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Abstract—Most of the current communication networks, including the Internet, are packet switched networks. One of the main
reasons behind the success of packet switched networks is the possibility of performance gain due to multiplexing of network

bandwidth. The multiplexing gain crucially depends on the size of the buffers available at the nodes of the network to store packets at
the congested links. However, most of the previous work assumes the availability of infinite buffer-size. In this paper, we study the

effect of finite buffer-size on the performance of networks of interacting queues. In particular, we study the throughput of flow-controlled
loss-less networks with finite buffers. The main result of this paper is the characterization of a dynamic scheduling policy that achieves

the maximal throughput with a minimal finite buffer at the internal nodes of the network under memory-less (e.g., Bernoulli IID)
exogenous arrival process. However, this ideal performance policy is rather complex and, hence, difficult to implement. This leads us

to the design of a simpler and possibly implementable policy. We obtain a natural trade-off between throughput and buffer-size for such
implementable policy. Finally, we apply our results to packet switches with buffered crossbar architecture.

Index Terms—Queuing theory, flow-controlled networks, scheduling, packet switching, buffered crossbars.

Ç

1 INTRODUCTION

MOSTof the current communication networks are packet
switched networks. A prominent feature of packet

networks is the performance gain that can be obtained due
to multiplexing of bandwidth. However, this requires some
form of scheduling policy to coordinate the transfer of
packets at the congested resources. As a consequence, the
performance of such networks, in terms of throughput,
depends on the scheduling policy.

The seminal work of Tassiulas and Ephremides [33]
pioneered the research for studying the maximal through-
put of networks of interacting queues (also called constrained
queueing systems). Their scheduling policy is based just on
the actual queues state without requiring any knowledge on
the traffic pattern. The methods of [33] have been utilized in
the context of packet switching [1], [8], [17], [22], [36],
satellite and wireless networks [26], [27], etc. Although
those results are quite general, they assume the availability
of infinite buffers at all the nodes in the network. However,
in the practical setup, buffer-sizes are always finite. This is a
major limitation of the previous results.

In this paper, to overcome this limitation, we study the
maximal achievable throughput in flow-controlled loss-less
networks of interacting queues, with finite buffers at the
internal nodes of the network; the flow control mechanism

prevents the queue from overflowing. To be able to define
formally the throughput region in such loss-less networks,
we allow only the ingress nodes to have infinite buffer sizes.
Our work can be seen as an extension of the results of [33] in
the sense that it gets rid of the assumption of infinite buffers
inside the network.

As an application of our results, we evaluate the
maximal achievable throughput in packet switch architec-
tures built around a crossbar with buffered crosspoints.
Such switches have become architecturally appealing due to
recent advances in the technology [38]. They allow for the
possibility of simpler scheduling algorithms. Hence, they
have received a great deal of attention recently. However, a
little progress has been made in the context of designing
simple throughput maximal scheduling algorithms. Based
on our results for general networks, we propose a novel
distributed scheduling policy, called DMWF. Under ad-
missible Bernoulli IID traffic, we show that DMWF is stable
if enough internal buffer is available. In particular, we
evaluate the natural trade-off between throughput and
buffer-size at crosspoints. Finally, noticing that in switching
architectures an internal speedup is usually adopted to
compensate throughput penalties, we highlight that our
results allow also to evaluate the trade-off between speed-
up and buffer-size at crosspoints.

The contribution of this paper is rather theoretical in
nature and may not be useful in practice, but we believe
that these results will provide useful guidelines to design
practical algorithms and to size buffers.

1.1 Organization

The rest of the paper is organized as follows: In Section 2,
we introduce setup and notation of this paper. We then
recall known results about the maximal throughput policies
for networks with infinite buffer in Section 2.3. We present
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our main results in Section 3. In Section 4, we introduce the
buffered crossbar switch architecture and apply our results
to obtain a distributed scheduling policy for buffered
crossbar. For the ease of exposition, we present the proofs
in the appendix of the paper. Finally, Section 5 provides the
key ideas to compute the bounds on achievable throughput
when also the ingress buffers are finite and losses are
allowed.

2 SETUP

2.1 Notation and Model

We consider a network of discrete-time stations (or servers
or nodes), handling J packet (or customer) flows. To
describe the network model and dynamics, we mainly need
to specify:

1. arrival process of flows,
2. flow routing,
3. queuing at nodes, and
4. service (or scheduling) policy.

Before we do so, we present some notations that will be
useful for the rest of the paper.

Let time be denoted by n 2 IN. Packets of any given flow
enter the network at a specific station, follows a flow
dependent acyclic path through the network, and finally
leave the network. The number of stations (hops) traversed
by packets of flow j; 1 ! j ! J; is hj. We assume that the
routing is deterministic. An example of such a network is
depicted in Fig. 1. At each station, a separate virtual queue
is maintained for each flow passing through it; the set of all
virtual queues residing at the station forms the physical
queue. Let the total number of virtual queues in the
network be Q. Let qðj; hÞ, 1 ! h ! hj, be the virtual queue
traversed by flow j on its hth hop. Queue qðj; 1Þ is called the
“ingress queue” for flow j. The set of all ingress queues
fqðj; 1Þ; 1 ! j ! Jg is denoted with !I . The remaining
virtual queues are called “internal queues” and the set of
these queues is denoted by !M .

Next, we define map f , where fðqðj; hÞÞ ¼ qðj; 1Þ; thus, f
maps qðj; hÞ to its ingress queue. Let uðqÞ be the upstream
queue to q, that is, uðqðj; hÞÞ ¼ qðj; h% 1Þ, 2 ! h ! hj.
Similarly, let pðqÞ be the downstream queue to q, i.e.,
pðqðj; hÞÞ ¼ qðj; hþ 1Þ, 1 ! h ! hj % 1. Finally, jðqÞ returns
the index of the flow traversing queue q. Since we assume
deterministic routing, let theQ'QmatrixR be a 0-1 routing

matrix, with binary elements Rq1q2 ¼ 1 iff pðq1Þ ¼ q2, and
Rq1q2 ¼ 0 otherwise.

We assume that packets are of fixed length, all servers
have the same capacity and each server takes unit time to
serve a packet.

Now, we are ready to describe the discrete time
network dynamics. Let XðnÞ ¼ ½xqðnÞ)Qq¼1 be the vector1

whose qth component, xqðnÞ, represents the number of
packets (or size of the queue) in the qth queue at the
beginning of time n.2 For ease of exposition, we will
abuse notation by using xj;hðnÞ for xqðj;hÞðnÞ. We suppose
the buffer size of all the ingress virtual queues (belonging
to !I) to be infinite, whereas we assume all the other
virtual queues along the flow paths (belonging to !M ) to
be of finite buffer-size. All the virtual queues traversed by
flow j have a buffer size of lj packets. The queues evolve
as follows: For 1 ! q ! Q,

xqðnþ 1Þ ¼ xqðnÞ þ eqðnÞ % dqðnÞ;

where eqðnÞ represents the number of packets entering the
queue and dqðnÞ represents the number of packets depart-
ing the queue in time ðn; nþ 1). Let EðnÞ ¼ ½eqðnÞ)Qq¼1 and
DðnÞ ¼ ½dqðnÞ)Qq¼1. Again, we abuse notation for by using
dj;hðnÞ in place of dqðj;hÞðnÞ.

