algorithm
that is known to have full capacity. For the queuing model, when all the nodes have exactly the
same rate requirement then polynomial backoff protocol by Hastad et al. achieves the capacity.
However, if rate requirement of all nodes were different (but their summation less than 1) then
there is no known algorithm that is provably stable.

1.1.2. Multiple-access network protocols. The recent emergence of wireless multi-hop net-
works as a canonical architecture for an access network in a residential area and a metro-area
network in a dense city has led to a lot of exciting activity in the context of distributed protocol
design for multiple-access networks. Such a network can be modeled as a queuing network with
each queue having an exogenous arrival process. The queues interfere or contend for transmis-
sion depending upon their proximity and communication protocol. Therefore, such a network
can be modeled as a constrained queueing network where simultaneously transmitting queues
(or nodes) at any time must be a valid independent set of the network interference graph (see
section 2 for a detailed formal description). In such a network, we need an algorithm to de-
termine such a schedule of simultaneously transmitting queues every time while satisfying the
scheduling constraints.

Now ignoring the implementation concerns, i.e. not worrying about algorithm being simple
and distributed, the work by Tassiulas and Ephremides [33] implies that an algorithm that selects
queues that can be scheduled with maximum summation of their weights, where the weight of a
queue is its queue-size, is stable as long as the arrival rate is in the capacity region. That is, such
a maximum weight (MW) scheduling algorithm is optimal in terms of its capacity. However,
implementing MW algorithm, i.e. finding maximum weighted independent set in the network
interference graph in a distributed and simple manner is a daunting task. Ideally, one wishes to
design a MW algorithm that is as simple as the random access protocols. This has led researchers
to exploit two approaches: (1) design of random access algorithms with access probabilities that
are arrival rate aware, and (2) design of distributed implementations of MW algorithms.

We begin with the first line of approach, where various researchers have addressed the question
of designing efficient random access scheduling algorithms. Here the question boils down to
finding appropriate channel access probabilities for head-of-line packets as a function of their
local history (i.e. age or backoff). In most of the works along these lines, authors try to determine
the saturated capacity region of the algorithm of interest. That is, assuming that all queues are
backlogged infinitely (equivalently, queues never become empty), find the set of arrival rates for
which the allocated service rate is at least as high as the arrival rate for each queue.

An exception to this is a recent exciting work by Bordenave, McDonald and Proutiére [3],
where they study the capacity region of network in large (or mean field) limit of random access
protocols with given access probabilities without assumption of the saturated system. On the
flip side, this work provides an approximate characterization of the capacity region for a small
network (hard to quantify exact approximation error for small network). Also, a fixed set of
access probabilities is unlikely to work for all arrival rates in the capacity region. Therefore, to
be able to support a larger capacity region, one needs to select access probabilities that should
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be adjusted depending on system arrival process.

In an earlier work motivated by this concern, Marbach [21] as well as Eryilmaz, Marbach
and Ozdaglar [22] considered the selection of access probabilities based on the arrival rates.
In a certain asymptotic sense, they established that their rate-aware selection of the access
probabilities allocate the rates to queues so that the allocated rates are no less than the arrival
rates. A caveat of their approach was “saturated system” analysis and the goodness of the
algorithm in an asymptotic sense.

Another work by Gupta and Stolyar [14] and Stolyar [32] considered random access algorithms
where the access probabilities are determined as a function of the queue-sizes by means of solv-
ing an optimization problem in a distributed manner. This algorithm has certain throughput
(pareto) optimality property. It should be noted that in principle this algorithm is distributed
as the access probabilities are determined by means of an iterative algorithm for solving an
optimization problem based on queue-sizes. However, they are not “simple enough” as determi-
nation of access probabilities for each time step requires a lot of “control overhead” due to the
need for solving an optimization problem every time. More recently, work by Liu and Stolyar
[17] adapted this approach for congestion-controlled multi-hop random-access network where the
algorithm requires very minimal control overhead each time and leads to a throughput-optimal
algorithm in the “saturated system”. Finally, we take note of very recent work by Jiang and
Walrand [16] that provides a rate-aware distributed algorithm to determine the access proba-
bilities for a similar multi-hop congestion-controlled setup. Their approach differs from that of
Stolyar and co-authors as it is a rate-aware algorithm and tries to solves a different optimization
problem. Also, in [16] authors provide intuitive relation between their rate-aware algorithm and
a queue-based algorithm — the class of algorithms of interest in this paper.

The second approach has been design of distributed implementation of the MW mechanism
in a simple manner. The work by Modiano, Shah and Zussman [25] and its natural extension
described in a survey by Shah [28] provides a totally distributed, simple gossip mechanism
to find an approximate MW schedule each time. This algorithm is throughput optimal and
like the standard MW algorithm does not require information about arrival rates and does
not have the caveat of “saturated system” analysis. Thus, this result indeed proves that there
exists a totally distributed efficient algorithm. However, in such an algorithm the selection of
schedule involves computing summation of weights of network nodes in a distributed manner.
In principle, this summation can be amortized over time leading to O(1) control overhead per
time-step. However, in authors’ opinion (and should be clear to an informed reader that) this is
merely (an important) proof-of-concept and lacks the necessary elegance and simplicity to be of
practical use. Specifically, it is not like the random-access algorithm. We take note of a natural
extension of this gossip based approach for designing distributed cross-layer algorithm for the
optimal control of the multi-hop wireless network by Eryilmaz, Ozdaglar, Shah and Modiano [7].
Again, it should be noted that this serves as an important proof-of-concept of such distributed
algorithm, but far from being useful in practice.

In summary, none of the random access based algorithms that are studied in the literature
is truly throughput-optimal, as either there is an assumption of saturated system, knowledge
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of arrival rate is required, or the capacity region is not the largest possible. The distributed
gossip implementation of the MW algorithm, though provides the proof-of-concept of existence
of a distributed, simple and throughput optimal algorithm; it is not as elegant (and hence not
practicable) as random access based algorithms.

1.2. Contributions. As the main contribution of this paper, we design a throughput-optimal
or stable? random-access algorithm for multiple-access in a network of queues where contention
is modeled through the independent set constraint. Our random access algorithm is elegant,
simple and in our opinion, of great practical importance. And indeed, it achieves the desired
throughput optimality property by making the random access probabilities time-varying and a
function of the queue-size. The key to efficiency of our algorithm lies in the careful selection
of this function. To this end, first we observe that if queue-sizes were fized then one can use
Metropolis-Hastings based sampling mechanism to sample independent sets so that the sampled
independent sets are a good approximation of the MW algorithm. As explained later in detail
(or an informed reader may gather from literature), the Metropolis-Hastings based sampling
mechanism is essentially a continuous time random access protocol. Therefore, for our purposes
the use of Metropolis-Hastings sampler would suffice only if queue-sizes were fized. But queue-
sizes change essentially at unit rate and the time for Metropolis-Hastings to reach “equilibrium”
can be much longer. Therefore, in essence the Metropolis-Hastings mechanism may never reach
“equilibrium” and hence such an algorithm may perform very poorly.

We make the following crucial observations to resolve this issue: (1) if queue-sizes are changing
slowly then the Metropolis-Hastings based mechanism is likely to reach “equilibrium” as in
the case when queue-sizes were fixed, and (2) the MW algorithm is stable even with weight
selected as a monotonically increasing function of queue-size (in this paper, we use a function
f(x) ~ loglogx). Therefore, even though queue-sizes may change at unit rate, one can choose
an appropriate weight function which changes very slowly (i.e. f’ is small). These observations
suggest that if we design Metropolis-Hastings sampling mechanism to sample independent sets
with weights defined as this slowly changing function of queue-size then it is likely that our
network will always be in a state so that the random access algorithm based on Metropolis-
Hastings method is essentially sampling independent sets as per the “correct” distribution all
the time. We indeed establish this non-trivial desirable result — this is very much like a “robust
probabilistic” version of the standard adiabatic theorem [4, 13] which states that if a system
changes in a reversible manner at an infinitesimally small rate, then it always remains in its
ground state (see statement of Lemma 13 and section 5.7 for precise details). As a consequence,
we obtain a random access based algorithm under which the network Markov process is positive
Harris recurrent or the system is stable or throughput-optimal. We strongly believe that the
algorithmic and analytic methods of this paper will be of much broader interest for system
design and analysis in general.

2. Network model and performance metric.

2The notion of stability is defined as positive recurrence or positive Harris recurrence of network Markov
process in this paper.
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2.1. Notation. We start with basic notation that will be useful throughout the paper. In this
paper, we will reserve bold letters for vectors. For example, u = [ui}le denotes a d-dimensional
vector. The index ¢ will be reserved for continuous time and 7 for discrete time. We will reserve
1 and 0 for vector of all 1s and all Os. For vectors u,v € R%, define

d
u-v= Zuzvl
=1

Given a function ¢ : R — R, by ¢(u) we mean application of ¢ to u componentwise, i.e.
¢(u) = [¢(u;)]. Unless stated otherwise, log(-) will be natural logarithm. For any vector u = [u;],
define umax = max; u; and umi, = min; u;. For a probability vector « € Ri on d elements, we
will use notation m = [r(i)] where m(7) is the probability of i,1 < i < d.

