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Abstract—We consider the recovery of a nonnegative vector x
from measurements y = Ax, where A ∈ {0, 1}m×n. We establish
that when A corresponds to the adjacency matrix of a bipartite
graph with sufficient expansion, a simple message-passing algo-
rithm produces an estimate x̂ of x satisfying ‖x−x̂‖1 ≤ O(n

k
)‖x−

x(k)‖1, where x(k) is the best k-sparse approximation of x. The
algorithm performs O(n(log(n

k
))2 log(k)) computation in total,

and the number of measurements required is m = O(k log(n
k
)).

In the special case when x is k-sparse, the algorithm recovers
x exactly in time O(n log(n

k
) log(k)). Ultimately, this work is

a further step in the direction of more formally developing the
broader role of message-passing algorithms in solving compressed
sensing problems.

I. INTRODUCTION

Recovery of a vector x from measurements of the form
y = Ax has been of central interest in the compressed sensing
literature. When restricted to binary vectors, this has been
of interest in the context of binary linear error-correcting
codes. In essence, both desire a matrix A and an estimation
or decoding algorithm that allows for faithful recovery of x
from y. In this paper, we study the performance of a message-
passing recovery algorithm when the matrix A corresponds to
the adjacency matrix of a bipartite graph with good expansion
properties. Results of a similar flavor are well-known in the
context of coding, but have only begun to be explored in the
context of compressed sensing.

As background, there is now a large body of work in
compressed sensing. Both [1] and [2], [3] proposed using
linear programming (LP) to find the sparsest solution to
y = Ax. Since then, many algorithms have been proposed [4]–
[13]—see, e.g., [13] for a summary of various combinations
of measurement matrices and algorithms, and their associated
performance characteristics. Most existing combinations fall
into two broad classes. In the first class, inspired by high-
dimensional geometry, the measurement matrix A is typically
dense (almost all entries nonzero), and recovery algorithms are
based on linear or convex optimization. The second class con-
sists of combinatorial algorithms operating on sparse measure-
ment matrices (A typically has only O(n) nonzero entries).
Examples include the algorithms of [11]–[13]. In particular,
Algorithm 1 from [11] can be viewed as essentially the Sipser-
Spielman message-passing algorithm [14]. The algorithm we
consider in this paper also falls into the second class, and is a
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minor variant of the algorithm proposed in [15]. Very recent
work on the use of a message-passing algorithm to identify
compressed sensing thresholds appears in [16], [17]. Relative
to the present paper, [16] and [17] are more general in that ar-
bitrary (i.e., even dense) matrices A are considered. However,
[16], [17] restrict attention to a probabilistic analysis, while
we perform an adversarial analysis, and thus we are able to
provide deterministic reconstruction guarantees for arbitrary
(nonnegative) x.

On the coding theory side, Gallager introduced a class of
binary linear codes known as low-density parity check (LDPC)
codes, and proposed a computationally efficient message-
passing algorithm for their decoding [18]. Since then, an enor-
mous body of work has analyzed the performance of message-
passing algorithms for decoding such codes. In particular,
[14] showed that when the parity check matrix of an LDPC
code corresponds to the adjacency matrix of a bipartite graph
with sufficient expansion, a bit-flipping algorithm can correct
a constant fraction of errors, even if the errors are chosen
by an adversary. In [19], this result is extended by showing
that a broad class of message-passing algorithms, including
common algorithms such as so-called “Gallager A” and “B”
also correct a constant fraction of (adversarial) errors when
there is sufficient expansion. Finally, [20] suggested decoding
LDPC codes via LP, and [21] proved that this LP decoder can
correct a constant fraction of (adversarial) errors when there
is sufficient expansion. We show that similar techniques can
be used to analyze the performance of the message-passing
algorithm proposed in this paper.

