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Abstract

Simple, distributed and iterative algorithms, popularly known as message-
passing, have become the architecture of choice for emerging infrastructure
networks and the canonical behavioral model for natural networks. Therefore
designing, as well as understanding, message-passing algorithms has become
important.

The purpose of this survey is to describe the state-of-art of message-passing
algorithms in the context of dynamic resource allocation in the presence of
uncertainty, a problem that is central to operations research (OR) and man-
agement science (MS). Various directions for future research are described in
this context as well as connections beyond OR and MS are explained. Through
this survey, we hope to convey the opportunity presented to the OR and MS
community to benefit from and contribute to the growing inter-disciplinary
area of message-passing algorithms.

Keywords: message-passing, markov random field, duality, loss networks,
variational characterization, belief propagation, maximum weight policy,
utility maximization policy

1. Introduction

We are ushering into an era of everything networked: social networks connect
people across the globe, everything is instantly searchable and advertiseable,
shopping is a ‘click away’, ‘moods’ in stock-market are instantly observable
through micro-blog sites, and so on. All such systems utilize as their backbone
computation, storage and communication infrastructure networks. To operate
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these infrastructure networks in an efficient and scalable manner, simple, iter-
ative, and distributed or otherwise called “message-passing algorithms”, have
emerged as the architecture of choice. On the other hand, such message-passing
mechanisms provide a canonical behavioral model to describe and understand
the interactive evolution of natural networked systems. For example, they
model how humans react to changes in a policy, and they subsequently assess
the success or failure of the policy; they also model interaction of financial
agencies in a market, or the spread of opinions in a social scenario. Therefore,
it is of utmost importance to develop new methods as well as understand ex-
isting methods for designing message-passing algorithms so as to be able to
design large-scaled networked system or to provide/refute behavioral models
for naturally networked system.

In this survey, motivated by this impending need, we shall discuss the state-of-
the-art as well as directions for future research of message-passing algorithms
in the context of dynamic resource allocation which is one of the fundamen-
tal problems in operations research, management science and more broadly
any engineering discipline. Usually, two types of operational questions arise
in this context. One: capacity planning, i.e. how much of a resource should
be planned for to meet desired performance criteria. Two: contention reso-
lution or scheduling, i.e. how should contentions be resolved among various
entities competing for access to given resources. The capacity planning prob-
lem is essentially an offline question, in the sense that it needs updating on
a longer time scale. It arises naturally in many contexts. Examples include
the design of a communication network such as the telephone network, with a
desired quality of service in terms of the call-drop rate; decisions about staffing
of skilled workers in a consulting firm to maximize revenue; maintenance of
product repositories such as air-tickets or hotel-rooms in a travel agency; or
planning for the number of disks and servers needed to operate a data center
facility. In contrast to the planning problem, the task of scheduling is an online
question, where decisions are made at a much shorter (operational) time scale.
For example, scheduling calls in a telephone network, sharing bandwidth in
the Internet among users accessing it, assigning skilled staff to a project in a
consulting firm, generating deal for a given travel request using existing repos-
itory in a travel agency, or allocating disks and servers to an arriving job in a
data center.

Both questions, capacity planning and scheduling, are algorithmic in nature.
These algorithms need to be implemented, usually in a large networked sys-
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tem, while respecting application dependent and technological constraints. For
this reason, in most applications of interest, the only type of algorithms that
can be implemented are the ones that are iterative, distributed and perform
simple computation per iteration while maintaining little data structure. The
motivation for considering such message-passing algorithms could be different
across applications. For example, in the context of the communication network
such as the Internet, the only feasible as well as scalable solution for sharing
bandwidth is the one in which individual users find their appropriate share by
iteratively reacting to feedback obtained through the network in terms of drop
of packets or acknowledgment of successful transmission. Similarly, in gener-
ating travel deals for a travel query it is essential to use distributed, iterative
algorithm to plough through the massive repository in a cloud computation
facility. For similar reasons message-passing algorithms provide a canonical
solution for deciding revenue maximizing availability of skilled staff in a con-
sulting firm. In summary, efficient message-passing algorithms are essential
and urgently needed for solving variety of operational problems including those
of capacity planning and scheduling.