2.2. An abstract model. Our network is a collection of n queues. Each queue has a dedicated
exogeneous arrival process through which new work arrives in the form of unit sized packets.
Each queue can be potentially serviced at unit rate resulting in departures of packets from it
upon completion of their unit service requirement. The network will be assumed to be single-
hop, i.e. once work leaves a queue, it leaves the network. At first glance, this appears to be a
strong limitation. However, as we discuss later in Section 3, the results, in terms of algorithm
design and analysis, of this paper naturally extend to the case of multi-hop setup. The arrival
process is assumed to be discrete time process for convenience. However, service or scheduling
decisions are not as per slotted time. Equivalently, scheduling decisions are assumed to totally
asychronous, thus preserving notion of “distributed decision making” to the full extent.

Let ¢t € R4 denote the (continous) time and 7 = |t] € N denote the corresponding discrete
time slot. Let Q;(t) € R4 be the amount of work in the ith queue at time ¢. We will through-
out assume that queues adopt the First-Come-First-Serve (FCFS) policy for servicing packets.
Therefore, Q;(t) denotes the size of the queue i in terms of number of packets in the queue at
time t. For example, Q;(t) = 2.7 implies that the head-of-line packet has received 0.3 amount of
service and 2 packets are waiting behind it. For convenience of notation, define Q;(7) = Q;(7™1),
i.e. the queue-size measured in the very beginning of the time slot 7. Let Q(t), Q(7) denote the
vector of queue sizes [Q;(t)]1<i<n, [Qi(T)]1<i<n respectively. Initially, time ¢ = 7 = 0 and the
system starts empty. That is, Q(0) = 0.

As noted earlier, arrival process is assumed to be discrete time for convenience. Specifically,
arrivals happen in terms of packets, each requiring unit amount of service. Let A;(7) denote the
cumulative arrival process for queue i in time interval [0, 7. Specifically, we assume that arrivals
happen at the end in each time slot, i.e. arrivals in time slot 7 happen at time (7 + 1)~ and
are equal to A;(7 + 1) — A;(7) number of packets. For simplicity, we assume that the arrival
processes are independent across queues and A;(-) is a Bernoulli processes with parameter \;
for each i. That is, A;(7 +1) — 4;(7) € {0,1} and Pr(A;(7 + 1) — Ai(7) = 1) = \; for all i and
7. Denote the arrival rate vector as A = [A;j]i<i<n.

The queues are offered service as per scheduling constraint. Let o(t) = [o;(t)] denote the
scheduling decision at time ¢ € R, where o;(t) denotes the service rate that queue i receives at
time ¢. For simplicity, we assume that each queue can be serviced at rate 0 or 1 at any given time,
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i.e. o;(t) € {0,1}. Thus, schedule at any time corresponds to a selection of subset of queues that
are provided service at unit rate. The scheduling constraints require that only certain subsets of
queues can be chosen to be served at unit rate at each time. Let S € {0,1}" denote the set of
all feasible schedules, or the set of all simultaneously schedulable queues. Under thus described
setup, the schedule o (t) at time ¢ is such that o(t) € S C {0,1}".

The queuing dynamics induced under the above described model can be summarized by the
following equation: for any 0 < s <t and 1 <i <mn,

t
Qi) = Quls) = [ 0110, s0pdr + Ails. 1),

where A;(s,t) denotes the cumulative arrival to queue 7 in time interval [s,?] and 1(,) denotes
indicator function

1 1 if x is ‘true’
e 0  otherwise
Here, we implicitly assume that the choice of o (t),t € R, is Lebegue integrable. Indeed, we
are interested in simple algorithms and hence it is unlikely to expect non-integrable scheduling
decisions. Finally, define the cumulative departure process D(t) = [D;(t)], where

t
D;(t) :/0 oi(r)1{Q;(r)>0}dr-

In this paper, we will restrict the treatment to a special case of the above described general
“switched network” model. Specifically, we will assume that the feasible set of schedules, &
arises due to independent set constraints over interference network graph. However, as we remark
in Section 3 the algorithm design and their properties naturally extend to the general model
described above.

2.3. Wireless network. Consider a network of n wireless transmission capable devices with
the queue Q;(+) hosted at the device or node i. Under any reasonable model of communication
deployed in practice (e.g. 802.11 standards), in essence if two devices are close to each other and
share a common frequency to transmit at the same time, there will be interference and data is
likely to be lost. If the devices are far away, they may be able to simultaneously transmit with no
interference. Thus the scheduling constraint here is that no two devices that might interfere with
each other can transmit at the same time. This can be naturally modeled as an independent set
constraint on a graph (called the intereference graph), whose vertices correspond to the devices,
and where two vertices share an edge if and only if the corresponding devices would interfere
when simultaneously transmitting. Specifically, let G = (V, E') denote the network interference
graph with V' = {1,...,n} representing n nodes and

E ={(i,7) : i and j interfere with each other} .

Let N(i) = {j € V : (i,j) € E} denote the neighbors of node i. We assume that if node i is
transmitting, then all of its neighbors in A (7) can “listen” to it. Let Z(G) denote the set of all
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independent sets of G, i.e. subsets of V' so that no two neighbors are adjacent to each other.
Formally,
I(G) ={o =[0;) € {0,1}" : 0 + 0 < 1 for all (4,7) € E}.

Under this setup, the set of feasible schedules S = Z(G).

2.4. Scheduling algorithm, performance metric. We need an algorithm to select schedule
o(t) € I(G) (or more generally, o(t) € S) for all ¢ € R;. Thus, a scheduling algorithm is
equivalent to scheduling choices o (t),t € R;.. From the perspective of network performance, we
would like the scheduling algorithm such that the queues in network remain as small as possible
given the arrival process. From the implementation perspective, we wish that the algorithm
be simple and distributed, i.e. perform constant number of logical operations at each node (or
queue) per unit time, utilize information only available locally at the node or obtained through
a neighbor and maintain as little data structure as possible at each node.

First, we formalize the notion of performance. In the setup described above, we define capacity
region C C [0, 1]™ as the convex hull of the feasible scheduling set Z(G) = S, i.e.

C:{Zaaa:Zaazl,anda,,ZOforallaEI(G)}.

ocS ocS

The intuition behind this definition of capacity region comes from the fact that any algorithm
has to choose schedule from Z(G) each time and hence the time average of the ‘service rate’
induced by any algorithm must belong to C. Therefore, if arrival rates A can be ‘served’ by any
algorithm then it must belong to C.

Motivated by this, we call an arrival rate vector A admissible if A € A, where

A ={XeRY} : XA < o componentwise, for some o € C} .

We say that an arrival rate vector X is strictly admissible if A € A°, where A° is the interior of
A formally defined as

A° ={X e R} : A < o componentwise, for some o € C} .

Equivalently, we may say that the network is underloaded. Now we are ready to define the
performance metric for a scheduling algorithm.

Definition 1 (Throughput optimal) We call a scheduling algorithm throughput optimal or
providing 100% throughput or stable, if for any X € A° the underlying network Markov process
158 Positive Harris Recurrent.

2.4.1. Positive Harris recurrence € its implications. For completeness, we define the well
known notion of positive Harris recurrence (e.g. see [5]). We also state its useful implications to
explain its desirability. In this paper, we will be concerned with discrete-time, time-homogeneous
Markov process or chain evolving over a complete, separable metric space X. Let Bx denote the
Borel o-algebra on X. Let X (7) denote the state of Markov chain at time 7 € N.
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Consider any A € Bx. Define stopping time T4 = inf{7 > 1: X(7) € A}. Then the set A is
called Harris Recurrent if

Pry(Ts4 < o0) =1, for any x € X,

where Pr;(-) = Pr(-|X(0) = z). A Markov chain is called Harris recurrent if there exists a o-
finite measure p on (X, Bx) such that whenever u(A) > 0 for A € Bx, A is Harris recurrent. It
is well known that if X is Harris recurrent then an essentially unique invariant measure exists
(e.g. see Getoor [9]). If the invariant measure is finite, then it may be normalized to obtain a
unique invariant probability measure (or stationary probability distribution); in this case X is
called positive Harris recurrent.

Now we describe a useful implication of positive Harris recurrence. Let m be the unique
invariant (or stationary) probability distribution of the positive Harris recurrent Markov chain
X. Then the following ergodic property is satisfied: for any « € X and non-negative measurable
function f: X — Ry,

7=0

Here E.[f] = | f(2)7(2). Note that E;[f] may not be finite.

2.5. A popular algorithm. In this paper, our interest is in scheduling algorithms that utilize
the network state, i.e. the queue-size Q(t), to obtain schedule. An important class of scheduling
algorithms with this property is the well known maximum-weight scheduling algorithm which
was first proposed by Tassiulas and Ephremides [33]. We describe the slotted time version of
this algorithm. In this version, the algorithm changes decision in the beginning of every time
slot using Q(7) = Q(71). Specifically, the scheduling decision o (7) remains the same for the
entire time slot 7, i.e. o(t) = o(7) for t € (1,7 + 1], and it satisfies

o(r) € arg glggzijaiQi(T)-

Thus, this maximum weight or MW algorithm chooses schedule o € S (with S = Z(G) for wire-
less network) that has the maximum weight, where weight is defined as - Q(7) = Y., Qi (7).

A generalized version of the MW algorithm, denoted by MW-f, picks a schedule with the
maximum weight, where the weight of queue i is f(Q;(7)) at time 7 for some non-negative
increasing function f with f(0) = 0. That is, under MW-f,

o(r) € argrggchoif(Qi(T)).