We first note that, neither an empty queue can be
serviced nor a full queue can be sent a packet (thus,
restricting service of upstream queue, thanks to the flow
control mechanism). This can be expressed as follows:

DðnÞ ! XðnÞ and DðnÞR ! L%XðnÞ; ð1Þ

where L ¼ ½ljðqÞ)Qq¼1 (assuming ljðqÞ ¼ þ1 for q 2 !I). Now,
the arrivals to ingress queues depend only on exogenous
process. However, arrivals to internal queues depend on the
departure from other queues. Let AðnÞ ¼ ½aqðnÞ)Qq¼1, denote
the exogenous arrival process. Note that aqðnÞ ¼ 0 if q 2 !M

(i.e., q is not an ingress queue). The internal arrivals can be
represented by DðnÞR. In summary, the evolution of
queues can be rewritten as:

Xðnþ 1Þ ¼ XðnÞ þAðnÞ %DðnÞðI%RÞ; ð2Þ

where I denotes the identity matrix.
We assume that the external arrival process fAðnÞ : n 2

INþg is a stationary memoryless process, i.e., AðnÞ are IID
random vectors with average EðAðnÞÞ ¼ " ¼ ½!q)Qq¼1. In
addition, we assume all the polynomial moments of AðnÞ
to be finite. Note that, since external arrivals are directed
only to ingress queues, !q ¼ 0 if q 2 !M .

At time slot n, the scheduling policy selects the service
vector SðnÞ, whose element sqðnÞ represents the amount of
work provided to the qth queue during time slot n; again,
sj;hðnÞ ¼ sqðj;hÞðnÞ. The departure vector DðnÞ is related to
SðnÞ according to the following equation:

Xn

t¼0

DðtÞ ¼
Xn

t¼0

SðtÞ
$ %

) DðnÞ ¼
Xn

t¼0

SðtÞ
$ %

%
Xn%1

t¼0

DðtÞ:
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Fig. 1. Example of flow-controlled network of interacting queues with five

servers and six flows.

1. All vectors in this paper are row vectors, unless specified otherwise.
2. Note that queue-length or queue-size is time-variable queue-

occupancy, whereas buffer-size of a queue denotes the maximum number
of packets that can be stored in that queue.



In other words, the number of packets served from a queue
is given by the amount (approximated to the integer part) of
cumulative service provided to the queue. We define the
difference between the two quantities by:

#ðnÞ ¼
Xn

t¼0

SðtÞ %
Xn

t¼0

DðtÞ;

whose qth element "qðnÞ 2 ½0; 1Þ represents the amount of
work provided by the scheduling policy to the head-of-the-
line packets of the qth queue at the end of time slot n. In this
paper, we restrict our investigation to the class of dynamic
scheduling policies, i.e., those scheduling policies which
select SðnÞ on the only basis of the actual queues state
without requiring any knowledge on the traffic pattern.

In general, we assume that the set of possible service
vectors SðnÞ is constrained by a system of linear equations
representing the topological interference among services at
queues (blocking constraints):

SðnÞK ! T: ð3Þ

Matrix K and vector T describe the blocking constraints in
the services. For example, simple topological constraints are
those expressing the fact that the sum of services provided
to all the virtual queues residing at the same physical queue
is limited by the server capacity to one packet per slot.
However, we do not exclude additional constraints which
relate the behavior of queues residing at different stations.
Let bD be the set of nonnegative SðnÞ which satisfy the
blocking constraints. We notice that bD defines a polyhedral
convex region. Let D the set of all vertices of bD. We assume
that T is integer valued and K is totally unimodular (i.e.,
the determinant of all square submatrices are *1); hence, all
vectors in D are integer valued. Finally, we notice that all
vectors #ðqÞ, with 1 ! q ! Q, whose elements are all null
except the qth, which is unitary, belongs to bD, i.e.,
#ðqÞ ¼ ½0; 0; 0; + + + 1; 0; 0; 0) 2 bD. We remind that SðnÞ must
be chosen in such a way that the service constraints defined
for DðnÞ in (1) are not violated.

If the scheduling policy is atomic, i.e., packets are
transmitted by servers in an “atomic” fashion, without
interleaving their transmission with packets residing in
other queues, then SðnÞ is integer valued, and DðnÞ ¼ SðnÞ
for any n. In this case, XðnÞ is a DTMC (Discrete Time
Markov Chain). In the more general case, ðXðnÞ;#ðnÞÞ is a
discrete time Markov process defined on a general state
space [23]. In the latter case, let us define the workload
vector Y ðnÞ ¼ ½yqðnÞ)Qq¼1:

Y ðnÞ ¼ XðnÞ %#ðnÞðI%RÞ:

We notice that ðXðnÞ;#ðnÞÞ ) Y ðnÞ is a one to one
correspondence. Furthermore, it is easy to verify that Y ðnÞ
satisfies the following system evolution equation, derived
by (2):

Y ðnþ 1Þ ¼ Y ðnÞ þAðnÞ % SðnÞðI%RÞ: ð4Þ

Note that if the scheduling policy is atomic, then XðnÞ ¼
Y ðnÞ for any n and (4) coincides with (2). For the sake of
easier notation, we define xj;hjþ1 ¼ yj;hjþ1 ¼ 0.

Finally, let us introduce the following useful positive
convex functional:

Definition 1. Given a vector Z 2 IRQ
þ; Z ¼ ðzðqÞ; 1 ! q ! QÞ,

the positive convex functional kZk is defined as:3

kZk ¼ inf $ 2 IRþ :
1

$
Z 2 bD

! "
:

In the rest of the paper, we will refer to it with the improper
term of “norm.”

Remark. The functional defined above is equivalent to the
well-knownMinkowski convex functional associated to bD.

From the definition of kZk, it immediately follows that
for any SðnÞ 2 bD, kSðnÞk ! 1. Under atomic policy,
SðnÞ ¼ DðnÞ 2 D. Thanks to the fact that k#ðqÞk ¼ 1, we
can claim:

kZk ¼
XQ

q¼1

zq#
ðqÞ

#####

##### !
XQ

q¼1

zqk#ðqÞk !
XQ

q¼1

zq: ð5Þ

A generic norm on IRQ
þ is represented by k + k,.

2.2 Stability: Definitions and Known Results

We present definitions and known results regarding the
system stability in the context of stochastic network.

Definition 2. A stationary traffic pattern is admissible if
k"ðI%RÞ%1k < 1.

Let % ¼ k"ðI%RÞ%1k. For the simplest case in which
virtual queues residing at different servers are not
topologically interacting, traffic is admissible iff no servers
are overloaded; in addition, % represents the load of the
heaviest loaded server in the network.

Definition 3. The system of queues is stable if:

lim sup
n!1

E kXðnÞk,ð Þ < 1

or equivalently : lim sup
n!1

EkY ðnÞk,Þ < 1;

i.e., the system is positive (Harris) recurrent.

Note that the admissibility of traffic pattern is a
necessary condition for the system of queue to be stable
as shown in [33].