As mentioned earlier, the primary purpose of this paper is to survey various
message-passing algorithms for capacity planning and scheduling in the context
of stochastic processing networks. The stochastic processing network model
was introduced by Harrison (2000). It has emerged as a canonical model to
capture dynamic resource allocation problems including the capacity planning
and scheduling faithfully across a variety of applications. In such a model, a
collection (or network) of queues are served from a prespecified set of actions
(or schedules). Each of these queues may receive exogenous demand. Further,
servicing of demand at one queue may lead to creation of demand at another
queue, or the serviced demand may leave the network. In this survey, we shall
focus on a scenario where the collection of actions are described through a
finite set of linear inequalities over discrete or continuous space. Specifically,
given a network of N queues, one could allocate non-negative service rates
x = [xi]1≤i≤N such that

Ax ≤ C,

x ∈ ΣN . (1)

Here A = [Aij] is a non-negative valued M × N matrix, C = [Ci] is a non-
negative valued vector of length M , and Σ ⊂ R+ is either finite, discrete set
or continuous set of type Σ = [a, b] for 0 ≤ a < b ≤ ∞ including Σ = R+.
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As discussed later, the stochastic processing network model with constraints
described as per (1) captures problems arising in variety of applications: this
includes those arising in communication networks such as telephone networks
and the Internet as well as network revenue maximization.

The basic question of interest in the context of capacity planning problem con-
cerns finding out whether a given set of resources are sufficient to meet a given
set of demands. Equivalently, it requires evaluation of the fraction of demands
that can not be satisfied using a given set of resources. In a sense, this is a first
order performance metric. Therefore, to evaluate a good approximation of the
rate at which demands are lost (the loss rate), a bufferless stochastic processing
network model is utilized. In the literature, it is popularly known as a stochas-
tic loss network. This model and associated problem have been classically
well studied with the motivation of designing telephone networks. However,
as explained in an excellent survey by Kelly (1991), this model provides the
means to address variety of network revenue maximization questions such as
those mentioned through examples earlier in this section. Formally, the model
as well as the problem of capacity planning are described in Section 3. We
also describe known message-passing algorithmic solutions. Roughly speaking,
they are divided into two classes. One, the optimization based algorithm and
a closely associated algorithm, which is known as the Erlang approximation.
Two, the variational approximation based algorithms, specifically the mean-
field and belief propagation. It has been well understood that the optimization
based algorithm (as well as the Erlang approximation) provides an excellent
approximation in the large network limit, cf. Kelly (1991). In a sense, such
an algorithm captures the effect induced by mode of the underlying stationary
distribution quite well. The mean-field and belief propagation algorithms, on
the other hand, seem to capture the higher order effect (specifically, that in-
duced by the entropy term in the variational characterization of the stationary
distribution) in addition to that of the mode. While these algorithms seem
to be developed in the right direction, questions related to their properties as
well as development of their further refinement suggest exciting directions for
future work. This is well summarized through concrete open questions stated
near the end of Section 3.

In the context of scheduling problems, the performance metric of interest is
finiteness of queue-sizes (smaller the better). In contrast to the capacity plan-
ning problem, this is a second order performance metric. In Section 4, we
introduce the problem of scheduling in the context of stochastic processing
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networks with infinite buffers. Interest is in two high-performance myopic
scheduling policies: the maximum weight by Tassiulas and Ephremides (1992)
and α-fair sharing by Kelly et al. (1998); Mo and Walrand (1998). Section 4
discusses message-passing implementation of these policies in the context of
two examples in detail: bandwidth sharing in the Internet and scheduling in an
input-queued switch of an Internet router. Bandwidth sharing in the Internet
requires solving a strictly concave maximization with convex constraint set in
a continuous domain. Given the nature of ‘message-passing’ constraints and
the form of optimization problems, the primal-dual algorithm provides the ap-
propriate solution. This message-passing algorithmic solution is quite general
and provides implementation of α-fair policy for any instance of stochastic pro-
cessing network considered in this survey. On the other hand, implementing
the maximum weight in the context of input-queued switch requires solving a
combinatorial optimization problem. In the context of input-queued switch,
this problem reduces to finding a maximum weight assignment or matching
in an edge weighted bipartite graph. The belief propagation heuristic, in this
specific context, provides an excellent message-passing implementation to solve
this problem exactly. The belief propagation, for this problem, happens to be
closely related to the auction algorithm by Bertsekas (1992). The auction al-
gorithm, a variant of the classical dual co-ordinate descent algorithm, is known
to solve the maximum weight matching or assignment problem in a bipartite
graph in a message-passing manner. However, such exact message-passing so-
lutions are not known to provide exact implementation of the maximum weight
policy for generic instance of stochastic processing network considered in this
survey. The associated challenges and exciting directions for future work in
this context are summarized near the end of Section 4.

We state our conclusions in Section 5 where we summarize the key messages of
the survey supported by explanations provided in Sections 3 and 4: message-
passing algorithms are essential for designing and understanding future net-
worked systems; this is a topic of broad interest with a lot to be done; and
dynamic resource allocation in stochastic networks could provide an excellent
fertile ground for this future development.