The contribution of this paper is the adversarial analysis of
a simple message-passing algorithm for recovering a vector
x ∈ Rn

+ from measurements y = Ax ∈ Rm
+ , where

A ∈ {0, 1}m×n. Our first result concerns exact recovery in the
case that x has at most k nonzero entries. We show formally
that when A corresponds to a bipartite graph with expansion
factor greater than 0.5, the message-passing algorithm recovers
x exactly. Choosing an appropriate expander, we find that the
message-passing algorithm can recover x from O(k log(n

k ))
measurements in time O(n log(n

k ) log(k)). Compared to the
Sipser-Spielman algorithm [14], this algorithm requires less
expansion (0.5 vs. 0.75), but the Sipser-Spielman algorithm
works for arbitrary (i.e., not just nonnegative) vectors x.
Finally, [22] shows that recovery of nonnegative x is possible
from far less expansion, but their algorithm is significantly
slower, with a running time of O(nk2).
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As our second result, on approximate recovery, we show that
when A corresponds to a bipartite graph with expansion factor
greater than 0.5, the message-passing algorithm produces an
estimate x̂ with �1/�1 error guarantee ‖x− x̂‖1 ≤ O(n

k )‖x−
x(k)‖1, where x(k) is the best k-sparse approximation of x.
The running time of the algorithm is O(n(log(n

k ))2 log(k)),
and the number of measurements used is m = O(k log(n

k )).
In the regime where k scales linearly with n, our algorithm
is faster than almost all existing algorithms, e.g., [5], [9],
[10]; the only exception is [13], which is faster, and stronger,
in that the multiplier O(n

k ) in the �1/�1 guarantee is only
(1 + ε). However, relative to the algorithm of [13], ours has
the advantage of working with a smaller expansion factor
(albeit at the cost of requiring expansion from larger sets),
and is easily parallelizable. In addition, we believe that this
message-passing algorithm may be applicable in more general
settings, e.g., providing guarantees for recovering “random”
vectors when the graph is not an expander, but possesses other
properties, such as large girth.

Beyond the specific results above, this work can be viewed
as a further step toward formally connecting the theory of
message-passing algorithms with that of compressed sensing,
which we anticipate being of growing importance to further
advances in the field.

II. PROBLEM MODEL

As our problem model, we seek to estimate a vector x ∈ R
n
+

of interest from observations of the form y = Ax ∈ R
m
+ ,

where A = [Aij ] ∈ {0, 1}m×n is a known measurement
matrix. Associated with A is the following bipartite graph
G = (X, Y,E). First, X = {1, . . . , n}, Y = {1, . . . ,m} and
E = {(i, j) ∈ X×Y : Aij = 1}. Next, associated with vertex
i ∈ X is xi, the ith component of x, and with vertex j ∈ Y
is yj , the jth component of y. Further,

Nx(i) = {j ∈ Y : (i, j) ∈ E}, for all i ∈ X,

Ny(j) = {i ∈ X : (i, j) ∈ E}, for all j ∈ Y .

Note that the degrees of i ∈ X , j ∈ Y are |Nx(i)|, |Ny(j)|,
respectively. The structure in A is specified via constraints
on the associated graph G. Specifically, G is a (c, d)-regular
(k, α)-expander, defined as follows.

Definition 2.1 (Expander): A given bipartite graph G =
(X, Y,E) is a (c, d)-regular (k, α)-expander if every vertex
i ∈ X has degree c, every vertex j ∈ Y has degree d, and for
all subsets S ⊂ X such that |S| ≤ k we have |Γ(S)| ≥ αc|S|,
where Γ(S) � ∪i∈SNx(i).

III. AN ITERATIVE RECOVERY ALGORITHM

The message-passing algorithm for iteratively recovering
x is conceptually very simple. The algorithm maintains two
numbers for each edge (i, j) ∈ E, corresponding to a message
in each direction. Let t ≥ 0 denote the iteration number and
m

(t)
i→j ,m

(t)
j→i denote the two messages along edge (i, j) ∈ E

in the tth iteration. The principle behind the algorithm is to
alternately determine lower and upper bounds on x. Specifi-
cally, m2t

i→j and m2t+1
j→i are lower bounds on xi for all t ≥ 0;

m2t+1
i→j and m2t

j→i are upper bounds on xi for t ≥ 0. Also,
these lower (respectively, upper) bounds are monotonically
increasing (respectively, decreasing). That is,

m0
i→j ≤ m2

i→j ≤ . . . ; m1
i→j ≥ m3

i→j ≥ . . . .