It is well-known that MW-f algorithm is throughput optimal as long as f : Ry — R, satisfies
the following properties: (a) f(0) = 0, (b) f is strictly increasing and (c) f(rz) = g(r)f(x)
for any r,x > 0, where g(r) is some function of r. To learn details, for example, see Shah and
Wischik [29, 30]. Examples of such functions include f(x) = z® for any « > 0.
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3. Main result: an efficient algorithm. This section presents the main result of this
paper in terms of the efficient distributed scheduling algorithm. In what follows, we begin by
describing the algorithm. Our algorithm is designed with the aim of approximating the maximum
weight in a distributed manner. For our distributed algorithm to be efficient (or throughput
optimal), it has to be good approximation of the maximum weight. As we shall establish, such is
the case when the selection of weight function is done carefully. Therefore, first we describe the
algorithm for a generic weight function. Next, we formally state the efficiency of the algorithm
for a specific weight function. This is followed by some details for distributed implementation.
Finally, we discuss extension of the algorithm for the multi-hop setting as well as a conjecture.

3.1. Algorithm description. As before, let t € Ry denote the time. Let W (t) = [W;(t)] € R}
denote the vector of weights at the n queues at time t. As we shall see, W (t) will be certain
function of the queue-sizes Q(t). For the purpose of the algorithm description, one may assume
W (t) as given. The algorithm we describe is a continuous time algorithm that wishes to compute
schedule o(t) € Z(G) in a distributed manner so as to have weight >, o;(t)W;(7) as large as
possible.

The algorithm is randomized and asynchronous. Each node has an independent Exponential
clock of rate 1. To this end, let T,ﬁ be the time when the clock of node 7 ticks for the kth time.
Initially, £ = 0 and T3 = 0 for all 4. The T)** — TF are i.i.d. and have Exponential distribution
of mean 1. The nodes change their scheduling decisions only upon their clock ticks. That is,
0;(t) remains constant for ¢t € (TF, Tf“]. Note that due to the property of continuous random
variables, no two clock ticks at different nodes will happen at the same time with probability 1.

Let the algorithm start with null-schedule, i.e. (0) = [0] € Z(G). Consider time T}, the
kth clock tick of node i for £ > 0. Clearly, only node i’s clock will tick at this particular time
with probability 1. Now node 7 makes the following scheduling decision at this particular time
instance t = T,f;.

o If o;(t7) = 1, then o;(¢t") = 1 with probability exp(W;(t))/(1+exp(W;(t))) and o;(tT) =0
otherwise. This randomized decision is done independently of everything else.

o If o;(t~) = 0, then node ¢ “listens” to the medium. If any neighbor is transmitting, then
oi(tT) = 0. Else, 0;(t*) = 1 with probability exp(W;(t))/(1 + exp(W;(t))) and o;(t*) =0
otherwise. Again, randomized decision is done independently of everything else.

We assume that if 0;(¢) = 1, then node i will always transmit data irrespective of the value of
Qi(t) so that the neighbors of node i, i.e. nodes in N (i), can infer o;(t) by “listening” to the
medium.

3.2. Efficiency of algorithm. We describe a specific choice of weight W (t) for which the
above described algorithm is throughput optimal for any network graph G. In what follows, let
f() : Ry — R4 be a strictly concave monotonically increasing function with f(0) = 0. We
will be interested in functions growing much slower than log(:) function. Specifically, we will
use the function f(x) = loglog(z + €) in our algorithm. For defining the weight, we will utilize
two given constants € > 0, B > 0. Here we will be interested in small € and large B. Finally,
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let Qmax(t) = max; Q;(t) and let @max7i(t) be an estimation of Qmax(t) at node ¢ at time t. A
straightforward algorithm to compute Qnax(t) is described in section 3.3. As will be established
in Lemma 2, Quax(t) — 2n < @max’i(t) < Qmax(t) for all i and ¢ > 0. Now define the weight at
node 1,

E ~
o Wilt) = max {7(Qu(Lt)). = (@mana(1t)): B
For such a choice of weight, we state the following throughput optimality property of the
algorithm.

Theorem 1 Consider any € > 0 and large enough B.? Suppose the algorithm use weight as
defined in (1) with f(z) = loglog(z + €) and |Qmax.i(t) — Qmax(t)| be uniformly bounded by a
constant for all t. Then, for any X € (1 — 2e)A°, the (appropriately defined) network Markov
process is positive Harris recurrent. Further with respect to its stationary distribution,

E[f(Q)-1] < ce.

3.3. Distributed implementation. The goal here is to design an algorithm that is truly dis-
tributed and simple. That is, each node makes only constant number of operations locally each
time, communicates only constant amount of information to its neighbors, maintains only con-
stant amount of data structure and utilizes only local information. Further, we wish to avoid
algorithms that satisfy the above properties by collecting some information over time. In essence,
we want simple “Markovian” algorithms.

The algorithm described above, given the knowledge of node weight W;(:) at node i for all
i, does have these properties. Now the weight W;(-) as defined in (1) depends on @;(-) and
Qmax(-) (or its estimate @max’i(-)). Trivially, the @Q;(-) is known at each node. However, the
computation of Qmax(-) requires global information. Next, we describe a simple scheme in which
each node maintains an estimate @max,i(-) at node 7. To keep this estimate updated, each node
broadcasts exactly one number to all of its neighbor every time slot. And, using the information
received from its neighbors each time, it updates its estimate. We do not discuss the precise
implementation of the information exchange required by this algorithm for two reasons: (1)
We are interested in providing an abstract description of the algorithm and one may imagine
various ways to implement such an algorithm (like any other wireless network protocol) over
a separate ‘control channel’. (2) In section 3.5, we provide a conjecture (supported by some
experimental results) that the algorithm without the term corresponding to @mam(t) in (1)
should be throughput optimal. Thus, our algorithm for finding @max,i(t) (and its utilization) is
merely for proving that a totally distributed, simple and provably throughput optimal algorithm
does exist. In practice, we recommend the algorithm that is conjectured in section 3.5.

Now, we state the precise procedure to compute @max’i(t), the estimate of Qmax(t) at node i at
time ¢. It is updated once every time slot. That is, @max,l-(t) = @max’i(LtJ). Suppose @max,i(T) be

3The precise “large enough” value of B depends on the weight function f and number of nodes n as stated in
the Definition 5. It should be noted (and hopefully a careful reader will notice) that the use of B is merely for
keeping the proof simpler and it is not crucial for the correctness of Theorem 1.
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the estimate of node ¢ at time slot 7 € N. Then node ¢ broadcasts this estimate to its neighbors
at the end of time slot 7. Let Qmax j(7) for j € NV (i) be the estimates received by node i at the
end of time slot 7. Then, update

@max,i(T + 1) = max { ( max @max,j(7)> -1, @max,i(T) —1,Qi(r + 1)} .

JEN (i)
We state the following property of this estimation algorithm.

Lemma 2 As long as graph G is connected, for all 7 > 0 and all i,
Qmax('r) —2n < @max,i('r) < Qmax(T)-

Proof. First, the proof of upper bound which follows by induction on 7. For this, note that
initially @max,i(O) = 0 for all ¢ and hence the upper bound holds for 7 = 0. Suppose it is
true up to 7 for all i. Consider 7 4 1. Now since for each j, Q;(t + 1) > Q;(7) — 1, we have
Qmax(T + 1) > Qmax(7) — 1. By induction hypothesis C?j (1) < QmaE(T) and Q;(7) < Qmax(T).
And of course, Q;(T + 1) < Qmax(7 + 1). Therefore, it follows that Q;(7 + 1) < Qmax(T + 1).
Next, the proof of lower bound. For this, note that for 7 < n the Qunax(7) < n since at most
one arrival can happen per time slot. Therefore, the lower bound follows in a straightforward
manner. For 7 > n, consider a “breadth-first search tree” grown starting from node ¢ of depth
n as follows. The root node corresponds to node i with value @i(T), its first level children nodes
correspond to nodes j € N (i) with each having value @j (t—1)—1, and then recursively the ¢th
level children nodes of a node at level £ —1 correspond to its neighbor in G (excluding those that
already appeared up to level £ — 1) and a node k at level ¢ has value associated Qs (tr—10)—¢.
It can be easily checked that the thus grown tree has depth at most n and all » nodes in G are
present in this tree as long as G is connected. Further, under the algorithm described above the
@max,i(ﬂ is larger than the values associated to all nodes in this tree. Now suppose k* be the
node such that Qp«(7) = Qmax(7). Let node k* appear at some level £ < n in the tree. Now

Qi+ (T = £) = Que (T — £) > Qp (1) — £,

because Qk(-) can change at most by unit amount in one time slot. Therefore, it follows that

Quaxi(r) = Que(r—0) —¢
> Qp(r—1) -4
> Que(T) — 20
> QmaX(T) — 2n.
This completes the proof of lower bound and that of Lemma 2. O

3.4. Extensions. The algorithm described here is for the single hop network with exogenous
arrival process. As a reader will find, the key reason behind the efficiency of the algorithm is
similar to the reason behind the efficiency of the standard maximum weight scheduling (here,
the weight is loglog(:) function of the queue-size). The standard maximum weight algorithm
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has a known version for a general multi-hop network with choice of routing by Tassiulas and
Ephremides [33]. This is popularly known as back pressure algorithm, where weight of an action
of transferring a packet from node ¢ to node j is determined in terms of the difference of queue-
sizes at node ¢ and node j. Analogously, our algorithm can be modified for such a setup by
using the weight of an action of transferring a packet from node ¢ to node j as the difference of
loglog(+) of queue-sizes at node i and node j. The corresponding changes in algorithm described
in section 3.1 is strongly believed to be efficient using the similar proof method as that in
this paper. More generally, there has been clever utilization of such a back-pressure approach
in designing congestion control and scheduling algorithm in a multi-hop wireless network. For
example, see survey by Shakkottai and Srikant [31]. Again, we strongly believe that utilization
of our algorithm with appropriate weight will lead to a complete solution for congestion control
and scheduling in a multi-hop wireless network.