1.1. Related work, some connections

Here we start by describing some of the closely related works on resource
allocation in form of surveys or monographs followed by various connections
that message-passing algorithms bring to OR and MS.
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For capacity planning (stochastic loss network), the survey by Kelly (1991)
is a must read. It provides a detailed overview of illustrious development
that took place in the 1980s. It also discusses the role of stochastic loss net-
works in the context of network revenue maximization. For the problem of
scheduling, which is currently actively researched, there are excellent sources
to understand various aspects. Specifically, the book by Srikant (2004) pro-
vides a detailed overview of bandwidth sharing model, relation between TCP
protocol and primal-dual algorithm for an associated optimization problem
and the stability of congestion control protocols. The book chapter by Shah
(2008) provides an overview of switched network model, message-passing im-
plementation of scheduling algorithms and associated performance trade-offs.
The more recent monographs by Georgiadis et al. (2006) and Shakkottai and
Srikant (2007) provides a unified architectural view of scheduling and con-
gestion control policies for an end-to-end design of communication networks.
Finally, the monograph by Shah (2009) discusses strengths and limitations of a
class of extremely simple, randomized message-passing algorithms, also known
as the Gossip algorithms.

As mentioned earlier, the message-passing algorithms discussed in this survey
can be roughly classified based on two methods. The first method is based on
theory of optimization. In a nutshell, all algorithms utilize the structure of the
Lagrangian dual associated with the primal optimization problem of interest,
with the constraints of the form (1), to obtain message-passing implementa-
tion. This method is classical and has roots in work by Rockafellar (1998) on
monotropic programs. An interested reader can find, for example a variety
of refinements as well as applications in the book by Bertsekas and Tsitsiklis
(1997) on parallel and distributed computation.

The second method uses structural properties of constraints (1) directly to
design an approximate dynamic programming based message-passing imple-
mentation. As it happens, the resulting algorithm (belief propagation) ends
up solving an appropriate, related problem which can be thought of an ap-
proximation of the original problem in the so called variational form. It is
somewhat amusing to note that the belief propagation algorithm has been
discovered and re-discovered over years in variety of different contexts with
different perspectives: early on, Bethe (1935) used similar approximations to
evaluate the free energy of a certain statistical physics model, Gallager (1962)
used it as a meaningful heuristic in place of the maximum likelhood decoding
for low-density parity check codes and Pearl (1988) stated it as a heuristic for
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inference in a generic probabilistic graphical model or Markov Random Field
(MRF). The relation between variational approximation and belief propaga-
tion was first observed by Yedidia et al. (2001). An interested reader can find,
for example, a detailed discussion on relation between message-passing algo-
rithms and variational approximations in the book by Wainwright and Jordan
(2008). The treatment of belief propagation from the statistical physics per-
spective is detailed in the book by Mezard and Montanari (2009). The use of
belief propagation in designing communication systems is detailed in the book
by Richardson and Urbanke (2008).

2. Preliminaries

2.1. Markov Random Field

The Markov Random Field (MRF) is a succinct way to represent the joint
distribution of a collection of random variables by means of graphical model.
It shall provide a common framework to discuss both capacity planning and
scheduling problems. This shall allow use of MRF based message-passing al-
gorithms, like belief propagation, for solving capacity planning and scheduling
problem.

In this survey, the MRF of interest will be of the following type. Consider a
collection of N random variables X = [Xi]1≤i≤N taking values over the subset
of ΣN defined through constraints given by (1). Specifically, for any x ∈ ΣN

P

(

X = x
)

∝ exp
(

∑

i

φi(xi)
)

∏

1≤j≤M

1{
∑

k Ajkxk≤Cj}

=
1

Z
exp
(

∑

i

φi(xi)
)

∏

1≤j≤M

1{
∑

k Ajkxk≤Cj}. (2)

In the above, φi : Σ → R is a real-valued function for all i; 1{·} represents
indicator with 1{true} = 1 and 1{false} = 0; and Z is the normalization con-
stant (also called partition function). In (2), P(·) should be treated as den-
sity if Σ is continuous. The corresponding graphical model (also known as
the factor graph) is given by a bipartite graph G = (U ∪ V,E) with parti-
tion U = {u1, . . . , uN} where node ui corresponds to a random variable Xi;
partition V = {v1, . . . , vM} where node vj corresponds to the jth constraint
∑

k Ajkxk ≤ Ck; and E ⊂ U × V with E = {(ui, vj) : Aji 6= 0}. Note that
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even though the size of the support space of the distribution could be exponen-
tially large in N , the description is only polynomially large in N . Therefore,
such a representation (MRF) has become quite useful. For example, applica-
tion MRFs in hierarchical bayesian models is explained in Gilks et al. (1996)
and in bioinformatics is explained in Pevzner (2000). In the context of com-
munication systems they were first used by Gallager (1962); for representing
satisfiability and combinatorial optimization they have been used by Geman
and Geman (1984); and Nemhauser and Wolsey (1999) used them for image
processing. In a sense, this survey describes application of MRFs and related
algorithms in the context of resource allocation in stochastic networks. The
book by Lauritzen (1996) provides a good introduction to the topic of Markov
Random Fields. Finally, it should be noted that the relation between Markov
Random Field and Graphical Models is fundamental as explained through the
celebrated result by Hammersley and Clifford (see book by Lauritzen (1996)).