Formally, the algorithm is given by the following pseudocode.

1: Initialization (t = 0): for all (i, j) ∈ E, set m0
i→j = 0.

2: Iterate for t = 1, 2, . . . :

a) t = t + 1, update messages for all (i, j) ∈ E via

m2t−2
j→i = yj −

∑
k∈Ny(j)\i

m2t−2
k→j (1)

m2t−1
i→j = min

l∈Nx(i)

(
m2t−2

l→i

)
(2)

m2t−1
j→i = yj −

∑
k∈Ny(j)\i

m2t−1
k→j (3)

m2t
i→j = max

[
0, max

l∈Nx(i)

(
m2t−1

l→i

)]
(4)

b) Estimate xi via x̂s
i = ms

i→j for s = 2t − 1, 2t.

3: Stop when converged (assuming it does).

Algorithm 1: Recovery Algorithm

IV. MAIN RESULTS

Our results on the performance of the message-passing
algorithm are summarized in the following two theorems. The
first establishes that the algorithm is able to recover sparse
signals exactly.

Theorem 4.1: Let G be a (c, d)-regular (� 2
1+2εk+1	, 1

2+ε)-
expander, for some ε > 0. Then, as long as k ≥ ‖x‖0 = |{i ∈
X : xi 
= 0}|, the estimate produced by the algorithm satisfies
x̂t = x, for all t ≥ T = O(log(k)) .
The second theorem establishes that the algorithm can approx-
imately recover x that are not exactly k-sparse.

Theorem 4.2: Let G be a (c, d)-regular (� k
2ε + 1	, 1

2 + ε)-
expander, for some ε > 0. Let x(k) denote the best k-sparse
approximation to x, i.e.,

x(k) = min
z∈Rn

+:‖z‖0≤k
‖x − z‖1.

Then, for all t ≥ T = O(log(k) log(cd)),

‖x − x̂t‖1 ≤
(

1 +
d

2ε

)
‖x − x(k)‖1.

As a sample choice of parameters, it is well-known that
there exist expanders with c = O(log(n

k )) and d = O(n
k ).

With such an expander, we use O(k log(n
k )) measurements.

The factor multiplying the error in the �1/�1 guarantee is
O(n

k ), and the algorithm can be implemented sequentially in
O(n(log(n

k ))2 log(k)) time, or in parallel O(n
k log(k) log(n

k ))
time using O(n) processors. In particular, when k = Θ(n)—a
regime typically of interest in information-theoretic analysis—
the algorithm provides a constant factor �1/�1 guarantee with
O(n log(n)) running time.
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V. ANALYSIS

A. Proof of Theorem 4.1

We start by observing a certain monotonicity property
of the messages. For each i ∈ X , the messages m2t

i→j

are monotonically nondecreasing lower bounds on xi, and
the messages m2t+1

i→j are monotonically nonincreasing upper
bounds on xi. This can be easily verified by induction. Given
this monotonicity property, clearly the messages at even and
odd times have limits: if these messages are equal after a
finite number of iterations, then the algorithm recovers x. We
establish that this is indeed the case under the assumptions of
Theorem 4.1.

To this end, define W2t = {i ∈ X : xi > m2t
i→·}, i.e.,

W2t is the set of vertices whose lower bounds are incorrect
after 2t iterations. Clearly, |W0| ≤ k since ‖x‖0 ≤ k, and
the lower bounds to xi, m2t

i→·, are nonnegative for all t. The
monotonicity property of the lower bounds implies that for
0 ≤ s < t, W2t ⊆ W2s. Therefore, it is sufficient to establish
that |W2t+2| < (1 − 2ε)|W2t| if 0 < |W2t| ≤ k; this implies
that after O(log(k)) iterations, W2t must be empty.