We say that the system is stable at point " if it is stable
under every stationary memoryless external arrival pro-
cesses AðnÞ with average " and finite polynomial moments.

Definition 4. We define as stability region (or throughput
region) the set of points " in correspondence of which the
system of queues is stable.

Definition 5. We say that a system of queues is 1-efficient (or
equivalently achieves 100 percent throughput), if it is stable
under any admissible traffic pattern.
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3. We notice that, according to previous assumptions on bD, Z ¼ 0 is an
interior point of bD in IRQ

þ . Thus, for any Z 2 IRQ
þ , kZk is well defined, i.e.,

finite.



Definition 6. For any 0 < % < 1, we say that the system of
queues is %-efficient if it is stable under any traffic pattern
such that k"ðI%RÞ%1k ! %.

The method of Lyapunov function is a powerful tool to
prove stability (i.e., positive, or Harris, recurrency) of
irreducible Markovian systems. Next, we recall some of the
well-known results regarding Lyapunov functionmethodol-
ogy that will be used in the remaining paper. An interested
reader can see [13], [23], [27] for a more detailed exposition.

Theorem 1. Let ZðnÞ be an irreducible Q-dimensional Markov
chain (or, general space Markov process), whose elements
zlðnÞ; l ¼ 1; 2; . . . ; Q are nonnegative, i.e., ZðnÞ 2 INQ

þ (or,
ZðnÞ 2 IRQ

þ). If there exists a nonnegative valued function
fL : IRQ

þ ! IRþg such that both:

E LðZðnþ 1ÞÞ % LðZðnÞÞjZðnÞ½ ) < 1 ð6Þ

and

lim sup
kZðnÞk,!1

E LðZðnþ 1ÞÞ % LðZðnÞÞjZðnÞ½ )
ZðnÞk k,

< %& ð7Þ

are satisfied for some & > 0, then ZðnÞ is positive recurrent,
and

lim sup
n!1

E kZðnÞk,½ ) < 1:

Inequality (6) requires that the increments of the Lyapunov
function LðZÞ are finite on average. The second inequality
(7) requires that, for large values of kZk,, the average
increment in the Lyapunov function from time n to time
nþ 1 is negative. An intuitive explanation of this result can
be given by interpreting the Lyapunov function LðZðnÞÞ as
the system energy associated to state ZðnÞ. In this case, (7)
forces the system to be dissipative on average for large
ZðnÞ; as a consequence, a negative feedback exists, which is
able to pull the system toward the empty state, thus making
it ergodic. For these reasons, inequality (7) is often referred
as the Lyapunov function drift condition.

In our case, ZðnÞ represents the number of packets in the
network of queue XðnÞ or the workload Y ðnÞ, whose
evolution is given by (2) or (4). For polynomial Lyapunov
functions (i.e., functions LðZÞ polynomial with respect to Z
elements), it is immediate to verify that (6) can be always
met when all the polynomial moments of AðnÞ are finite.

For these reasons, since in the remainder of this paper we
restrict our investigation to polynomial Lyapunov func-
tions, the satisfaction of (7) for some (polynomial) Lyapu-
nov function entails system stability.

2.3 Previous Work
The problem of the definition of the stability region in
complex systems of interacting queues under dynamic
scheduling policies, has attracted significant attention in the
last decade from the research community since the
pioneering work [33].

In [33], applying the Lyapunov function methodology, it
has been shown that a system of interacting queues whose
buffer-size is infinite achieve 100 percent throughput, if
atomic max-scalar scheduling policy PMS is applied at each
node of the network. According to PMS , at each time slot n
the departure vector is selected as follows:

DðnÞ ¼ SðnÞ ¼ argmax
Z2D

ZðI%RÞXðnÞT : ð8Þ

The result in [33] has been generalized and adapted to
different application contexts in the last years. As matter of
example we just briefly recall some of the related works.

In the switching context, several studies have been aimed
at the definition of the stability region in Input-Queued (IQ)
switching architectures built around a bufferless crossbar:
papers [1], [17], [22], [32], [36] have proposed different
extensions of PMS , which have been shown to be 1-efficient;
stability properties for simpler scheduling policies have been
also studied in [8], [16]; in [2], [3], [17], finally, the problem of
the definition of the stability region in networks of
IQ switches has been considered. In the context of the satellite
and wireless networks, generalizations of PMS have been
recently proposed and shown to be 1-efficient in [26], [27],
[34]. Finally, the recent paper [7] generalizes the result in [33]
under more general exogenous arrival processes applying a
different analytical technique called fluid models.

All the previous works, however, have considered system
of infinite buffer size queues. As noted before, in contrast to
the previous work, this paper studies the stability region
(throughput region) of networks with finite buffers.

3 PERFORMANCE OF NETWORK OF FINITE QUEUES

Here,wepresent ourmain results. In Section 3.1we show that
100 percent throughput can be obtained in any network of
finite, flow-controlled interacting queues, for lj - 1. To this
end, we define the optimal dynamic scheduling policy P1.
Since policyP1 1) is not atomic, i.e., servers provide fractional
services to packets stored at head of the virtual queues, and
2) requires the servers to coordinate their decisions at each
time slot, then its implementability results problematic in
several application contexts. In Section 3.2, we propose the
atomic dynamic scheduling policy P2 whose complexity is
similar to PMS defined for infinite queue networks. P2,
similarly to PMS , requires a continuous exchange of state
information among network servers, but it can allow servers
to take local decisions in an uncoordinated fashion, when
considering simple network configurations, thus resulting
significantly less complex than P1. We show that P2 is
%-efficient when enough buffer inside the network is
provided, thus estimating the trade-off between network
buffers and achievable throughput. Finally, in Section 3.3 we
analyze the impact of imperfect, or delayed state information
on the performance of policy P2.

3.1 Optimal Policy

3.1.1 Policy Definition

Consider the following policy, called P1, in vectorial format:

SðnÞ ¼ argmax
Z2bD

ZðI%RÞMðnÞ 2Y ðnÞ % ZðI%RÞð ÞT ; ð9Þ

where MðnÞ is a Q'Q matrix, nonnull only on its diagonal
where, for q ¼ 1; . . . ; Q:

MqqðnÞ ¼
1 if q 2 !I
yfðqÞðnÞ
ljðqÞ%1 if q 2 !M;

(
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where we remind that given queue q traversed by flow j
(i.e., q ¼ qðj; hÞ for some h > 1), yfðqÞðnÞ represents the
workload at the ingress queue (i.e., fðqðj; hÞÞ ¼ qðj; 1Þ).

We now express the policy in scalar format (for the sake
of easier notation, we omit ðnÞ when not necessary).
Observe that:

SðI%RÞ½ )q¼
sq if q 2 !I

sq % suðqÞ if q 2 !M;

!

and multiplying by M:

SðI%RÞM½ )q¼
sq if q 2 !I

ðsq % suðqÞÞ
yfðqÞ
ljðqÞ%1 if q 2 !M:

!