2.2. Two problems

Given an MRF, in general as well as in this survey, there are two algorith-
mic or computational problems of interest. The first problem is computing
marginal distributions of all random variables. That is, finding P(Xi = σ) for
all σ ∈ Σ and for all 1 ≤ i ≤ N . The second problem is computing the mode or
maximum a posteriori (MAP) assignment of the distribution. That is, finding
x∗ ∈ ΣN so that P(X = x∗) is maximum: x∗ ∈ argmaxx∈ΣN P(X = x). We
shall denote the first problem by MARG and the second problem by MAP.
The problem of MARG is precisely needed to evaluate loss rates in the con-
text of stochastic loss network. The problem of MAP, which can represent an
optimization problem with constraints given by (1), is precisely required to be
solved for scheduling as per the maximum weight and α-fair sharing policies in
a stochastic processing network. Thus, both capacity planning and scheduling
problems can be casted as questions (MARG and MAP respectively) on an
appropriate MRF. This abstraction, though may seem like a formal excercise,
allows one to utilize message-passing algorithms (like belief propagation) de-
veloped for solving MARG and MAP for the purpose of computing loss rate
and scheduling efficiently.

It is worth noting that both problems, MARG and MAP are computation-
ally hard in general. For example, with choice of Σ = {0, 1}, appropriate
A ∈ {0, 1}M×N (and M ≤ N2) and φi(σ) = 0 for σ ∈ {0, 1} for all i, it is
possible to model uniform distribution over the space of independent sets of a
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given undirected graph G of N vertices as an MRF of the form (2). In that
case, the normalization constant Z becomes number of independent sets of G.
Counting the number of independent sets of any graph is a #P-complete prob-
lem, see Valiant (1979). It is also well known that a polynomial (in N) time
algorithm for solving MARG for any such resulting MRF will lead to polyno-
mial (in N) time algorithm for computing Z, see for example Weitz (2006).
Therefore, computing MARG in a general MRF is a #P-complete problem.
To see that MAP is computationally hard (NP-hard), consider the same setup.
Then MAP corresponds to finding an independent set of G with the largest
cardinality. This is known to be NP-hard problem and hard to approximate.
See for example Arora and Lund (1996). That is, MAP in a general MRF is
NP-hard.

2.3. Message-passing algorithm

Even though MARG and MAP are hard problems in general, they need to be
addressed in practice (e.g. for resource allocation in stochastic networks). An
ideal algorithmic solution is the one that provides exact or reasonably accu-
rate answers when the underlying graphical structure is easy and reasonable
heuristic answer when it is hard. As discussed earlier, in most settings of in-
terest, it is preferred that such algorithms are of a message-passing nature.
That is, the algorithms are iterative, distributed with respect to the graphi-
cal structure of the MRF and perform simple computation per iteration while
maintaining little data structure. In the formalism described above, each node
of Gmaintains a minimal state based on which solution is estimated – in case of
MARG, the marginal probability of the corresponding random variable and in
case of MAP, an assignment of the particular random variable. This per-node
state evolves iteratively using simple computation and based on information
exchanged or messages passed between neighbors with respect to G.

Message-passing algorithms have been well studied in the past and there has
been an emergence of interest in recent years. This survey attempts to review
various types of message-passing algorithms relevant for capacity planning and
scheduling in stochastic networks. Specifically, the algorithms considered in
this paper fall in roughly two categories. One, the optimization based algo-
rithms. They utilize the structure of the dual induced by constraints of the
type (1) to obtain message-passing dual or primal-dual algorithms. Two, vari-
ational approximation of Markov Random Field leading to message-passing
algorithms such as the belief propagation and mean-field. These algorithms
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explicitly utilize the graphical structure induced by the constraints (1). The
belief propagation algorithm is of particular interest here. The term belief
propagation is used as an umbrella heuristic for both problems: MARG and
MAP. Its versions for solving MARG and MAP problems are known as the
sum-product and max-product (also min-sum) respectively. We shall utilize
the term belief propagation to refer to both versions in this paper; the context
should make it clear which version we are referring to. The general form of be-
lief propagation algorithm for the Markov Random Field of the type described
above is presented in the context of capacity planning problem for MARG near
the end of Section 3 and in the context of scheduling for MAP near the end of
Section 4. An interested reader is referred to, for example book by Wainwright
and Jordan (2008), for the most general form of such an algorithm.

2.4. Notation

Let N be the set of natural numbers {1, 2, . . . }, let Z+ = {0, 1, 2, . . . }, let R be
the set of real numbers, let R+ = {x ∈ R : x ≥ 0} and R++ = {x ∈ R : x > 0}.
Let 1{·} be the indicator function, 1true = 1 and 1false = 0. Let x∧y = min(x, y)
and x ∨ y = max(x, y) and [x]+ = x ∨ 0. When x is a vector, the maximum is
taken componentwise.