3.5. A conjecture. The algorithm described for the single hop network utilizes the weight
W;(t) defined as (1). This weight W;(t) depends on the queue-size of node i, Q;(|¢]); the ‘uni-
versal’ constant B and the estimate of Quax(t), @max,i(t). Among these, the use of constant B
and @max,i(t) are primarily for ‘technical’ reasons. While the algorithm described here provides
a provably random access like algorithm, we strongly believe that the algorithm that operates
without the use of @max’i(-) and constant B in the weight definition should be efficient. Formally,
we state our conjecture.

Conjecture 3 Consider the algorithm described in section 3.1 with weight of node i at time t
as

(2) Wi(t) = f(Qi([t]))-
Then, this algorithm is Positive Harris Recurrent as long as X € A° and f(x) = loglog(x + €).

This conjecture is found empirically true in the context of a specific class of network graph
topologies (grid graph). However, such a verification can only be accepted with partial faith.

4. Technical preliminaries. We present some known results about stationary distribution
and convergence time (or mixing time) to stationary distribution for a specific class of finite state
Markov chains known as Glauber dynamics (or Metropolis-Hastings). As a reader will find, these
results will play an important role in establishing positive Harris recurrence of network Markov
chain (evolving over a Polish space).

4.1. Finite state Markov chain. Consider a time homogeneous Markov chain over a finite
state space Q. Let the || x || matrix P be its transition probability matrix. If P is irreducible
and aperiodic, then the Markov chain has unique stationary distribution and it is ergodic in
the sense that lim, .o, P7(j,i) — m; for any 4,7 € . Here m = [m;] denotes the stationary
distribution of the Markov chain. The adjoint of transition matrix P, also called the time-
reversal of P, is denoted by P* and defined as: for any i,j € Q

(1) P* (i, 7) = w(§) P (4, ).
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By definition, P* has 7 as its stationary distribution. If P = P* then P is called reversible.

Our interest is in a specific irreducible, aperiodic Markov chain on the finite space Q = Z(G),
the set of independent sets of a given network graph G = (V| E). This is also known as Glauber
dynamics (or Metropolis-Hastings). We define it next.

Definition 2 (Glauber dynamics) Consider a node weighted graph G = (V, E) with W =
[Wiliev be the vector of node weights. Let T(G) denote the set of all independent sets of G. Then
the Glauber dynamics on Z(G) with weights given by W, denoted by GD(W) is the following
Markov chain. Suppose Markov chain is at state o = [0;]icv, then the next transition happens
as follows:

o Pick a node i € V uniformly at random.
o Ifo; =1, then

; gop . exp(Wi)
o — {1 with probability Trexp(17)

0 otherwise

o If o;, =0 and o; =0 for all j € N (i), then

+exp(W;)

1 with probability lexpﬂ
g; =
0 otherwise

o Otherwise, o; = 0.

As the reader will notice, our algorithm described in section 3 is effectively an asynchronous
version of the above described Glauber dynamics with time-varying weights. In essence, we will
be establishing that even with asynchronous time-varying weights, the behavior of our algorithm
will be very close to that of the Glauber dynamics with fixed weight in its stationarity. To this
end, next we state a property of this Glauber dynamics in terms of its stationary distribution.

Lemma 4 Let w be stationary distribution of GD(W') on the space of independent sets I(G)
of graph G = (V, E). Then,

1
m(o) = - exp(W - 0) - lyez(c),

where Z 1is the normalizing factor.

Proof. Under GD(W), there is a positive transition probability from independent set o to o’ if
and only if they differ in exactly one coordinate, i.e. o, o’ are neighbors. The set of independent
sets, a subset of {0,1}" for n = |V/|, has monotone structure: if a set is independent set then
so is any subset. Therefore, 0 € {0,1}" is an independent set and is reachable to and from
all independent sets under GD(W). Thus, GD(W) is irreducible. By definition GD(W) is
aperiodic. Therefore, it is a finite state ergodic Markov chain with unique stationary distribution.
Next we establish that the stationary distribution is indeed .

To this end, consider transitions between any two neighboring independent sets o, o’. Without
loss of generality, let o, o’ differ in the ith co-ordinate with o; = 0 and o, = 1. Let P denote
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the transition matrix of GD(W). As per the definition, the transition probability from o to o’
is

exp(W;) _ 1 exp(Wj;)
L+exp(W;) nl+exp(W;)’

while the probability of the transition o’ to o is

P,o = Pr (i was picked)

1 11
Pa-/o- _ P . . k d - — .
(i was picked) T T = T e (W)

Hence P (o)
oo’ _ W) = o ]
P eXP( z) 71'(0")

The above is relation is called detailed balance equation and such Markov chains are know as

reversible as noted earlier. In such scenario, it is well known that 7 is the unique stationary
distribution. O

4.2. Mixing time. The Glauber dynamics as described above converges to its stationary dis-
tribution 7 starting from any initial condition. To establish our results, we will need quantifiable
bounds on the time it takes for the Glauber dynamics to reach close to stationary distribution.
Specifically, we wish to quantify a bound in terms of the number of nodes n and the weight
vector W. To this end, we start with definition of distance between probability distributions.

Definition 3 (Distance of measures) Given two probability distributions u and v on a finite
space 2, we define the following two distances. The total variation distance, denoted as || — vy
18

I — vy = Z (i)

ZEQ
The x? distance, denoted as ﬁ — 1H2
2
v i)
A = nly = o (B2 1)
H 2, ? gz (1)

More generally, for any two vectors u,v € R'f‘, we define
2 2
IVl = D wivi-
1€Q
We make note of the following relation between the above defined two distances: for any
probability distributions pu, v, using the Cauchy-Schwartz inequality we have

LS ()

- (g G-

NN . ()
> EQ“me 4 D
3) = 2y — sl

14
Z -1
"
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Next, we define a matrix norm that will be useful in determining rate of convergence or mixing
time of a finite state Markov chain.

Definition 4 (Matrix norm) Consider an || X || non-negative valued matriz A € RL?MQ'

+ )

[l = Tl
v:Ey[v]=0 HVHZU

where Ey[v] = >, uv;.
It can be easily checked that the above definition of matrix norm satisfies the following properties.

P1. For matrices A, B € RIEMQ‘ and 7 € RL?'

A+ Bllx < [[Allx + [ Bllx-

12 €2]
—+ 9

P2. For matrix A € R wEe ]R'_?' and c € R,

leAllx = lel| Al

P3. Let A and B be transition matrices of reversible Markov chains, i.e. A = A* and B = B*.
Let both of them have 7 as their unique stationary distribution. Then,

[AB|lx < [[Allll Bllx-

For a probability matrix P, mostly in this paper we will be interested in the matrix norm of P

with respect to its stationary distribution 7, i.e. ||P||z. Therefore, unless stated otherwise if we

use matrix norm for a probability matrix without mentioning the reference measure, then it is

with respect to the stationary distribution. That is, in above example || P|| will mean ||P||.
With these definitions and fact that P and P* have the same stationary distribution, say ,

it follows that for any distribution p on

(4)

-1

)
2,7

B
™

w || M
<P -1

2,7

since B [£ — 1] = 0, with interpretation £ = [u(i)/m(i)]. The Markov chain of our interest,
Glauber dynamics, is reversible, and for a reversible Markov chain, P = P*. Therefore, for a
reversible Markov chain starting with initial distribution (0), the distribution p(7) at time 7
is such that

(5) -1 <[P

2,

e e

2,m

Now starting from any state ¢, i.e. probability distribution with unit mass on state ¢, the initial
distance H@ — 1H2 in the worst case is bounded above by +/1/myin where mpi, = min; ;.
g

< ¢ for any 7 such that

2.

Therefore, for any > 0 we have H@ -1

TZ

log1/mmin +1log1/6 (logl/wmin+logl/6>
log || P|| 1P| ’
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This suggests that the “mixing time”, i.e. time to reach (close to) stationary distribution of
the Markov chain scales inversely with 1 — || P||. Therefore, we will define the “mixing time” of
a Markov chain with transition matrix P as 1/(1 — ||P||). This also suggests that in order to
bound the distance between a Markov chain’s distribution after some steps and its stationary
distribution, it is sufficient to obtain a bound on || P||. One such bound is stated below.

Lemma 5 Let P be the transition matriz of the Glauber dynamics GD(W') on graph G = (V, E)
of n = |V| nodes. Then,

1
Pl <1-—
1Pl < 8n2 exp(2Wiax)’

where Wiax = max;cy Wi.