Suppose 0 < |W2t| ≤ k. Since W2t+2 ⊂ W2t, it suffices
to show that at least a 2ε fraction of the vertices in W2t are
not in W2t+2 . We prove this by using the expansion property
of G (or matrix A). Let V = Γ(W2t) ⊂ Y be the set of all
neighbors of W2t. Let T ⊂ X be {i ∈ X : Nx(i) ⊂ V }.
Since G is (c, d)-regular, |V | ≤ c|W2t|. Also, by definition
W2t ⊂ T . We state three important properties of T :
P1. |T | < 2|W2t|/(1 + 2ε). Suppose not. Then, consider any

T ′ ⊂ T with |T ′| = �2|W2t|/(1 + 2ε) + 1	. We reach a
contradiction as follows:

c|W2t| ≥ |V | ≥ |Γ(T ′)| ≥ |T ′|(1 + 2ε)
c

2
> |W2t|c.

P2. Let U = {i ∈ X : m2t+1
i→· > xi}. Then, U ⊂ T . This is

because m2t+1
i→· = xi if there exists j ∈ Nx(i) such that

j /∈ V . To see this, note that for such a j, all k ∈ Ny(j)\i
are not in W2t, and hence xk = m2t

k→j for all these k,
so yj −

∑
k∈Ny(j)\i = xi.

P3. Let T 1 = {i ∈ T : ∃j ∈ V s.t. Ny(j) ∩ T = {i}}.
Then, |T 1| ≥ 2ε|T |. To see this, let A = |{j ∈ V :
|Ny(j) ∩ T | = 1}|, and let B = |V | − A. Then, number
of edges between T and V is at least 2B + A, and since
G is (c, d)-regular, the number of edges between T and
V is at most c|T |. Therefore, A + 2B ≤ c|T |. Now, by
[P1], |T | < 2k/(1 + 2ε), so |Γ(T )| ≥ c|T |(1 + 2ε)/2.
Therefore, A+B ≥ c|T |(1+2ε)/2, whence A ≥ 2εc|T |.

To complete the proof, note that T 1 ⊂ W2t, and |T 1| ≥ 2ε|T |
by [P3]. For each i ∈ T 1, let j(i) ∈ V be its unique neighbor
in the definition of T 1, i.e., Ny(j(i)) ∩ T = {i}. Then, [P2]
implies that for all k ∈ Ny(j(i)) \ i, we have m2t+1

k→j(i) = xk.
Therefore, m2t+1

j(i)→i = xi, so m2t+2
i→· = xi. Thus, i /∈ W2t+2,

i.e., T 1 ⊂ W2t \W2t+2, completing the proof of Theorem 4.1.

B. Proof of Theorem 4.2

This section establishes Theorem 4.2 in two steps. First,
using techniques similar to those used to prove Theorem 4.1,

we obtain a very weak bound on the reconstruction error. Next,
we improve this weak bound, by showing that when the error
is large, it must be reduced significantly in the next iteration.
This yields the desired result.

Given x ∈ R
n
+, let x(k) denote the best k-term approxi-

mation to x. Let X+ = {i ∈ X : x
(k)
i 
= 0}, and let X0 =

X \ X+. For an arbitrary S ⊂ X , let et(S) =
∑

i∈S(xi−x̂t
i) at

the end of iteration t; recall that x̂t is the algorithm’s estimate
after t iterations. Note that x̂2s

i ≤ xi ≤ x̂2s+1
i , so et(S) ≥ 0

for even t, and et(S) ≤ 0 for odd t.
Now, we state the first step of the proof, i.e., the weak bound

on reconstruction error.
Lemma 5.1: Let G be a (c, d)-regular (� 2k

1+2ε + 1	, 1
2 + ε)-

expander, for some ε > 0. Then, after t = O(log k) iterations,

‖x − x̂t‖1 ≤ O
(
(cd)O(log(k)) log(k)

)
‖x − x(k)‖1.

Proof: We copy the proof of Theorem 4.1. Let V =
Γ(X+) be the set of neighbors of X+, and let S′ = {i ∈
X : Nx(i) ⊂ V }. Also, define sets S�, � ≥ 0 as follows:

S0 = X \S′, S1 = {i ∈ S′ : ∃j ∈ V s.t. Ny(j)∩S′ = {i}},
and for � ≥ 2,

S� = {i ∈ S′ : ∃j ∈ V s.t. Ny(j) ∩ (S′ \ ∪�′<�S�′) = {i}} .