We will reserve bold letters for vectors in R
N , for example x = [xn]1≤n≤N . Let

0 be the vector of all 0s, and 1 be the vector of all 1s. Use |x| to represent the

ℓ∞ norm, maxn |xn| and ‖x‖ to represent the ℓ2 norm,
(
∑

n x
2
n

)1/2
. For a set

S ⊂ R
N
+ and x ∈ R

N
+ , define

d(x, S) = inf{‖x− y‖ : y ∈ S}.

For vectors u and v and functions f : R → R, let

u·v =
N
∑

n=1

unvn, uv = [unvn]1≤n≤N , and f(u) =
[

f(un)
]

1≤n≤N

and let matrix multiplication take precedence over dot product so that

u·Av =
N
∑

n=1

un

(

N
∑

m=1

Anmvm

)

.

Let AT be the transpose of matrix A. For a set S ⊂ R
N , denote its convex

hull by 〈S〉.

Finally, log in this paper is used to represent loge, unless stated otherwise.
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3. Capacity planning

This section describes message-passing algorithms for capacity planning prob-
lems. We start by describing the bufferless stochastic loss network model.
Then we show that the evaluation of the primary performance metric of inter-
est, the loss rates given demands, reduces to that of MARG for the stationary
distribution of the loss network. The product-form nature of the stationary dis-
tribution leads to its representation through an appropriate Markov Random
Field. We develop a variational characterization of such product-form sta-
tionary distribution. This characterization provides a unifying framework to
understand performance of various message-passing algorithms developed over
years with seemingly very different perspective. Specifically, the variational
characterization suggests that the stationary distribution can be thought of
as optimization over space of all feasible distribution with objective that has
two terms: maximizing the first term leads to the identification of the mode
of the distribution and the classical Erlang approximation as well as related
optimization based algorithms essentially try to capture the effect of the mode
on the performance; the second term corresponds to the entropy term and
capturing its effect on performance leads to the higher order correction which
is precisely what the recent message-passing algorithms, mean-field and belief
propagation, try to capture by means of approximation of entropy. We end
this section by summarizing the outstanding issues and directions for future
research.

3.1. Stochastic loss network

Model. Consider a network with M links, labeled 1, 2, . . . ,M . Each link j
has Cj units of capacity. There is a set of N distinct routes, denoted by
R = {1, . . . , N}. A call on route i requires Aji units of capacity on link j,
Aji ≥ 0. Calls on route i arrive according to an independent Poisson process of
rate νi with ν = (ν1, . . . , νN) denoting the vector of these rates. The dynamics
of the network is such that an arriving call on route i is admitted to the network
if sufficient capacity is available on all links used by route i; else, the call is
dropped. To simplify the exposition, we will assume that the call service times
are i.i.d. exponential random variables with unit mean. It is important to note,
however, that all results discussed in this survey depend on the characterization
of stationary distribution which remain unchanged for a much larger class
of service distributions due to the well-known insensitivity property of the
stochastic loss networks, for example see survey by Kelly (1991).
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Let n(t) = (n1(t), . . . , nN(t)) ∈ Z
N
+ be the vector of the number of active calls

in the network at time t. By definition, we have that n(t) satisfies constraints
of the type (1). Equivalently, n(t) ∈ S(C) where

S(C) =
{

n ∈ Z
N
+ : An ≤ C

}

,

and C = (C1, . . . , CM) denotes the vector of link capacities.

Within this framework, n(t), t ≥ 0 is a reversible multidimensional Markov
process with a product-form stationary distribution; cf. Kelly (1986). Namely,
there is a unique stationary distribution π on the state space S(C) such that
for n ∈ S(C)

π(n) =
1

Z(C)

∏

i∈R

νni

i

ni!
, (3)

where Z(C) is the normalization constant, i.e.

Z(C) =
∑

n∈S(C)

∏

i∈R

νni

i

ni!
. (4)

Note that π is of exactly the same form as (2) and thus can be viewed as MRF
with graphical model G.