Proof. Since P is reversible and probability matrix, it is well known that it has real eigenvalues
with values between [—1,1] with the largest eigenvalue equal to 1. Let them be denoted as
1=MXg > A1--- > Any_1 with the corresponding left eigenvectors ug = m,uy,...,uy_1 and the
corresponding right eigenvectors vog = 1,...vy_1. Here N = |Z(G)|, the size of the state space
over which GD(W) evolves. By the spectral theorem for reversible matrices, we can assume
that the vectors v; are orthonormal with respect to m, i.e.

N
(Vi) Vi)e = D Vi Vi = 8ij,
k=1

with the definition d;; = 1 if 7 = j and 0 otherwise. Therefore, any vector x € RY can be written
as

N-1
xX= ) apvi
=0

where a; = (x,v;),.. By definition, oy = 0 when Er[v] = 0. Therefore,

1PV, X aiN
||PH = Ssup = < Amax;
Er[v]=0 HV||2,7r ,/Zag

where Apax = max{\i, |\,—1|}. By Cheeger’s inequality, it is well known that Apax < 1 — %2
where @ is the conductance of P, defined as

d—  min M’
ScI(G)m(s)<i  w(S)

where S¢ = Z(G)\S, P(S,5°) = X secs.0/cs' P(a,0'). Now we have

® > min P(S,5') > min P(o,o’)
Scv

P(o,0")#0
> mi 1 1 1 1
min — =—
~ i nl4exp(W;) nl+ exp(Whax)
1

> -
~ 2nexp(Whax)

P2 1
Therefore ||P|| < Apax <1 -5 <1 - 8nZ exp(2Wmax) *
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5. Proof of Main Result: Theorem 1. This section presents the detailed proof of The-
orem 1. We will present the sketch of the proof followed by details.

5.1. Proof sketch. We first introduce the necessary definition of the network Markov chain
under our algorithm. As before, 7 be the index for discrete time. Let Q(7) = [Q;(7)] denote
the vector of queue sizes at time 7; Q(7) = [Qmax.i(7)] be the vector of estimates of Qmax(7) at
time 7; o(7) = [0;(7)] be the scheduling choices at the n nodes at time 7 and S(7) = [S;(7)]
be the remaining service required for the head-of-line packets in queue ¢ at time 7. Then it can
be checked that the tuple X () = (Q(7), Q(7),(7), S(7)) is the Markov state of the network
operating under the algorithm. Note that X (7) € X where X = R’} xR"} xZ(G) x [0, 1]™. Clearly,
X is a Polish space endowed with the natural product topology. Let Bx be the Borel o-algebra of
X with respect to this product topology. Let P denote the probability transition matrix of this
discrete time X-valued Markov chain. We wish to establish that X (7) is indeed positive Harris
recurrent under this setup. For any x = (Q, Q.,o.S ) € X, we define norm of x denoted by x| as

x| = Q|+ Q| + |o| + S|,

where |Q|, |Q| and |S| denote the standard ¢; norm while |o| is defined as its index in {0, ...,
|Z(G)| — 1}, which is assigned arbitrarily. Thus, |S|, |o| are always bounded. Further, by Lemma
2 we have |Q| = O(|Q|) under the evolution of Markov chain. Therefore, in essence if |x| — oo
then |Q| — oo. Next, we present the proof based on a sequence of lemmas. The proofs will be
presented subsequently.

We will need some definitions to begin with. Given a probability distribution (also called
sampling distribution) a on N, the a-sampled transition matrix of the Markov chain, denoted
by K, is defined as

K.(x,B) = Z a(T)P"(x,B), forany x € X, B € Bx.

720

Now, we define a notion of a petite set. A non-empty set A € By is called pq-petite if p, is a
non-trivial measure on (X, Bx) and a is a probability distribution on N such that for any x € A,

Ka(x,) = pra(-)-

A set is called petite set if it is uq-petite for some such non-trivial measure p,. A known sufficient
condition to establish positive Harris recurrence of a Markov chain is to establish positive Harris
recurrence of closed petite sets as stated in the following lemma. We refer an interested reader
to the book by Meyn and Tweedie [24] or recent survey by Foss and Konstantopoulos [8] for
details.

Lemma 6 Let B be a closed petite set. Suppose B is Harris recurrent, i.e. Pry(Tp < o0) = 1
for any x € X. Further, let

sup Ex [Tg] < oo.
xEB

Then the Markov chain is positive Harris recurrent.



20 RAJ-SHAH-SHIN

Lemma 6 suggests that to establish the positive Harris recurrence of the network Markov chain,
it is sufficient to find a closed petite set that satisfies the conditions of Lemma 6. To this
end, we first establish that there exist closed sets that satisfy condition of Lemma 6. Later we
will establish that they are indeed petite sets. This will conclude the proof of positive Harris
recurrence of the network Markov chain.

Recall that the ‘weight’ function is f(z) = loglog(z+e). Define its integral, F(z) = [ f(y)dy.
The system Lyapunov function, L : X — R is defined as

L(x) = ZTL:F(%) 2 F(q)-1, where x=(Q,Q,0,8S) € X.
i=1

We will establish the following whose proof of given in section 5.3.

Lemma 7 Let A\ € (1 —2¢)A°. Then there exist functions h, g : X — R such that for any x € X,
E[L(X(g(x)) — L(X(0))[X(0) = x] < —h(x),

and (a) infxex h(x) > —oo, (b) iminfrx) oo h(x) > 0, (¢) suprx)<y 9(x) < 00 for all v > 0
and (d) imsupy,x) o 9(x)/h(x) < occ.

Now define B, = {x: L(x) < k} and C, = {x: x| < k} for any x > 0. It can be easily checked
that for any x > 0, there exists x’ such that for any x € X,

Lx) <k = |x| <K.

In above, one needs to use the fact that x always satisfies condition of Lemma 2. Similarly, for
any k' > 0 there exists k” such that

x| <K = L(x) <k
In summary, it follows that for any x > 0, there exist 0 < r1(k) < k2(k) such that
Bm(n) cCy C Bng(n)~

Using this relation, arguments of Theorem 1 in the survey [8] and Lemma 7, it immediately
follows that there exists a constant kg > 0 such that for all kg < &, the following holds:

(6) Ex [T, ]

<
(7) sup Ex [T¢.] < .
XEC;@

00, for any x € X
00

Now we are ready to state the final nugget required in proving positive Harris recurrence as
stated below.

Lemma 8 Consider any k > 0. Then, the set C, = {x € X : |x| < K} is a closed petite set.

The proof of Lemma 8 is presented in section 5.8. Thus, Lemmas 6, 7 and 8 imply that the
network Markov chain is positive Harris recurrent. Finally, we state a corollary of Lemma 7.
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Corollary 9 Under the algorithm,

> f(Q

T

lim SUp 7 IE = O(1), Prx-almost surely.

T—oo

The proof of Corollary 9 is presented in section 5.4. The Corollary 9 establishes the uniform
integrability of (3°, <7 f(Q(7)) - 1)/T. Therefore, by ergodicity (implied by the positive Harris
recurrence of the network Markov chain as stated in section 2.4.1), it follows that

E[f(Q)-1]=0(1).
This completes the proof of Theorem 1.

5.2. Some preliminaries. We define condition on constant B > 0 required for the efficiency
of the algorithm for given € > 0.

Definition 5 Given ¢ > 0 (as in the statement of Theorem 1), B is a constant that is large
enough such that it satisfies the following:

25612 (log (z + €))?
e(log(z—Qn—l—e))% —e—1

f~Y(B) > max{2n,7"} and <e, Vx> fYB).

. . . 256n2(1 2
Indeed, there exists such a B = B(n,¢) since lim —2" (log(z-+e))
T—00 e(log(z—2n+e))n _o_q

=0 for any fized € > 0.

Now we relate our algorithm described in section 3.1 with appropriate continuous time version
of Glauber dynamics described in section 4.1. To this end, recall that the algorithm changes its
scheduling decision as per Exponential rate 1 clock ticks of nodes. Due to the property of
Exponential distribution, no two nodes have clocks ticking at the same time. Now given a clock
tick, it is equally likely to be any of the n nodes. The node whose clock ticks decides its transition
based on probability prescribed by the Glauber dynamics GD(W (t)) where recall that W (t)
are determined based on Q(|t]), Q(|t]). Thus the transition probabilities of Markov process
determining the schedule o (t) change every discrete time. Let P(t) denote the transition matrix
prescribed by the Glauber dynamics GD(W (t)) and 7(¢) denote its stationary distribution. Now
the scheduling algorithm evolves the scheduling decision o (-) over time with time varying P(t)
as described before. Let u(t) be the distribution of the schedule o () at time ¢. The algorithm
is essentially running P(|t]) on Z(G) when a clock ticks at time ¢. Since there are n clocks and
each clock rate is 1, we have

= ZPr(C = )u([t)P([t])
= LtJ p(|t])em P([t])
:M(L et D@L =1),

where ¢ is the number of clock ticks in time (|¢],t] and it is distributed as a Poisson random
variable with mean n(t — [t]). Thus, for any 7 € N,

(8) p(r+1) = p(r)enP@-0,
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In the above (and in the remaining of the paper) in the left multiplication of a vector with a
matrix, the vector should be thought of as a row vector. The equation (8) gives the discrete
time interpretation on p, hence the mixing time based analysis on p with the transition matrix
e™P(M=1) hecomes possible. The transition matrix e™(F()=1)

P(7) as stated below.
n(P(r)

has properties similar to that of

Lemma 10 e —1) s reversible and its stationary distribution is w(T). Furthermore, its

matrixz norm s bounded as

1
160 exp(2Winax (7))

] <.