Hence, conventionally defining ypðqÞ ¼ 0 for queue q 2 !I ,
the first adder in (9) becomes:

f1ðSÞ ¼ SðI%RÞMY T

¼
X

q2!I

sqyq þ
X

q2!M

ðsq % suðqÞÞ
yfðqÞ

ljðqÞ % 1
yq ¼

¼
X

q2!I

sqyq 1%
ypðqÞ

ljðqÞ % 1

$ %
þ
X

q2!M

sqyfðqÞ
yq % ypðqÞ
ljðqÞ % 1

$ %
¼

¼
XJ

j¼1

yj;1
lj % 1

sj;1 lj % 1% yj;2
& '

þ
Xhj

h¼2

sj;hðyj;h % yj;hþ1Þ
" #

;

ð10Þ

whereas the second adder in (9):

f2ðSÞ ¼ SðI%RÞM SðI%RÞ½ )T

¼
X

q2!I

s2q þ
X

q2!M

sq % suðqÞ
& '2 yfðqÞ

ljðqÞ % 1
¼

¼
XJ

j¼1

s2j;1 þ
XJ

j¼1

yj;1
lj % 1

Xhj

h¼2

s2j;h þ s2j;h%1 % 2sj;hsj;h%1

( )
¼

¼
XJ

j¼1

s2j;1 þ
XJ

j¼1

yj;1
lj % 1

s2j;1 þ s2j;hj
þ 2

Xhj%1

h¼2

s2j;h % 2
Xhj%1

h¼1

sj;hsj;hþ1

 !

:

ð11Þ

By combining (10) and (11), having defined fðZÞ ¼ 2f1ðZÞ
%f2ðZÞ, policy P1 becomes:

S ¼ argmax
Z2bD

fðZÞ: ð12Þ

Policy P1, by construction, satisfies both service con-
straints. Indeed, the fact that service is never provided to
empty virtual queues can be verified by observing that P1

can be equivalently defined as:

SðnÞ ¼

argmin
Z2bD

Y ðnÞ % ZðnÞðI%RÞ½ )MðnÞ Y ðnÞ % ZðnÞðI%RÞ½ )T
n o

:

Simple computations allow, indeed, to show that the
minimum of this quadratic form cannot be achieved in
correspondence of a point in which ½Y ðnÞ % ZðnÞðI%RÞ)
has negative components. In addition, the fact that buffer

overflow can never occur (i.e., for all n and q, yqðnÞ ! ljðqÞ)
directly derives from the following two properties of policy
P1 which can be verified by direct inspection: 1) dq ¼ 0 for
every queue q 2 !I such that ypðqÞ - ljðqÞ % 1 and 2) ypðqÞðnþ
1Þ ! yðqÞðnÞ for each pair of queues q 2 !M , pðqÞ 2 !M .

3.1.2 Policy Performance

Now, we state our main theorem, whose proof is reported
in Appendix A.

Theorem 2. Under admissible Bernoulli traffic, policy P1

achieves 100 percent throughput when the buffer-size lj of
any internal queue q traversed by flow j satisfies the following
relation:

lj - 2 for j ¼ 1; . . . ; J:

3.1.3 Implementation Issue

Since P1 is not atomic, it selects the best service vector S in
the set bD and this does not guarantee that S is an integer
departure vector: sq 2 ½0; 1). As a consequence, the direct
implementation of policy P1 requires servers to provide
fractional services to packets stored at head of the virtual
queues according to a weighted processor sharing policy.

Moreover, according to policy P1, packets are transferred
through queues in a “cut-through” fashion, since servers
may start the transmission of noncompletely received
packets. We notice that nonatomic scheduling policies
exploiting “cut-through” switching have been proposed
and implemented in the contexts of wormhole networks [9],
[12], [28].

At last, P1 must be implemented in a centralized fashion
by a scheduler which has the complete view of the queues
state of the network. The high implementation complexity
of this policy has motivated our investigation on the
performance of the following policy.

3.2 Low Complexity Policy

3.2.1 Policy Definition

Consider the following policy, called P2:

S ¼ argmax
Z2bD

ZðI%RÞMY T ;

where MðnÞ is a Q'Q matrix, nonnull only on its diagonal
where, for q ¼ 1; . . . ; Q:

MqqðnÞ ¼
1 if q 2 !I
yfðqÞðnÞ
ljðqÞ

if q 2 !M:

(

In other words, policy P2 maximizes the scalar product of
the service vectorZ and theweight vectorW ¼ ðI%RÞMY T .
Due to the linearity of the scalar product, P2 guarantees the
vectorS to be an vertex of bD, i.e.,SðnÞ 2 D; by assumption, all
vertices of bD are integer valued.Hence,P2 is an atomicpolicy,
DðnÞ ¼ SðnÞ andXðnÞ ¼ Y ðnÞ. Formally, we can say that P2

can be also expressed as:

D ¼ argmax
Z2D

ZðI%RÞMðnÞXT : ð13Þ
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Following the same reasoning to obtain (10), a generic
queue q is associated with the following weight wq:

wq ¼
xq 1% xpðqÞ

ljðqÞ

( )
if q 2 !I

xfðqÞ
xq%xpðqÞ

ljðqÞ

( )
if q 2 !M:

8
<

: ð14Þ

Then, policy P2 can be rewritten as:

D ¼ argmax
Z2D

XQ

q¼1

zqwq: ð15Þ

P2 chooses an optimal solution of the above optimization
problem, according to which dq ¼ 0 in correspondence of
null weights wq ¼ 0, i.e., either when xq ¼ 0 or xpðqÞ ¼ ljðqÞ.
As a consequence, P2 satisfies the service constraints.

3.2.2 Policy Performance

We claim the main result about P2, whose proof is reported
in Appendix B.

Theorem 3. Under admissible Bernoulli traffic, policy P2 is
%-efficient when the buffer size lj of any internal queue q
traversed by flow j, with hj hops, satisfies the following
relation:

lj >
ðhj % 1ÞkIIk
2ð1% %Þ for j ¼ 1; . . . ; J

recalling that % ¼ k"ðI%RÞ%1k, and II is the vector with
unitary elements.

A special case applies for networks in which path lengths
do not exceed two hops, as in the case of packet switches
built around buffered crossbars, as discussed in Section 4.
We can claim the following:

Corollary 1. Under admissible Bernoulli traffic, a network with
hj ! 2 for all j, implementing policy P2, is stable when % <
0:5 for any lj - 1, being % the maximum offered load for a
single queue in the network.

The proof is reported in Appendix C. Hence, a network
of queues implementing P2 is 0.5-efficient, for any choice of
lj, under the condition that no packet routes are longer than
two hops.

3.2.3 Implementation Issue

Policy P2 is an atomic policy equivalent to PMS of (8), but
with different weights assigned to the internal queues.
Indeed, P2 and PMS solve the same optimization problem
since they both share the same linear structure of the cost
function and the same space D of feasible departure vectors.

Both policies require a continuous exchange of informa-
tion between neighbor servers, but in addition P2 requires
locally at each server the information about the length of the
ingress queue of the corresponding flows. Note that this
length should be propagated downstream from the ingress
queue to all the internal queues, along the flow path: this
fact can be exploited to ease the implementation.

In general, given the state of all the queues, P2 is
executed by a central scheduler, as also observed by [33].
However, in particular (but also interesting) cases, the

policy can be computed in a distributed fashion, locally on
each set of queues and servers which are coupled by the
blocking constraints. This fact is indeed exploited in the
following section to devise a computationally efficient
scheduling policy for packet switches.