Performance metric. The performance metric of interest is the loss rate Li of
calls of a given type i, for any i ∈ R. Equivalently, the stationary probability
that a call arriving on route i is lost. Since arrival process is an independent
Poisson process for each route and the property of Poisson sampling known
as Poisson Arrivals See Time Average (PASTA), it can be expressed using the
stationary distribution π. Specifically, it can be checked that

Li = 1−
Z(C− Aei)

Z(C)
, (5)

where ei is the unit vector corresponding to a single active call on route i. An
alternative characterization of Li can be obtained as follows. Given i, consider
calls arriving on route i. It is a stable system, by definition. The average delay
experienced by a call that is admitted is 1 (the service requirement) and by
a call that is not admitted 0 (immediate departure). Therefore, the average
delay experienced by calls on route i given by

Di = (1− Li)× 1 + Li × 0 = (1− Li).
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Upon applying Little’s Law (see Little (1961)) to this stable system (with
respect to route i), we obtain

νiDi = E[ni]

which yields

1− Li =
E[ni]

νi
. (6)

Thus, computing Li is equivalent to computing the expected value of the num-
ber of active calls on route i with respect to the stationary distribution π. This
can be achieved by solving the corresponding MARG problem. That is, com-
puting P(ni = ℓ) for all ℓ ∈ N, will lead to finding E[ni] and hence Li.

3.2. Large network scaling

The problem of computing loss probabilities by solving MARG problem for
the stationary distribution π is hard in general. The problem becomes un-
manageable for large networks and indeed, in many practical scenarios the
interest is in large networks. Here we consier a scaling of the stochastic loss
network to model the type of large networks that arise in applications such as
the telephone networks (cf. Kelly (1986)). This scaling will be useful to eval-
uate the performance of different message-passing algorithms for computing
loss probabilities as well as guide their design.

To this end, we define a scaled version with scaling parameter r ∈ N of a given
stochastic loss network with capacities C, routing matrix A and arrival rates
ν, as follows: scale capacities as

Cr = rC = (rC1, . . . , rCM),

and scale the arrival rates as

νr = rν = (rν1, . . . , rνN).

The corresponding feasible region of calls is given by S(rC). Now consider a
normalized version of this region defined as

Sr(C) =

{

1

r
n : n ∈ S(rC)

}

.

Then the following continuous approximation of Sr(C) emerges in the large r
limit:

S∗(C) = {n ∈ R
N
+ : An ≤ C}. (7)
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3.2.1. Variational characterization of π

To understand the structure of π for the scaled loss network with large r, we
shall utilize a variational characterization of π. This provides an alternative
(and possibly simpler in exposition) approach to that utilized by Kelly (1986)
to study π for the scaled network with large r.

Recall that the stationary distribution π of unscaled system

π(n) =
1

Z(C)
exp
(

Q(n)
)

, for n ∈ S(C),

where

Q(n) =
∑

i

ni log νi − log(ni!).

Define M(C) as the space of probability distributions on S(C). Clearly, π ∈
M(C). For µ ∈ M(C), define

F (µ) ,
∑

n∈S(C)

µ(n)Q(n)−
∑

n∈S(C)

µ(n) logµ(n)

= Eµ[Q] + HER(µ). (8)

Now we state the so called variational characterization of π, which will be
quite useful. This characterization essentially states that π is characterized
uniquely as the maximizer of F (·) over M(C).

Lemma 1 (Variational characterization) For all µ ∈ M(C),

F (π) ≥ F (µ)

where equality holds iff µ = π. Further, F (π) = logZ(C).

Proof. From the definition of Q(·), we have

Q(n) = logπ(n) + logZ(C).

Consider the following sequence of inequalities, which essentially use Jensen’s
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inequality together with the above definition of Q(·):

F (µ) =
∑

n∈S(C)

µ(n)Q(n)−
∑

n∈S(C)

µ(n) logµ(n)

=
∑

n∈S(C)

µ(n)(logπ(n) + logZ(C))−
∑

n∈S(C)

µ(n) logµ(n)

=
∑

n∈S(C)

µ(n)

(

log
π(n)

µ(n)

)

+ logZ(C)

≤ log





∑

n∈S(C)

µ(n)
π(n)

µ(n)



+ logZ(C)

= log 1 + logZ(C)

= F (π).

The only inequality above is tight iff µ = π. This concludes Lemma 1. 2

3.2.2. Large network approximation

Now we use variational characterization of π (cf. Lemma 1) to establish its
concentration property for large r. We shall start with some calculations about
π for the scaled network with large r.

π for large r. To this end, recall that for the scaled system with parameter
r, the feasibility region is S(rC). Equivalently, 1

r
n ∈ Sr(C). Then, the sta-

tionary distribution of the scaled system with parameter r is equivalent to the
distribution πr on Sr(C) defined as: for n ∈ Sr(C),

πr(n) = π(rn)

=
1

Z(rC)
exp
(

Q(rn)
)

. (9)

Now

exp
(

Q(rn)
)

= exp
(

∑

i

rni log rνi −
∑

i

log((rni)!)
)

= exp
(

r log r
∑

i

ni + r
∑

i

ni log νi −
∑

i

log((rni)!)
)

. (10)
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Stirling’s approximation suggests that for any m ∈ N

log(m!) = m logm−m+ 0.5 logm+ 0.5 log 2π +O
(

1/m
)

. (11)

Therefore,

log((rni)!) = r
∑

i

ni log rni − r
∑

i

ni + 0.5
∑

i

log rni +O(1). (12)

From (10) and (12), it follows that

1

r
Q
(

rn
)

=
∑

i

ni log
νie

ni
+

0.5

r

[

∑

i

log(rni)
]

+O
(

1/r
)

= q(n) +O

(

log r

r

)

, (13)

where

q(n) =
∑

i

ni log
νie

ni
. (14)

The O(·) term in (13) holds uniformly for all n ∈ Sr(C) or more generally for
any n ∈ S∗(C).