Proof. We have that m(7) is the stationary distribution of P(7) and P(7) is reversible. Given this,

(P(r)=1)

the reversibility of e” as well as 7(7) being its stationary distribution follows directly

from the definition. Now, consider the following (using properties P1, P2 and P3 of matrix

norm):
ok pk
n(P-1I) _ -n n“pP
o] = e
k=0
=k Pt
—-n
< > i
k=0
— n(IPI-1)
1—-||P
o )

In the last inequality, we have used the fact that |[P|| < 1 and e™ <1 —z/2 for all x € [0, 1].
Use of P = P(7) in (9) and Lemma 5, we obtain

. 1
He v I)H < 1= 161 exp(2Whnax (7))

This completes the proof of Lemma, 10. O
5.3. Proof of Lemma 7. We have A € (1 —2¢)A°. That is, for some 6 > 0, A < (1 -2z —0)A.

The proof of Lemma 7 crucially utilizes the following Lemma 11. We will prove Lemma 11 in
section 5.5.

Lemma 11 For given 6, > 0, let A < (1 —2¢ —0)A. Given any starting condition X (0) = x =
(Q(0), Q(0), &(0), S(0)), there exists a constant C 2 C(Q(0)) such that for T > C,

T-1
Ex[L(X(T)) = L(X(C))] < —% > Ex[f(Q(r)) - 1] + (Bn +3n +8)(T — C),
T=C

with C(Q(0)) = O (10g9 QmaX(O)). Here, as usual Ex[-] denotes expectation with respect to the
condition that X (0) = x.
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Now, we proceed towards the proof of Lemma 7. From Lemma 11, for 7' > C' = C(Q(0)),

Ex[L(X(T)) — L(X(0))] < —éTz:lE 1]+ (Bn+3n+6)(T —C)
LX) - LX)
< —% Tzl Ex[f(Qmax(7))] + (Bn + 3n + 6)(T — C)
LX)
< 2T~ O ((@uas(0) ~T)) + (Bn+ 30+ 8)(T ~ O)
" L)
= T ) (Quan(0) ~ 1)) + (Bn+ 30+ 8)(T — C)
LF(Q(C)) 1
< —%(T —O)f (Qmax(0) = T)) + (Bn+3n+6)(T — C)
(10) 11 (Quas(0) + C)

Let K = K (6, n) [2 4+ n2/d]. Now for given x = (Q,Q, o, S) € X, we define functions g and
h as desired as follows:

(11) g(x) = K(6,n)C(Q), and
M) = 2 (900~ C1Q)) T (@ — 9(x))")
(B +3)n +3)(9(x) ~ C(Q)) ~ C(Qnf( Qs + C(Q)
= 2(K(Em) ~ DOQ) (Quax —~ K6 m)C(Q))
(12) ~((B+3)n 4+ 3)(K(5n) ~ 1)C(Q) ~ C(Q)nf (Quas + C(Q).

It can be verified that by setting 7' = g(x) in (10), we have that

E[L(X(9(x))) = L(X(0)[X(0) =x] < —h(x).

Now to complete the proof of Lemma 7 we need to verify that functions g, h satisfy conditions
(a), (b), (c) and (d). For this, note that if L(x) — oo then it must be that ||Q|| — oo. Using this
and definitions of g, h as per (11) and (12) the conditions (a), (b) and (c) follow immediately. For
condition (d), consider the following with short-hand notation of K = K(d,n) and C' = C(Q)

gx) KC
h(x) (K —1)Cf ((Qmax — KC)*) = (B+3)n+ 0)(K — 1)C — Cnf (Qmax + C)
(13) < - 1 ,
01 = %)f ((Qmax — KC)T) = (B+3)n+6)(1 — %) — % f(Qmax + C)
L()t;oo 0,
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since 2(1— %) > 2. C=0(Q)=0 (log9 Qmax) and
Lx) =00 = (|Q] — < Qmax — 00),

imply that the denominator of (13) goes to co. This completes the verification of condition (d)
and the proof of Lemma 7.

5.4. Proof of Corollary 9. From Lemma 11 it follows that starting with any initial state
X (0) = x, we have for T' large enough

5 T-1

(1) Ex[L(X(T)) = L(X(C)] < —— > Ex[f(Q(r))- 1]+ (Bn+3n+0)(T - C),
=C

with C' = C(Q(0)) = 0O (log9 QmaX(O)). Given the bound on C and the fact that the queue size
can grow by at most a constant amount per unit time, it follows that L(X(C')) can be bounded
as a function of L(x). Therefore, starting with X (0) = x

1T—l n 1
TT:ZCEXWQ(T))’” < 5 |B+3m+6+ ZELX(C))
(15) o %[(B—H’))n—i—&] — o).

This completes the proof of Corollary 9.

5.5. Proof of Lemma 11. Here we prove Lemma 11 using the following two lemmas, which
will be proven in later sections.

Lemma 12 Consider a vector of queues Q € R'. Let the vector of estimation of Qmax be
Q € R"} satisfying the property of Lemma 2. Let weight vector W based on these queues be defined
as per equation (1). Consider the Glauber dynamics GD(W') and let w denote its stationary
distribution. If o is distributed as per w then

Erf(Q) o] = (1—¢) < max f(Q) - P) — (B+2)n.
PEL(G)
Before we state the next lemma, we define a transformation of queue-size vector: given vector of
queue size Q € R’} and vector of estimation of Quax denoted as Q, recall that the corresponding
weight W was defined in (1) as

9
, —
n

Wi(t) = max {£(Qu(14)). = F(@mans((£]), B
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Define @l = f~1(W;) and let Q denote thus transformed vector of queue sizes. We state the
following important properties of () which will be used in the later analysis:

(16) Qi = f'(Wi)=f4(B) > 2n,

(17) C/jmax = fﬁl(Wmax) = maX{Qmaxa fﬁl(B)}’
~ _ e~

(18) Qmin > f ! (nf(Qmax - 2”)) :

Properties (16) and (17) follow from definition 5 in a straightforward manner. For (18), consider

~

two cases. First, when Quax = Qmax, consider the following;:
Quin = 7' (Wain) > f (Zf(@max,i))
> f1 (Zf(Qmax - 2n)) (from Lemma 2)
= 1 (5@ —2m) ).

In the second case, when Qmax = f~Y(B), by definition it must be that Qi = f~Y(B) for all i,
ie. @max = @min and hence (18) follows trivially.

Lemma 13 (Network adiabatic Theorem) For a given Q(0), as defined earlier let u(t) be
the distribution of the schedule over Z(G) at time t and let w(t) be the stationary distribution

of Markov process over Z(G) with respect to the probability transition matriz P(t) as defined in
section 5.2. Then, fort > C1(Q(0))

p(t)

m(t)

<eg, with probability 1,
2,m(t)

where

C’l(Q(O)) _ {162n210g4(@max(0) +1+e)log <§ (2 log(@maX(O) + e))”ﬂﬂz + 1.

Remark 1 The statement of Lemma 13 suggests that for all (large enough) time, the distribu-
tion of schedules u(t) is essentially close to the stationary distribution w(t) at each time despite
the fact that queue sizes (and hence weights) keep changing. In conjuction with Lemma 12 this
adiabatic like result suggests that indeed the choice of schedule is such that at each time the
weight of schedule is close to that of the mazrimum weight schedule as desired. This is the key
property that establishes the efficiency (positive Harris recurrence) of the network Markov chain.

Now we proceed towards proving Lemma 11. From Lemma 13 and relation (3), we have that

~

for t > C1(Q(0)),

Ex[F(Q() - 7] = By [F(Q(1)) - o]

IN

( max)f(Q(t)) . 0'> |7 (t) — ()|l 7y

peZ(G

( max /(Q(1)) .,,> ]“Et) 1

pEI(Q) m(t)

IN

2,m(t)

(19) < - ( s F(Q(1)) - ,,) |

PEZ(G)
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Thus from Lemma 12,

E,wlf(Q() -] = Ex[f(Q)) - o] —¢ ( max f(Q(t)) - p)

pPeZ(G)

> (1-2) ( max F(Q(1) p> —n(B+2).

pEI(G

Now consider the difference between L(X (7 + 1)) and L(X (7)) as follows.

(F(Q(T+1)) - F(Q(7))) - 1
fQ(T+1)-(Q(t+1)—Q(7)), (as F' is convex),

@+ 1) (a1~ [ o1 00 )
[ @ 1) (A6 4 1)~ 010,050 dr
[ @) (At + 1) 010,050 dr
e
+ [ U@ +1) = @) - (Alrm + 1) = o (10,01 dr

L(X(1+1)) - L(X(7))

IN

IN IN

IN

7+1
< /T FQM) - (A(r, 7+ 1) — (1)1 (0ys0)) dr + 7
T+1
(20 = [ QU (Al D o drn, (s £0) =0,

where the second last inequality follows by the fact that f is 1-Lipschitz* and Q(-) changes at

~

unit rate. Taking expectation of (20) given initial state X (0) = x and 7 > C1(Q(0)) we have

BLOCr+ 1)~ LX) < [ Balf@0) - Al +1,7)] - ExlF(@() - o)) dr 4

T+1
< /T Ex[f(Q(r))] - A = (1 — 2¢)Ex Lrenz%)f(Q(T)) p ) dr
+(B+3)n
(a) T+1
< —/T i OEx e F(Q(r)) - p} dr
+(B+3)n
< [ @) 1 ar
+(B+3)n
T+1
< -2 (Br@e)-a- [ EQ) - f@e) 1) dr
+(B +3)n
(21) < —%EX [f(Q(1))-1]+ (B+3)n+0, (as f(Q) is Lipshitz).