3.3 Low Complexity Policy with Imperfect State
Information

One of the aspects which make policy P2 hardly imple-
mentable in several contexts, consists in the fact that each
node must have an exact information on the state of remote
nodes. In this section, we study the effect on the policy
performance of an imperfect state information.

Consider now policy P" in which the state of the queues
is known with a bounded error ", i.e., the vector of queue
length X,ðnÞ used by the policy at time n differ by the
actual queue length vector XðnÞ by at most ":

x,
qðnÞ % xqðnÞ

***
*** < " for all q:

Hence, similarly to (13) and (15), policy P" can be written as:

D,ðnÞ ¼ argmax
Z2D

ZðI%RÞM,ðnÞX,T ðnÞ; ð16Þ

where M,ðnÞ is a Q'Q matrix, nonnull only on its
diagonal where, for q ¼ 1; . . . ; Q:

M,
qqðnÞ ¼

1 if q 2 !I
x,
fðqÞðnÞ
ljðqÞ%"

if q 2 !M;

(

or, equivalently,

D,ðnÞ ¼ argmax
Z2D

XQ

q¼1

zqw
,
qðnÞ; ð17Þ

where w,
q is the weight associated to queue q which is

affected by the error on the queues state. We claim the
following extension of Theorem 2:

Theorem 4. Under admissible Bernoulli traffic, policy P" is
%-efficient when the buffer-size lj of any internal queue q
traversed by flow j, with hj hops, satisfies the following
relation:

lj >
hjð1þ 4"ÞkIIk

2ð1% %Þ þ " for j ¼ 1; . . . ; J:

The proof is reported in Appendix D.
The previous theorem can be generalized considering

policies P"M in which the queues in !M are known with a
bounded error ", i.e.,

x,
qðnÞ % xqðnÞ

***
*** < " for all q 2 !M;

while the error for queues in !I is only bounded on
average, i.e.,
****E x,

qðnÞ % xqðnÞ
h i**** ! C for all q 2 !I and some C < 1:

Also, in this case, we can derive:

Theorem 5. Under admissible Bernoulli traffic, policy P"M is
%-efficient when the buffer-size lj of any internal queue q
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traversed by flow j, with hj hops, satisfies the following
relation:

lj >
hjð1þ 4"ÞkIIk

2ð1% %Þ
þ " for j ¼ 1; . . . ; J:

The proof is reported in Appendix E.

3.4 Low Complexity Policy with Delayed State
Information

We consider now policy P' adopting Xðn% 'Þ, i.e., a
delayed version of XðnÞ, to schedule the services. Since
during the period of ' time slots the queue length of every
queues in !M can change by at most ' , while for queues in
!I the error is bounded on average, policy P' falls in the
class of policies P"M with " ¼ ' . Then, as immediate
corollary of Theorem 5, P' is proved to be stable if, for all
j ¼ 1; . . . ; J :

lj >
hjð1þ 4"ÞkIIk

2ð1% %Þ þ " for j ¼ 1; . . . ; J:

4 APPLICATION TO PACKET SWITCHES BASED ON

BUFFERED CROSSBARS

Recently, switchesbuilt aroundcrosspoint bufferedcrossbars
have been shown to be very promising solutions for the
design of fast and scalable switching architectures. A basic
model for a switchwith internal buffered crossbar is depicted
in Fig. 2. To avoid the negative effects of the head-of-the-line
blocking phenomenon, inputs cards adopts Virtual Output
Queue (VOQ) scheme, according to which packets are stored
at inputs in per-destination virtual queues.

Each crosspoint of the crossbar is provided with an
internal buffer of size L: Internal buffers are in one-to-one
correspondence with input VOQs. We refer to this
architecture as Combined Input and Crossbar Queued
(CICQ) switch. A flow control mechanism from each
crosspoint to the corresponding VOQ avoids to overflow
the internal buffer.

Assume time to be slotted, and packets to be of fixed
size. With respect to pure input queued switches, the
scheduling policies in CICQ switches can be simpler. The
scheduling decision, indeed, can be taken in a local
uncoordinated fashion by an arbiter at each input, selecting
a nonfull internal buffer to which transferring a packet, and
by an arbiter at each output, selecting an internal buffer

from which transferring a packet. We refer in the following
to this class of schedulers as “uncoordinated schedulers.”

Uncoordinated schedulers can be efficiently distributed,
parallelized, and pipelined making CICQ architectures so
appealing. Note that, in uncoordinated schedulers, we admit
that inputs and outputs can exchange some information
about the state of the queues, but we assume the scheduling
decision to be local. Furthermore, uncoordinated schedulers
cannot be implemented in pure IQ switches, since coordina-
tion is required at inputs to avoid multiple transmissions
toward the same output.

Here, we very briefly highlight the main results on CICQ
switches running uncoordinated schedulers, referring to
papers [38], [30], [11] for a more detailed description of the
scheduling algorithms for CICQ switches, and a discussion
of their properties.

There are two main families of input/output arbiters
proposed and studied so far:

. Round-robin driven algorithms: The queue is selected
according to a round robin (RR) mechanism [29], [30],
[31], or to a weighted round robin (WRR) [5], or to a
weighted fair queueing scheme (WFQ) [5], and

. Queue-state driven algorithms: A metric is asso-
ciated to every queue; the queue that maximizes
(minimizes) the correspondent metric is selected. As
possible metrics, the queue length (LQF) [10], the
waiting time of the HoL cell (OCF) [10], [25] and the
queue length at internal buffer [24] were considered.

Note that the input arbiters can select only VOQs which
are not inhibited by the flow control mechanism. When an
internal speedup SP > 1 is allowed, then up to SP packets
can be served by each arbiter during a single timeslot;
hence, at each output port, a queue is necessary to
compensate for the lower output link rate.

Only few theoretical results have been obtained on the
performance of CICQ switches. For SP ¼ 2 a wide class of
CICQ uncoordinated schedulers has been very recently
proved to achieve 100 percent throughput [6], with the
minimal buffer requirement L ¼ 1. Moreover, SP ¼ 2 is
sufficient to guarantee that CICQ architectures implement-
ing uncoordinated schedulers can perfectly emulate output
queued switches [6], [20].

For SP < 2, instead, to the best of our knowledge, no
general results on the maximum throughput achievable in
CICQ architectures with uncoordinated schedulers have
been obtained so far. Several papers have addressed the
case SP ¼ 1, L ¼ 1, either showing by simulation that high
throughput can be obtained by CICQ architectures with
uncoordinated schedulers [5], [24], [31], [38], or proving that
100 percent throughput can be achieved in CICQ, under
some specific traffic scenario, such as the case of uniform
traffic [10], [29]. Other papers have shown by simulation
that quasioptimal performance can be obtained by CICQ
with moderate Sp < 2 speedup [30].