Concentration of πr. Given above calculations, we obtain the following con-
centration property of πr for large r.

Lemma 2 Given ε > 0, define the set

Aε =
{

n ∈ S∗(C) : ‖n− n∗‖ > ε
}

,

where n∗ = argmaxn∈S∗(C) q(n). Then

πr(Aε) = O
(

ε−2 log r

r

)

. (15)

Lemma 2 suggests that most of the probability mass under πr for large r is
concentrated around the maximal element with respect to q. As per (13), this
is close to the mode of the distribution πr for large r.
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Proof. (Lemma 2). From the definition of q(·), it can be verified that this is a
strictly concave function on the set S∗(C). Moreover, the constraint set S∗(C)
is closed and convex. Hence, there exists a unique optimal solution n∗ of the
optimization problem

maximize q(n) over n ∈ S∗(C).

By optimality and uniqueness of n∗, it follows that for any n ∈ S∗(C)

∇q(n∗)T (n− n∗) ≤ 0. (16)

By a Taylor expansion, the value of q(·) at n ∈ S∗(C) around n∗ can be
represented as:

q(n) = q(n∗) +∇q(n∗)T (n− n∗) + (n− n∗)T∇2q(z)(n− n∗), (17)

where z = αn∗+(1−α)n, for some α ∈ [0, 1]. Using the optimality condition,
we have

q(n) ≤ q(n∗) + (n− n∗)T∇2q(z)(n− n∗). (18)

Next, in order to evaluate the RHS in (18), we shall compute the Hessian
∇2q(z). For this, recall that

q(n) =
∑

i

ni log
νie

ni
.

Therefore, the Hessian ∇2q(·) is a diagonal matrix of the form

∇2q(n) =

[

∂2q(n)

∂ni∂nj

]

= diag

[

−
1

n1

, . . . ,−
1

nN

]

. (19)

For any z ∈ S∗(C), we have the bound that

|z| ≤ |C| and z ∈ R
N
+ .

Using this bound, the definition of the Hessian (19) and (18), we obtain

q(n) ≤ q(n∗)−
∑

i

(ni − n∗
i )

2

zi

≤ q(n∗)−
1

|C|

(

∑

i

(ni − n∗
i )

2

)

= q(n∗)−
1

|C|
‖n− n∗‖2 . (20)
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Now, by Markov’s inequality and (20), we have

ε2πr(Aε) ≤ Eπr

[

‖n− n∗‖2
]

≤ |C|
(

q(n∗)− Eπr [q(n)]
)

, (21)

which together with (13) yields

ε2πr(Aε) ≤
|C|

r

(

Q(rn∗)− Eπr [Q(rn)]
)

+O

(

log r

r

)

. (22)

Consider a dirac distribution µ on S(rC) that has all its mass on rn∗. Then,
by Lemma 1, it follows that

Q(rn∗) = F (µ)

≤ F (πr)

= Eπr [Q(rn)] +HER(π
r). (23)

In the above, with an abuse of notation, πr is thought of as defined on S(rC)
rather than the normalized version Sr(C). Now the support of πr is over
at most O(rN) elements. Therefore, by the standard bounds on entropy,
HER(π

r) = O(log r). Therefore, we can conclude Lemma 2 using (22) and
(23).

We remark that use of n∗ in (23) assumes that it belong to Sr(C). However, n∗

is only known to belongs to S∗(C). To fix this, one must use ñ∗ which is closest
to n∗ in Sr(C) so that ‖n∗ − ñ∗‖ = O(1/r). For such an ñ∗ essentially the
same argument holds since |q(n∗)− q(ñ∗)| can be easily shown to be O(1/r).2

3.3. Message-passing: optimization

The concentration property established in Lemma 2 suggests that most of the
mass of the scaled system concentrates around n∗, the maximizer of q(·) for
large r. Our interest is in computing loss probabilities, Li or equivalently E[ni]
for 1 ≤ i ≤ N . First, we state a result that suggests that Li can be computed
by knowing n∗

i . Then, we present a message-passing algorithm based on dual
co-ordinate descent method to compute n∗.
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3.3.1. Loss probability for large network

The following result, which states that the loss rates are well approximated
through scaled mode of the distribution, was established by Kelly (1986). Here
we provide an alternative derivation by Jung et al. (2008) using variational
characterization of π.