4A continuous function f:R — R is K-Lipschitz if |f(z) — f(y)| < K|z — y| for all ,y € R.
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In above, we justify (a) and (b) as follows. For (a), recall that A € (1 — 2¢ — §)A and hence
A< Y papp with 3°,ap <1—2¢—4 and ap > 0. Therefore,

FQENI-A < Y apf(Qr)-p
P

(Z %) (Grg%)f(Q(T» -U)
(1 —-2e—-9) < max f(Q(r)) - 0'> .

ocZ(G)

IN

IN

This will lead to inequality (a). For (b), note that for any graph G, 1 can be written as a convex
combination of n singleton independent sets. Therefore, it follows that the

max f(Q(r))-p = —f(Q(r))-1.

peZ(G) n

Therefore, by summing over 7 from C; = C1(Q(0)) to T — 1, we have

Ex [L(X(T)) = L(X(C1))] < —

S|

T—1
Y E[f(Q(7)) - 1] + (B +3)n+8)(T - C1).
7=C1

Finally, from (17), Qumax = O(Qmax) for any queue-size vector Q and its transformation Q as

~

defined earlier. From the statement of Lemma 13, it follows that C1(Q(0)) = O (10g9 @maX(O)) =

O (log9 Qmax(())). Thus, by choice of C(Q(0)) = C1(Q(0)) we obtain the desired result and
complete the proof of Lemma 11.

5.6. Proof of Lemma 12. The proof of Lemma 12 is based on the known classical variational
characterization of distribution in the exponential form. Specifically, we state the following
proposition which is a direct adaptation of the known results in literature.

Proposition 14 Let u be a distribution on a discrete space S C {0,1}" such that
N
p(p) o< exp (Z Hiﬂi) , Jorall p=[p]€S.
i=1
Here H = [H;] € RY is a “weight” vector. Let o be random variable with distribution pi. Then,
N N
E'u [Z Hzaz] > (max Hsz) — N.
i=1 PES T

Proof. Let Z be normalization constant of u, that is

1
wip) = Zexp(H-p), forall peS.

Then by definition for any p € S

(22) logZ +logu(p) = H-p.
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Let M(S) be the space of distributions on S. Define a functional F' : M(S) — R as
F(p) =E,[H-o]+ Hpr(y), forany pe M(S),

where Hgpr(u) is the standard entropy function,

Her(p) ==Y n(p)logu(p
pES

Then, using (22)

Fv) = > vip)(H-p—logv(p))

pES
_ o o H(P)
- 2 v )(1og 2 +108557)
= logZ+Z log'u(p)

v v(p)

< logZ +log Z V(p)'uépi (from Jensen’s inequality),
peS vp

= logZ.

In above the equality holds iff » = p. Thus F is maximized at u € M(S). Now define v(p) =
dp=p+ Where
p" € argmaxH - p.
pEeS

Then

(maxH p) = F) < F(u) =B, [H-0] + Her(u) <E, [H- o]+ log S|

Since S C {0,1}", the above sequence of inequalities leads to the desired result. This completes
the proof of Proposition 14. O

Now we prove Lemma 12 using Proposition 14. Recall that the stationary distribution, say ,
of the Glauber dynamics GD(W) is indeed of the exponential form with for any p € Z(G),

m(p) < exp (W - p).

Therefore, by Proposition 14 we have

23 E. [W-o] > w-
(23) (W o] <p?:f&?c{:) p)

where o has distribution 7 and log |Z(G)| < n. Next, we relate W - p with f(Q) - p to reach the
desired conclusion as claimed in Lemma 12.
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To this end, let W be weights defined as per (1) based on Q, Q and B. For any coordinate
Wi, we have W;(t) > f(Qi([t])) > f(Qi(t)) — 1. Further, f(-) = loglog(- + €) is non-negative
and 1-Lipschitz. Therefore, we have

1< W) - £@)(0) < max{f(Qnaci((t). B
< max {Z (f(Qmax(t)) +1) ,B} (from Lemma 2 and @ is 1-Lipschitz)

<

f(Qmax(t)) + B

9
n

Therefore, for any o € Z(G),

< Weo—f(Q)0 = (W-[(Q)0
< oW = f(Q)llo
< n(if(QmaxHB)
= ef(Qmax) +nB

(24) < a(max)f(Q)-p>+nB,

peZ(G

where the last inequality is due to the structure of independent sets Z(G) and it can be easily
argued that

f(Qmax) < max f(Q) - pP.

Using (23) and (24) we obtain

E.[f(Q) 0] > MW-a]—s(max f<Q>~p) —nB

PEL(G)
> (J&?é) w. p) —n-—¢ (,,?I?é) f(Q)- p) - nB
> Q&?’é) f(Q)- p) —n—n-—¢ <p2nﬁ’é) f(Q)- p) —nB

= (1—-¢) ( max f(Q)~p> — (B+2)n.

pPEI(G)

\%

\%

This completes the proof of Lemma 12.

5.7. Network adiabatic Theorem: Proof of Lemma 13. This section establishes the proof of
Lemma 13. In words, Lemma 13 states that the observed distribution of schedules is essentially
the same as the desired stationary distribution for all (large enough) time despite the fact
that the weights (or queue-sizes) keep changing. In a nutshell, by selection of weight function
f(-) = loglog(-+e) the dynamics of weights become “slow enough”, thus allowing for distribution
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of scheduling decisions to remain close to the desired stationary distribution at all times. This is
analogous to the classical adibatic theorem which states that if the system is changed gradually
(slowly) in a reversible manner and if the system starts in the ground states then it remains in
the ground state.

5.7.1. Two useful results. We state two Lemmas that will be useful for establishing Lemma
13.

Lemma 15 Given 7 € N, define
ar = (F Q)+ f(@Q(r+1))) - 1.
Then the following holds:
1. For any p € I(G),

W m(r+ 1) o i
(25) exp (—a;) < () (p) <exp (ar)
2. And,
(26) [m(r+1) —m(m)ly_2 < 20

w(T+1)

Proof. Consider any p € Z(G). Then, from the definition of the stationary distributions m(7)
and 7(1 + 1),

1

m(r)(p) = 700 P (W(r) p)
A1) = g en(Wir+1)-p).
Therefore,
Z(r+1) _ Lz P (W(T+1)-p)
Z(T) ZpEI(G) exp (W (7) - p)
< (plenz%) exp(W(r +1) - W(7))- P) :

~

Recall that by definition (1) and our notation, W (-) = f(Q(-)). Using the fact that for the
concave function f, f(b) — f(a) < f'(a)(b— a), for any p € Z(G)

W(r+1)-W(@)-p = (fQU+1)- (@) p
(27) < f@(r)-p.
In above we have used the fact that Q(-) is 1-Lipschitz. Using (27), we obtain
Z(t+1) 1A
20y S e exp (f (Q(7)) - p)

(28) < e (F(Q(r)-1).
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Using a similar argument, we obtain

(29) s < e (F@ 1) 1)
From (27) and (29), it follows that for any p € Z(G)

el e (W) - W) )
(30) < e (@) + F(@Q(r+1)) 1)
Similarly,
(31) JERL < e (@ 1)+ @) 1)
Thus (30) and (31) imply the first claim of Lemma 15:

exp (—a;) < m(r + 1)) <exp(ar).

m(7)(p)

Here, a; can be bounded as follows:

~

= At(f(Q(r (@(T +1))) -1

1
< nmax ( e 1Og (QZ( )+ e) * (Qz(T +1)+ e) log (@z(T +1)+ €>)
(from (16))

(2n +e) log(Zn +e)
(32) <1,

Using the facts that 1 —x < e™®, ¥ < 1+ 2z for all z € [0, 1], we have that for any p € Z(G)
m(7)(p)

—, < ———— 2 1 < 2a.-.
"TTalr+ D) T

Therefore,

This implies that

m(7)(p) ?
In(r 4 1) = (Dl iy = n(r+ 1(p) (s 1
v T\ 2 7 +1)(p)
< 2a;.
This completes the proof of the second claim of Lemma 15. O

Next, we state and prove a lemma that states that the change in 7(-) is “small” compared to
the “mixing time” of the Glauber dynamics. It will play crucial role in establishing Lemma 13.
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Lemma 16 Given € € (0,1), for any 7 € N

TT+1 ar <

9

| ™

where T is the mizing time of the transition matriz e F™=1) defined as

B 1
R

T,

Proof. From Lemma 10, we have that

IN

16n exp [Qf(@max(T + 1))}

< 16n (log (@maX(T +1)+ e>)2 .