Now, observe that a CICQ switch can be modeled as a
network of flow-controlled interacting queues, with one
server for each input (corresponding to the input arbiter)
and with one server for each output (corresponding to the
output arbiter). The flow control is from the internal buffers
to the corresponding input arbiters. Hence, we can
particularize to this context the general results obtained in
the previous sections. We restrict our investigation to policy
P2 which can be easily implemented in a CICQ as an
uncoordinated scheduler.
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4.1 Scheduling Algorithms for CICQ
Letxij be the length ofVOQfrom input i to output4 j. Let bij be
the length of the corresponding internal buffer; 0 ! bij ! L,
and when bij ¼ L, the flow control mechanism inhibits the
services from the corresponding VOQ: We assume that the
flow control is immediate. Departure vectorD comprises the
services provided by the input arbiters and the output
arbiters: dIij represents the departure from the VOQ corre-
sponding toxij,whereasdOij represents thedeparture from the
internal buffer corresponding to bij. The set D of all possible
departing vectors is given by allD such that

XN

j¼1

dIij ! 1 8i and
XN

i¼1

dOij ! 1 8j;

which describe the blocking constraints of (3) in the context
of a CICQ switch.

We particularize the policy P2 by showing that it can be
easily implemented in an uncoordinated fashion. Indeed,
revisiting (15), P2 selects the departing vector according to:

D ¼ argmax
D2D

XN2

j¼1

xj;1

L
dj;1ðL% xj;2Þ þ dj;2xj;2

& '

¼ argmax
D2D

XN

i¼1

XN

j¼1

xijðdIijðL% bijÞ þ dOijbijÞ:

ð18Þ

As a consequence policy P2, operating in a CICQ switch
(renamed Dual Maximum Weight First, DMWF) can be
implemented according to the following simple algorithm.
At each time slot:

1. each VOQ is associated with a weight wI
ij ¼ xij

ðL% bijÞ; a nonempty VOQ is marked as inhibited
to packet transfer if the corresponding weight is
null (i.e., the corresponding crosspoint buffer is
full). Each internal buffer is associated with a
weight wO

ij ¼ xijbij;
2. the arbiter of input i selects the non inhibited VOQ

which maximizes wI
ij over all j ¼ 1; . . . ; N ;

3. the arbiter of output j selects the nonempty internal
buffer which maximizes wO

ij over all i ¼ 1; . . . ; N .

Thanks to Corollary 1, DMWF is %-efficient if % < 0:5 for
any L - 1. Note that in the case L ¼ 1, then DMWF
degenerates into LQF-LQF scheduler.

If we now apply Theorem 3, in a CICQ switch kIIk ¼ N
since N are the queues conflicting in the same input/output
arbiter. Hence, in general, L should be set such that
L > N=ð1% %Þ=2. To summarize, we can claim the following:

Corollary 2. Under admissible Bernoulli traffic, in a CICQ
switch policy DMWF is %-efficient for L - Lmin with

Lmin ¼
1 if % < 0:5

N
2ð1%%Þ

l m
if 0:5 ! % < 1;

(

where % is the maximum offered load to an input and output
port of the switch.

The result of Corollary 2 can be restated also as follows:
The sustainable load is at least:

% ¼ 0:5 for 1 ! L ! N
1% N

2L for L > N;

!

or, equivalently:

Corollary 3. Under admissible Bernoulli traffic, the minimum
speedup to guarantee 100 percent throughput in a CICQ
switch adopting DMWF policy, is

SP ¼ 2 for 1 ! L ! N
2L

2L%N for L > N:

!

This proves the existence of a trade-off between
throughput (or speedup needed) and L under DMWF.

5 FINITE INGRESS BUFFERS

The results presented in this paper until now have assumed
the infinite buffer availability at the ingressqueues.However,
there are practical situationswhen this is not feasible. In such
a setup all buffers, including ingress queues, are finite. Next,
we describe how we can use the above results to provide
lower bounds on the achievable throughput.

The maximal throughput algorithms described above
never overflow internal queues. However, the queues at
ingress node can grow in an unbounded fashion. We
compare the system with infinite ingress buffers, say S1, to
the system with finite ingress buffers, say S2. Both systems
use the same throughput maximal algorithm described
above. In S2, when ingress queue overflows, packets are
dropped in contrast to S1. By definition, the number of
packets in S1 stochastically dominate5 the number of
packets in S2 for each flow. Hence, we can obtain an upper
bound on the drop rate in S2 by calculating the probability
that an arriving packet in S1 sees the ingress queue larger
than the allowed buffer-size in S2.

Now, the proofs of stability of algorithm for S1 are based
on polynomial Lyapunov function. They imply a bound on
average queue-size at the ingress queues (see [18], [35] for
details). This, in turn, implies a boundon the (time) stationary
probability of queue-size being larger than ingress buffer-
size. Since our arrival process is memoryless, the time
stationary queue-size distribution and the queue-size dis-
tribution observed by arriving packets is identical. This, in
turn, implies theupper boundon the loss-rate. Consequently,
it gives a lower bound on achievable throughput region. We
skip the details in the interest of space.

6 CONCLUSIONS

We studied the throughput property of network of queues
with finite buffers. In particular, we obtain sufficient
conditions on the required buffer-size of the internal queues
so as to achieve maximal throughput. This was exhibited by
producing algorithms that would provide maximal
throughput under these conditions. The implementation
considerations led us to consider simpler policies and,
consequently, a natural trade-off between buffer-size and
the achievable throughput.
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4. With abuse of notation, here, j stands either for a flow identifier or an
output.

5. To prove this, it is necessary that both systems use exactly the same
schedule for identical arrival. In other words, system S2 obtains its
schedules by simulating system S1 on side.



We applied our results in the context of N 'N input
queued switches based on buffered crossbars. In particular,
we obtained a scheduling policy DMWF, in which each
input and output arbiter makes decision independently.
This policy naturally gives rise to a trade-off between
speedup, throughput and buffer-size at the crosspoint.

APPENDIX A

PROOF OF THEOREM 2

Proof. Consider the following Lyapunov6 function: LðY ðnÞÞ
¼ Y ðnÞMðnÞY ðnÞT , being #LðnÞ ¼ E½LðY ðnþ 1ÞÞ % L
ðY ðnÞÞjY ðnÞ), to satisfy the stability criteria (7) it must be:

lim
kY ðnÞk!1

#LðnÞ
kY ðnÞk

< %&; ð19Þ

where #LðnÞ ¼ E½Y ðnþ 1ÞMðnþ 1ÞY ðnþ 1ÞT % Y ðnÞM
ðnÞY ðnÞT jY ðnÞ). From now on, in the conditional expecta-

tion we omit jY ðnÞ from the notation. Now, observe that

E½Y ðnþ 1ÞMðnþ 1ÞY ðnþ 1ÞT ) can be written as:

E Y ðnþ 1ÞMðnÞY ðnþ 1ÞT
h i

þ

E Y ðnþ 1ÞðMðnþ 1Þ %MðnÞÞY ðnþ 1ÞT
h i

:

We show that the latter adder is an oðkY kÞ for kY k ! 1.
Indeed,

Y ðnþ 1Þ Mðnþ 1Þ %MðnÞð ÞY ðnþ 1ÞT

¼
X

q2!I[!M

y2qðnþ 1Þ Mqqðnþ 1Þ %MqqðnÞ
& '

¼
X

q2!M

y2qðnþ 1Þ Mqqðnþ 1Þ %MqqðnÞ
& '

!
X

q2!M

l2jðqÞjMqqðnþ 1Þ %MqqðnÞj;

where the last equality holds sinceMqqðnþ 1Þ %MqqðnÞ ¼
0 for q 2 !I . Now, since by hypothesis E½AðnÞAðnÞT ) is
upper bounded by some constant, then also

E jMqqðnþ 1Þ %MqqðnÞj
+ ,

¼ E
jyfðqÞðnþ 1Þ % yfðqÞðnÞj

ljðqÞ % 1

- .