We note that by arguments similar to those used to establish
property [P3], it follows that |S�| ≥ 2ε|S′ \ ∪�′<�S�′ |. Also,
[P1] implies that |S′| ≤ 2k

1+2ε . Therefore, S� is empty for
� ≥ O(log k).

Adapting arguments used in the proof of Theorem 4.1, we
bound e2�(S�) for � ≥ 0. First, by definition S0 ⊂ X0, so
e0(S0) ≤ ‖x − x(k)‖1. Now, consider e2(S1). By definition,
each vertex i ∈ S1 has a unique neighbor j, i.e., a neighbor j
such that Ny(j) \ i ⊂ S0. Therefore,

xi − x̂2
i ≤

∑
i′∈Ny(j)\i

(x̂1
i′ − xi′).

Each i′ ∈ S0, so for each i′ we have a neighbor j′ 
∈ V , i.e.,
Ny(j′) ⊂ X0. Therefore,

x̂1
i′ − xi′ ≤

∑
i′′∈Ny(j′)\i′

(xi′′ − x̂0
i′′),

where all i′′ ∈ X0. Thus,

xi − x̂2
i ≤

∑
i′∈Ny(j)\i

∑
i′′∈Ny(j′)\i′

(xi′′ − x̂0
i′′),

and summing over all i ∈ S1, we obtain

e2(S1) ≤
∑
i∈S1

∑
i′∈Ny(j)\i

∑
i′′∈Ny(j′)\i′

(xi′′ − x̂0
i′′).

Now, we bound the number of times a particular vertex i′′ ∈
S0 can appear on the right-hand side of the above inequality.
i′′ can only occur in sums corresponding to a vertex i ∈ S1

such that there exists a walk of length 4 between i′′ and i in
G. Therefore, i′′ can occur in at most (cd)2 terms; hence,

e2(S1) ≤ (cd)2e0(S0).
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Similarly, we can bound e2�(S�) for � > 1 by induction.
Assume that for all �′ < �,

e2�′(S�′) ≤ (cd)2�′‖x − x(k)‖1.

For each vertex i ∈ S�, there exists a unique neighbor j,
i.e., j satisfies Ny(j) \ i ⊂ ∪�′<�S�. Thus, xi − x̂

2�)
i ≤∑

i′∈Ny(j)\i(x̂
2�−1
i′ − xi′). As before, each i′ has a unique

neighbor j′, and summing over i ∈ S�, we obtain

e2�(S�) ≤
∑
i∈S�

∑
i′∈Ny(j)\i

∑
i′′∈Ny(j′)\i′

(xi′′ − x̂2�−2
i′′ ),

where all i′′ ∈ ∪�′<�−1S�. Again, each i′′ can only occur
(cd)2 times, so we conclude that

e2�(S�) ≤ (cd)2
�−2∑
�′=0

e2�−2(S�′) ≤ (cd)2
�−2∑
�′=0

e2�′(S�′)

≤ (cd)2
�−2∑
�′=0

(cd)2�′‖x−x(k)‖1 ≤ (cd)2�′‖x−x(k)‖1,

where the second inequality is true because of the mono-
tonicity property of the lower bounds. Thus, we have shown
inductively that e2�(S�) ≤ (cd)2�‖x − x(k)‖1 for all �. Since
there are at most O(log k) nonempty sets S�, it follows that
after t = O(log k) iterations,

‖x−x̂t‖1 ≤
∑

�

e2�(S�) ≤ O
(
(cd)O(log(k)) log(k)

)
‖x−x(k)‖1.

On one hand, Lemma 5.1 gives a weak bound on the
reconstruction error, as the multiplier is poly(n). On the other
hand, it provides good starting point for us to boost it to obtain
a better bound by using the second step described next. To that
end, we first state a definition and lemma adapted from [21].

Definition 5.1: Given a (c, d)-regular bipartite graph G =
(X, Y,E), let B(S) = {i ∈ X \ S : Nx(i) ∩ Γ(S) > c

2} for
any S ⊂ X . For a given constant δ > 0, a δ-matching is a
set M ⊂ E such that: (a) ∀j ∈ Y , at most one edge of M is
incident to j; (b) ∀i ∈ S ∪ B(S), at least δc edges of M are
incident to i.