TT+1

A

Now f'(z) = < 1. This leads to the following bound:

1
(z+e) log(xz+e)

Trany < 160 (log (Quax(r + 1) +¢)) [(F@m) + F@Q( +1))) -1]

< 160 (10g (Qux(r +1) +¢)) (@mZ(T) " @min(i + 1>>
< 32n? (1055 (Qmax(T +1)+ e))Q
o Qmin(T + 1) -1
N 2
; 32n” (logA(Qmax(T +D+e)) (from (18))
B (%f (QmaX(T +1) - 2”)) -1
(33) _ 3w (log(z+e))’

e(log(a:—?n—&-e))% —e— 1’

where z := Quax(7 4+ 1) > f~1(B). By the definition of B (see Definition 5), the right hand side
of (33) is bounded above by £/8. This completes the proof of Lemma 16. O

5.7.2. Proof of Lemma 13. We wish to establish that for ¢ > C1(Q(0)),

(34) ,u(? — < e
m(t) 2,7(t)
It is enough to show that for 7 = [¢] > C1(Q(0)),
ur) -
71—(7_) 2,7(T) ,
since
Hu(t) . (@) H p) < Hen(t_LtJ)(P(T+1)—I)H plt)
m(t) 2,7(¢) m([t]) 2.7(|1)) m([t]) 2,7(11))
plt) -
m([]) 2.7((t))
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In above, for (a), note that m(t) = 7w([¢]) since 7(t) is the stationary distribution of P(t) Wthh
depends only on Q(|¢]) and Q([¢]). Now we first show that for any 7 € N with 7 > C(Q(0)) —

- %

o)

< ¢g/2
2,m(T)

To this end, suppose (35) is correct. Then, for 7 > C1(Q(0)),

p(7) — (e

e I TG,
< () ulr) - (7)o,  (from Lemma 15(1)),
< (o) flw(r) = ()l 2
< (U ar) () = = Dl o +lirlr =) = 7))
< 1+ ar-1) (; + 2047_1) (from Lemma 15(2))
< (1 + ;) (; + Z) (from Lemma 16)
< e

Therefore, it suffices to establish (35) for completing the proof of Lemma 13. To this end, for
simplicity of notation define

1
s, & HWH Y
W(T) 2,7(T)
Consider the following recursive relation for a,:
2
m(r+1) 2 7r(T+1)
1
< H n(P(r+1)— I)H ’ pr+l) (from (8))
T + 1) 2,m(7+1)
= (1 — ) lpw(r+1) =mw(t+ 1)y 1 (from definition of Tr41)
T YT F1)
1
< — — _
< (1) (I + D =)l oy + w0 =7+ Dl )
1
< (1 - ) <||M(T ) () 2aT> (from Lemma 15(2))
T‘r+1 Yw(r+1)
1
< (1 ~7 ) (eaT/Q [p(r +1) =7 (7)lo, = + 2aT> (from Lemma 15(1) )
T+1
1
— _ ar/
= (1 Tr+1> (e ar + 2a )
1
(36) < (1 -7 ) (1+ar)ar +2a;) (as ar <1 from (32)).
T+1
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From (36), if we have a, < £/2 then

) (/24 (2 +£/2)as)

1
a <(1-—
T ( TT+1

1
<(1- 2 f L 1 ds< &=
< ( Tr+1) (E/ + 2T7'+1) (from Lemma 16 and § < ;%)
(37) <e/2.

Hence, for establishing (35) it is enough to show that there exists a C' such that ac_1 < /2
and C < C1(Q(0)). To this end, fix 7 and assume ag > /2 for all integers s < 7. Then, from
recursive relation (36) it follows that for s < 7,

1

asy1 < <1 — > (14 as) as + 2as)

< (1+as)as + 4a5as> (as as >¢/2)
€

(
(1 (14 1))
( 1

) as (from Lemma 16 and § < 4%%)

IN

Ts+1

IN

| /‘\/};\/\/\
|
—

N—— —

(38) < e Tﬂas.
Using the (38) for all s < 7, we obtain the following:
ZT+1 L
s=1

(39) a1 < e w0,
Now, consider the following.
T 1 T 1
Z 7z = = (from Lemma 10)
o = 162n2 4f(Qmax(S))

- 16217,2 Z 4log10g(Qmax( )+e)

. 4
= 162n2 Z <log (Qmax( )+e))

1

> 162n2 Z (log (Qmax( )+ s+ e))

T

162n2 (log (@maX(O) + 7+ e))4
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a

>

—
=

16202 /7 (1og (@max(0) + 1+ 6))4
— \/F ’
162n2 (10g (Qmax(0) + 1+ 6>)4

where (a) follows from the fact that 7 > 1, Qmax(0) > f~1(B) > 77 and

log($+y))4 7
> (= 77 Vo >1,y>T7.
ﬁ_(log(1+y) ==

Finally, ag is bounded above as

o @_ 1— 7Trnin(o)
a0 = W(O) N ()
wmm(O) < 1/Z(0 )

< \/2nens (@max(0))
~ n/2
= (2 log(Qmax(0) + e)) .

Now if we choose

c_ "1627’L210g4(©max( )+1+e)log (2 (2 10g(Qmax(0) + e))"/Z)"2 +1,

g
it can be checked that e =" T ag < £/2. Therefore, from (39), if as > &/2 for all s < C — 1,

_Zz lT

ac—1 <e i ag < €/2. Otherwise, there exists C’ < C' — 1 such that acs < €/2, which also
implies ac—1 < €/2 from (37). In either case, ac—1 < €/2 and it completes the proof of (35) and
hence the proof of Lemma 13.

5.8. Proof of Lemma 8. 'We wish to establish that set C, = {x € X : |x| < k} is a closed petit
set. By definition, it is closed. To establish that it is a petit set, we need to find a non-trivial
measure p on (X, Bx) and sampling distribution a on N so that for any x € C\,

Kao(x,-) = p(-).
To construct such a measure u, we shall use the following Lemma (its proof is presented later).

Lemma 17 Let network Markov chain X (-) start with state x € Cy; at time 0, X (0) = x. Then,
there exists T, > 1 and vy, > 0 such that

Z Prx(X(7) =0) > 7., Vx €.

Here 0 = (0,0,0,0) € X denote the state where all components of Q, Q, S are 0 and the schedule
1s the empty independent set.
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In what follows, Lemma 17 will be used to complete the proof of Lemma 8 followed by the proof
of Lemma 17. To this end, consider Geometric(1/2) as the sampling distribution a, i.e.

a(l)=27% ¢>1.
Let d¢ be the delta distribution on element 0 € X. Then, define p as
p=2"""80, thatis p() =2"""%do(").

Clearly, p is non-trivial measure on (X, Bx). With these definitions of a and pu, Lemma 17
immediately implies that for any x € C\,

Kao(x,-) = p(-).
This establishes that set Cy; is a closed petit set and this completes the proof of Lemma 8.

5.8.1. Proof of Lemma 17. Consider any x € Cy. By definition total amount of work in
each queue is no more than x + 1. Consider some large enough (soon to be determined) 7. By
the property of Bernoulli arrival process, there is a positive probability 82 > 0 of no arrivals

happening to the system in time T,. Assuming no arrivals happen, we will show that in large
1

K

and after that in additional time t? with positive probability 82 > 0 the empty set schedule is
reached. This will imply that by defining T,, = t. +#2 the state 0 € X is reached with probability
at least

enough time t., with probability 8} > 0 each queue receives at least x + 1 amount of service;

e 2 6910 > 0.

And this will immediately imply the desired result of Lemma 17. To this end, we need to show

existence of tL, Al and t2, 6% with properties stated above to complete the proof of Lemma 17.

K'Y K

First, existence of t-, §1. For this, note that the Markov chain corresponding to the scheduling
algorithm has time varying transition probabilities and is irreducible over the space of all inde-
pendent sets, Z(G). If there are no new arrivals and initial x € C);, then clearly queue-sizes are
uniformly bounded (with bound dependent on ). Therefore, the transition probabilities of all
feasible transitions for this time varying Markov chain is uniformly lower bounded by a strictly
positive constant (dependent on k,n). It can be easily checked that the transition probability
induced graph on Z(G) has diameter at most 2n and Markov chain transits as per Exponential
clock of overall rate n. Therefore, it follows that starting from any initial scheduling configu-
ration, there exists finite time ¢, such that a schedule is reached so that any given queue i is

scheduled for at least unit amount of time with probability at least @,{ > (. Here, both #,, 5,.6

. . . A ~ .
depend on n, k. Therefore, it follows that in time t. = (k4 1)nt, all queues become empty with
- A (5 (st . . .
probability at least 01 = (6, e Next, to establish existence of t2, 62 as desired, observe that

once the system reaches empty queues, it follows that in the absence of new arrivals the empty
schedule 0 is reached after some finite time ¢ with probability #? > 0 by similar properties of
the Markov chain on Z(G) when all queues are 0. Here t? and 62 are dependent on n only. This
completes the proof of Lemma 17.
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6. Conclusion. In this paper, we resolved a long-standing and an important question of

designing efficient random access algorithm for contention resolution in a network of queues.

Our algorithm is essentially a random access based implementation, inspired by Metropolis-

Hasting’s sampling method, of the classical maximum weight algorithm with “weight” being an

appropriate function (f(x) = loglog(xz+e€)) of the queue size. The key ingredient in establishing

the efficiency of the algorithm is a novel adiabatic-like theorem for the underlying queueing

network. We strongly believe that this network adiabatic theorem in particular and methods of

this paper in general will be of interest in understanding effect of dynamics in networked system.
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