¼ E
jafðqÞðnÞ % sfðqÞðnÞj

ljðqÞ % 1

- .

results to be bounded and, consequently, the whole
term E½Y ðnþ 1Þ Mðnþ 1Þ %MðnÞð ÞY ðnþ 1ÞT ) is upper
bounded by some constant, i.e., it is oðkY kÞ for
kY k ! 1.

Hence, we can approximate E½Y ðnþ 1ÞMðnþ
1ÞY ðnþ 1ÞT )with E½Y ðnþ 1ÞMðnÞY ðnþ 1ÞT ) and obtain:

#LðnÞ ¼ E Y ðnþ 1ÞMðnÞY ðnþ 1ÞT
h i

% Y ðnÞMðnÞY ðnÞT

¼ 2 "% SðnÞðI%RÞ½ )MðnÞY ðnÞT þ E AðnÞ % SðnÞðI%RÞ½ )
MðnÞ AðnÞ % SðnÞðI%RÞ½ )TþoðkY kÞ:

ð20Þ

From now on, for the sake of readability, we will omit the
variable n from our notations, when not necessary. Let us
consider the second term in (20):

E ½A% SðI%RÞ)M½A% SðI%RÞ)T
h i

¼ E AMAT % 2AM½SðI%RÞ)T þ SðI%RÞM½SðI%RÞ)T
h i

:

ð21Þ

Since AM ¼ A, the first and second terms of (21) are
negligible with respect to kY k ! 1. Indeed:

E½AMAT ) ¼ E½AAT )

and

E

-
AM½SðI%RÞ)T

.
¼ "½SðI%RÞ)T ¼

X

q2!I

sq!q:

As a consequence, the rightmost member of (21) can be
approximated with f2ðSÞ. Now, (20) becomes:

#L . 2"MY T % 2f1ðSÞ þ f2ðSÞ: ð22Þ

If we now define $ ¼ "ðI%RÞ%1, then "MY T can be
written as f1ð$Þ. Since " is admissible, it results:
k$k ¼ % < 1; we can now define $̂ such that $ ¼ %$̂:
k$̂k ¼ 1. Since f1 is a linear function, then f1ð$Þ ¼ f1ð%$̂Þ ¼
%f1ð$̂Þ. Recalling fðSÞ ¼ 2f1ðSÞ % f2ðSÞ:

#L . 2f1ð$Þ % fðSÞ ¼ 2%f1ð$̂Þ % fðSÞ:

In addition, note that %f2ð$̂Þ ¼ %%1f2ð$Þ ¼ %%1"M"T is
oðkY kÞ, thus:

#L . 2%f1ð$̂Þ % %f2ð$̂Þ % fðSÞ ¼ %fð$̂Þ % fðSÞ:

According to the definition of policy P1, fðSÞ - fð$̂Þ,
thus:

#L ! %fð$̂Þ % fð$̂Þ ¼ %ð1% %Þfð$̂Þ: ð23Þ

By neglecting terms which are oðkY kÞ, we obtain:

fð$̂Þ ¼ 2f1ð$̂Þ ¼
2

%
f1ð$Þ ¼

2

%

X

q2!I

!qyq -
2

%
!min

XJ

j¼1

yj;1;

where !min ¼ minq2!If!q : !q > 0g. Reminding that ac-

cording to (5) it results: kY k !
PJ

j¼1 yj;1 þ
PJ

j¼1 hjlj,

which can be rewritten as: kY k !
PJ

j¼1 yj;1 þ oðkY kÞ.
Hence, fð$̂Þ - 2!minkY k=% for kY k ! 1. (23) becomes:

#L ! %2
1% %

%
!minkY k;

and this implies that, for any lj - 2,

lim
kY k!1

#L
kY k

< %2
1% %

%
!min:

ut
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6. Note that LðY ðnÞÞ - 0 and LðY0Þ ¼ 0 if Y0 is the null vector.



APPENDIX B

PROOF OF THEOREM 3

Proof. Consider again the Lyapunov function: LðXÞ ¼ XM
XT . Equation (20) still holds:

#L ¼ 2 "%DðI%RÞ½ )MXT

þ E ½A%DðI%RÞ)M½A%DðI%RÞ)T
h i

:
ð24Þ

If policy P2 is employed in the network, DðnÞ is selected,
according to (15), on the set of all possible service vectorsZ
such that kZk ! 1. If we choose Z as: Z ¼ "ðI%RÞ%1 þ
ð1% %ÞU with any U such that kUk ¼ 1, then kZk ! 1,
since: kZk ¼ k"ðI%RÞ%1 þ ð1% %ÞUk ! k"ðI%RÞ%1k þ
kð1% %ÞUk ¼ %þ ð1% %Þ ¼ 1. Now,

DðI%RÞMXT - "ðI%RÞ%1 þ ð1% %ÞU
h i

ðI%RÞMXT

¼ "MXT þ ð1% %ÞUðI%RÞMXT :

ð25Þ

Thanks to (25), we can bound the first term in (24):

½"%DðI%RÞ)MXT ! "MXT % "MXT % ð1% %ÞUðI%RÞ
MXT ¼ %ð1% %ÞUWT :

ð26Þ

The second term in (24) can be treated as the second term
in (20), it results:

#L ! %2ð1% %Þ
XQ

q¼1

uqwq þ
X

q2!M

dq % duðqÞ
& '2xfðqÞ

ljðqÞ
: ð27Þ

Let U ¼ II=klIk 2 D; it results:

#L ! %2ð1% %Þ 1

kIIk
XQ

q¼1

wq þ
X

q2!M

dq % duðqÞ
& '2xfðqÞ

ljðqÞ

¼ % 2ð1% %Þ
kIIk

XJ

j¼1

xj;1 þ
XJ

j¼1

xj;1
lj

Xhj

h¼2

ðdj;h % dj;h%1Þ2

! %
XJ

j¼1

xj;1
2ð1% %Þ
kIIk % hj % 1

lj

- .
;

where we exploited the fact that, for any j:

Xhj

h¼1

wj;h ¼ xj;1

lj

-
ðlj % xj;2Þ þ

Xhj%1

h¼2

ðxh % xhþ1Þ þ xhj

.
¼ xj;1:

Furthermore,
Phj

h¼2ðdj;h % dj;h%1Þ2 ! hj % 1.
As a consequence, a sufficient condition to make the

Lyapunov function drift negative is:

2ð1% %Þ
kIIk % hj % 1

lj
> 0;

which implies:

lj >
ðhj % 1ÞkIIk
2ð1% %Þ

8j:

ut

APPENDIX C

PROOF OF COROLLARY 1

Proof. Equation (27), substituting D to U , can be written as
follows, recalling (14):