Lemma 5.2: Let G = (X, Y,E) be a (c, d)-regular (� k
2ε +

1	, 1
2 + ε)-expander, for some ε > 0. Then, every S ⊂ X of

size at most k has a 1
2 + ε-matching.

To keep the paper self-contained, a proof of Lemma 5.2 is
provided in Appendix I.

We use δ-matchings to prove that the reconstruction error
decays by a constant factor in each iteration.

Lemma 5.3: Let G be a (c, d)-regular (� k
2ε + 1	, 1

2 + ε)-
expander, for some ε > 0. Then,

e2t+2(X+) ≤ 1 − 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0).

In our proof of Lemma 5.3, we make use of the follow-
ing lemma establishing a simple invariance satisfied by the
message-passing algorithm. Since this invariance was used
earlier in the proof of Lemma 5.1, a proof is omitted.

Lemma 5.4: For any i ∈ X , construct a set S as follows.
First, choose a vertex j ∈ Nx(i). Next, for each i′ ∈ Ny(j)\i,
choose a vertex w(i′) ∈ Nx(i′) (note that these choices can
be arbitrary). Finally, define S as ∪i′∈Ny(j)\iNy(w(i′)) \ i′.
Then, no matter how j and w(i′) are chosen,

xi − x̂
(2t+2)
i ≤

∑
i′′∈S

(xi′′ − x̂
(2t)
i′′ ).

Proof of Lemma 5.3: Lemma 5.2 guarantees the existence
of a 1

2 + ε-matching, say M , for the set X+ of (at most) k
vertices in X . We use this 1

2 + ε-matching to produce a set of
inequalities of the form given in Lemma 5.4. By adding these
inequalities, we prove Lemma 5.3.

For each i ∈ X+, let M(i) be the set of neighbors of i in
the 1

2 +ε-matching. We construct an inequality, or equivalently,
a set S, for each member of M(i). We construct the sets S
sequentially as follows. Fix i and j ∈ M(i). For each i′ ∈
Ny(j) \ i, we must choose a neighbor w(i′). If i′ ∈ X+ or
i′ ∈ B(X+), set w(i′) to be any vertex in M(i′) that has not
been chosen as w(i′) for some previously constructed set. If
i′ ∈ X\(X+∪B(X+)), choose i′ to be any element of Nx(i′)\
Γ(X+) that has not been chosen as w(i′) for some previously
constructed set. Although it may not be immediately apparent,
we will see that this process is well-defined, i.e., i′ will always
be able to choose a neighbor w(i′) that has not been used
previously. First, however, we complete the proof assuming
that the process is well-defined.

To that end, we establish Lemma 5.3 by adding together all
the inequalities associated with the sets S constructed above.
First, consider the left-hand side of this sum. The only terms
that appear are xi − x̂

(2t+2)
i , where i ∈ X+, and each of these

appears at least ( 1
2 + ε)c times since |M(i)| ≥ ( 1

2 + ε)c for
all such i. On the right-hand side, we must count how many
times each term xi − x̂

(2t)
i appears in some inequality, i.e.,

how many times vertex i appears in the second level of some
set S. We break the analysis up into two cases. First, assume
that i ∈ X+. Then, xi−x̂

(2t)
i can appear in the second level of

a set S only if some vertex in Nx(i) was chosen as w(i′) for
some i′ 
= i when we were defining S. This is only possible
for i′ ∈ X+ ∪B(X+). To bound the contribution due to such
i′, note that the vertices in M(i) can never be chosen as w(i′)
for i′ 
= i, and that every vertex in ∪i∈X+M(i) is chosen at
most once. Therefore, xi − x̂

(2t)
i appears at most ( 1

2 − ε)c
times. To bound the number of appearances of xi − x̂

(2t)
i for

i 
∈ X+, note that any vertex can appear in some set S at
most cd times. To see this, note that any vertex in Y can
appear as w(i′) for a set S at most d times, once for each of
its neighbors, because a single vertex in X never chooses the
same neighbor as its w(i′) more than once. The bound then
follows since each vertex in X has degree c. Hence,(