#L ! %2ð1% %Þ
-X

q2!I

dqxq

$
1%

xpðqÞ

ljðqÞ

%
þ
X

q2!M

dqxfðqÞ

xq % xpðqÞ

ljðqÞ

$ %.
þ
X

q2!M

dq % duðqÞ
& '2xfðqÞ

ljðqÞ

! %2ð1% %Þ
XJ

j¼1

xj;1

lj
dj;1ðlj % xj;2Þ þ dj;2xj;2
+ ,

þ
XJ

j¼1

xj;1

lj
ðdj;1 þ dj;2 % 2dj;1dj;2Þ

! %2ð1% %Þ
XJ

j¼1

xj;1

lj

-
dj;1

$
lj % xj;2 %

1

2ð1% %Þ

%

þ dj;2 xj;2 %
1

2ð1% %Þ

$ %.
:

Thanks to (15), being in this case:

D ¼ argmax
D2D

XJ

j¼1

xj;1
lj

dj;1ðlj % xj;2Þ þ dj;2xj;2

+ ,
;

then a sufficient condition which ensures the Lyapunov
function drift to be negative is:

1

2ð1% %Þ < 1:

Indeed, dj;1 ¼ 1 only when lj % xj;2 - 1 and dj;2 ¼ 1 only
when xj;2 - 1. tu

APPENDIX D

PROOF OF THEOREM 4

Proof. Through this proof, we assume ljðqÞ - 2" for every
flow j, we emphasize that this assumption does not limit
the validity of our result.

We consider the same Lyapunov function adopted in
the proof of Theorem 2: LðXðnÞÞ ¼ XðnÞMðnÞXðnÞT .
Likewise, (20) and (24):

#L ¼ 2 "%D,ðI%RÞ½ )MXT þ E
+
A%D,ðI%RÞ½ )

M A%D,ðI%RÞ½ )T
,
:

ð28Þ

To evaluate the first term in (28), we estimate the
difference between D,ðI%RÞMXT with DðI%RÞMXT .
Observe that we can write: M, %M ¼ E, where E is a
matrix, null outside the main diagonal, with:

Eqq ¼
0 if q 2 !I

ðx,
q % xqÞðljðqÞ % "Þ if q 2 !M

!

being jEqqj < "=ðljðqÞ % "Þ for every q 2 !M . Let X, %X ¼
#X with j#Xj ! "II; it results:
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D,ðI%RÞMXT ¼ D,ðI%RÞðM, %EÞðX, %#XÞT

¼ D,ðI%RÞM,X,T %D,ðI%RÞEX,T

%D,ðI%RÞM,#XT þD,ðI%RÞE#XT ;

ð29Þ

where the last term is oðkXkÞ. Considering the first term

in (29), it results:

D,ðI%RÞM,X,T - DðI%RÞM,X,T

¼ DðI%RÞðMþEÞðX þ#XÞT ¼ DðI%RÞMXT

þDðI%RÞEXT þDðI%RÞM#XT þDðI%RÞE#XT ;

ð30Þ

where the first inequality is due to the definition (16) of

P"; and the last term of (30) is again oðkXkÞ. Considering
the second adder in (29), it results:

D,ðI%RÞEX,T ¼ D,ðI%RÞEðX þ#XÞT

¼ D,ðI%RÞEXT þD,ðI%RÞE#XT ;

ð31Þ

where the last term is negligible. Now, consider the third

term in (29):

D,ðI%RÞM,#XT ¼ D,ðI%RÞðMþEÞ#XT

¼ D,ðI%RÞM#XT þD,ðI%RÞE#XT ;

ð32Þ

where the last term is oðkXkÞ. By combining (30), (31),

and (32), then (29) becomes:

D,ðI%RÞMXT - DðI%RÞMXT þ ðD%D,ÞðI%RÞEXT

þ ðD%D,ÞðI%RÞM#XT þ oðkXkÞ:
ð33Þ

Observe that the second term of (33) is oðkXkÞ, being the

qth element of vector EXT : 1) equal to zero if q 2 !I and

2) strictly less than "xq=ðljðqÞ % "Þ ! 2" if q 2 !M , under

the assumption ljðqÞ - 2". Now, consider the third term in

(33):

ðD%D,ÞðI%RÞM#XT
** **

¼

*****
X

q2!I

dq % d,q

( )
x,
q % xq

( )
þ
X

q2!M

dq % duðqÞ % d,q þ d,uðqÞ

( )

xfðqÞ

ljðqÞ % "
x,
q % xq

( )***** <
X

q2!I

dq" þ
X

q2!M

dq þ d,uðqÞ

( ) xfðqÞ

ljðqÞ % "
"

.
X

q2!M

dq þ d,uðqÞ

( ) xfðqÞ

ljðqÞ % "
" ! 2"

X

q2!M

xfðqÞ

ljðqÞ % "
:

Hence, (33) becomes for kXk ! 1:

D,ðI%RÞMXT > DðI%RÞMXT % 2"
X

q2!M

xfðqÞ

ljðqÞ % "
; ð34Þ

which can approximated as in (25). By also treating the

second term of (28) as in the proof of Theorem 3 we get:

#L <% 2ð1% %Þ
XQ

q¼1

uqwq þ 4"
X

q2!M

xfðqÞ
ljðqÞ % "

X

q2!M

dq % duðqÞ
& '2

xfðqÞ

ljðqÞ % "
:

ð35Þ

From which, proceeding as in the proof of Theorem 3, we
set U ¼ II=kIIk 2 D and obtain:

#L < %
XJ

j¼1

xj;1
2ð1% %Þ
kIIk

% ðhj % 1Þð1þ 4"Þ
lj % "

- .
:

As a consequence, a sufficient condition to make the
Lyapunov function drift negative is:

2ð1% %Þ
kIIk % ðhj % 1Þð1þ 4"Þ

lj % "
> 0;

which implies:

lj >
ðhj % 1Þð1þ 4"ÞkIIk

2ð1% %Þ
þ " 8j:

ut

APPENDIX E

PROOF OF THEOREM 5

Proof. Following the same scheme of the proof of Theorem 4,
similarly to (33):

D,ðI%RÞMXT - DðI%RÞMXT þ ðD%D,ÞðI%RÞEXT

þ ðD%D,ÞðI%RÞM#XT þ oðkXkÞ;
ð36Þ

where the second term is again oðkXkÞ and the third
term:

ðD%D,ÞðI%RÞM#XT
** **

¼

*****
X

q2!I

dq % d,q

( )
x,
q % xq

( )
þ
X

q2!M

dq % duðqÞ % d,q þ d,uðqÞ

( )

xfðqÞ

ljðqÞ % "
x,
q % xq

( )*****!
X

q2!I

dqC þ
X

q2!M

dq þ d,uðqÞ

( ) xfðqÞ

ljðqÞ % "
"

.
X

q2!M

dq þ d,uðqÞ

( ) xfðqÞ
ljðqÞ % "

" ! 2"
X

q2!M

xfðqÞ
ljðqÞ % "

;

since all the components relative to q 2 !I are oðkXkÞ.
Then, proceeding as in the proof of Theorem 4, we get the
result. tu
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