1
2

+ ε

)
c e2t+2(X+) ≤

(
1
2
− ε

)
c e2t(X+) + c d e2t(X0),

or equivalently,

e2t+2(X+) ≤ 1 − 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0).
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Now we prove the only remaining claim that the process
for constructing the sets S is well-defined. The analysis above
implicitly establishes this already. First, note that every i′ ∈
X+ ∪B(X+) has at least ( 1

2 + ε)c distinct neighbors that can
be chosen as w(i′), and by definition every i′ ∈ X \ (X+ ∪
B(X+)) has at least c

2 distinct neighbors that can be chosen
as w(i′). Therefore, in order to prove that the construction
procedure for the sets S is well-defined, it suffices to show
that every vertex can appear as an i′, i.e., in the first level
of some S, at most c

2 times. For i′ ∈ X+ ∪ B(X+), at least
( 1
2 +ε)c of i′’s neighbors are in the 1

2 +ε-matching, so any such
i′ appears at most ( 1

2 −ε)c times. For i′ ∈ X \(X+∪B(X+)),
by definition Nx(i′) ∩ Γ(X+) ≤ c

2 , so any such i′ appears at
most c

2 times.
Completing proof of Lemma 4.2: We combine lemmas

5.1 and 5.3. First, from Lemma 5.1, after t = O(log(k))
iterations, the error satisfies the bound

‖x − x̂t‖1 ≤ O((cd)O(log(k)) log(k))‖x − x(k)‖1.

Lemma 5.3 implies that after an additional O(log(k) log(cd))
iterations, the error satisfies

‖x − x̂t+O(log(k) log(cd))‖1 ≤
(

1 +
d

2ε

)
‖x − x(k)‖1.

To see this, apply the inequality

e2t+2(X+) ≤ 1 − 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0)

repeatedly, and note that e2t(X0) is monotonically nonincreas-
ing as a function of t, so e2t(X0) < e0(X0).

APPENDIX I
PROOF OF LEMMA 5.2

The following is essentially identical to Proposition 4 and
Lemma 5 in [21]. We construct a 1

2 +ε-matching by analyzing
the following max-flow problem. Consider the subgraph of G
induced by the set of left vertices U = S ∪ B(S) and right
vertices V = Γ(S∪B(S)). We assign a capacity of 1 to every
edge in this subgraph, and direct these edges from U to V .
Finally, we add a source s with an edge of capacity ( 1

2 + ε)c
pointing to each vertex in U , and a sink t with an incoming
edge of capacity 1 from every vertex in V . If the maximum
s−t flow in this graph is ( 1

2 +ε)c|U |, then we have constructed
a 1

2 + ε-matching. To see this, recall that if the capacities are
integral, then the maximum flow can always be chosen to be
integral, and the edges between U and V with nonzero flow
values in an integral maximum flow form a 1

2 + ε-matching.
To complete the proof, we show that the minimum s − t

cut in the max-flow problem constructed above is ( 1
2 +ε)c|U |.

To see this, consider an arbitrary s − t cut s ∪ A ∪ B, where
A ⊂ U and B ⊂ V . The capacity of this cut is ( 1

2 + ε)c(|U |−
|A|) + |B| + C, where C is the number of edges between A
and V − B. Assume that Γ(A) 
⊂ B. Then, from the above
formula it follows that we can produce a cut of at most the
same value by replacing B by B ∪ Γ(A). Therefore, without
loss of generality we can assume that Γ(A) ⊂ B. Now, an

argument similar to that used to prove P1 shows that |A| ≤
� |S|

2ε 	: |S| ≤ k, so if |A| ≥ � |S|
2ε +1	, then there exists a set of

size k′ = � |S|
2ε +1	 with at most c|S|+ c

2 (k′−|S|) < ( 1
2 +ε)ck′

neighbors, contradicting the (� k
2ε +1	, 1

2 + ε)-expansion of G.
Therefore, |Γ(A)| ≥ ( 1

2 + ε)c|A|, so the min-cut has capacity
at least ( 1

2 + ε)c(|U | − |A|) + ( 1
2 + ε)c|A| = (1

2 + ε)c|U |.
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