Theorem 1 (Large network approximation) Consider stochastic loss net-
work with scaling parameter r. Let Lri be the exact loss probability of route
i ∈ R. Then

∣

∣

∣

∣

(1− Lri )−
n∗
i

νr

∣

∣

∣

∣

= O

(

√

log r

r

)

. (24)

Proof. The proof follows immediately using Lemma 2. Specifically, in Lemma

2, use εk = k
√

log r
r

for the value of ε. Then, we obtain from (15) that

πr (|ni − n∗
i | > εk) = O

(

1

k2

)

, (25)

which immediately implies

Eπr [|ni − n∗
i |] = O

(

√

log r

r

)

×O

(

∑

k

1

k2

)

= O

(

√

log r

r

)

. (26)

Due to scaling of ν and C by r under the large network scaling and by linearity
of expectation, it can be argued that

1− Lri =
Eπr [ni]

νi
.

Therefore, it follows that

∣

∣

∣
(1− Lri )−

n∗
i

νi

∣

∣

∣
≤

Eπr [|ni − n∗
i |]

νi

= O

(

1

νi

√

log r

r

)

. (27)

This completes the proof of Theorem 1. 2
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3.3.2. Message-passing via dual co-ordinate descent

Theorem 1 suggests that for large r, good approximation of Lri can be obtained
by knowing n∗

i for 1 ≤ i ≤ N . This requires solving the optimization problem:

maximize q(n) =
∑

i

ni log
νie

ni
over n ∈ R

N
+ (28)

subject to An ≤ C.

As discussed earlier, the objective of optimization problem (28) is strictly con-
cave over its convex feasible region. Therefore, unique optimum n∗ is achieved.
The Lagrangian dual of this optimization problem is given by:

minimize
∑

i

νi exp
(

−
∑

j

yjAji

)

+
∑

j

yjCj (29)

subject to y ∈ R
M
+ . (30)

In above, vector of dual variables y ∈ R
M
+ with yj corresponding to constraint

∑

iAjini ≤ Cj for 1 ≤ j ≤ M . Define dual objective function as g : RM
+ → R

as

g(y) =
∑

i

νi exp
(

−
∑

j

yjAji

)

+
∑

j

yjCj. (31)

By Slater’s condition, strong duality holds and hence the optimal cost of primal
optimization (28) and dual optimization (29) are the same. The Karush-Kuhn-
Tucker conditions suggest that the pair of primal and dual optima, (n∗,y∗),
satisfy the following:

(a) For each link j,

∂g(y∗)

∂yj
= 0 or y∗j = 0 &

∂g(y∗)

∂yj
≤ 0.

Equivalently,

∑

i

Ajiνi exp
(

−
∑

ℓ

y∗ℓAℓi

)

= Cj & y∗j > 0,

or,
∑

i

Ajiνi exp
(

−
∑

j

y∗ℓAℓi

)

≤ Cj & y∗j = 0.
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(b) For each route i ∈ R,

n∗
i = νi exp

(

−
∑

j

y∗jAji

)

.

Here we note that since the optimal solution n∗ of optimization problem (28)
is unique, any dual optimum y∗ will give the same n∗ by (b). The above
conditions suggest the following approach: obtain a dual optimal solution, y∗

and use it to obtain n∗; eventually this will lead to loss probability as

1− Li =
n∗
i

νi

= exp
(

−
∑

j

y∗jAji

)

. (32)

Next, we describe message-passing algorithm based on dual co-ordinate descent
algorithm for obtaining y∗.

The basic idea behind a co-ordinate descent algorithm is quite simple. In
an iterative manner, each co-ordinate’s value is changed one at a time, so
as to minimize the value of objective function as much as possible. Such a
myopic algorithm may not even converge in general. However, in the setup
considered here, the algorithm always converges to an optimal solution. The
precise description of the algorithm is as follows.

Dual Co-ordinate Descent.

1. Denote by t the iteration of the algorithm. Initially, t = 0, y
(0)
j = 1 for

all 1 ≤ j ≤M .

2. In iteration t+ 1, determine y(t+1) as follows:

(a) Choose coordinates from 1, . . . ,M in a round-robin manner.

(b) Update y
(t+1)
j as the solution of the following equation: let x be

such that

g
(t)
j (x) = min

{

Cj, g
(t)
j (1)

}

,
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where g
(t)
j (x) =

∑

iAjiνi exp
(

−
∑

ℓAℓiyℓ

)

with

yℓ =











y
(t+1)
ℓ for ℓ < j,

x for ℓ = j,

y
(t)
ℓ for ℓ > j.

Thus, g
(t)
j (x) is evalatuion of partial derivative of g(·) with respect

to the jth co-ordinate with values of components < j being from
iteration t + 1, values of components > j from iteration t, and
component j being x.

3. Upon convergence (per appropriate stopping conditions), denote the re-
sulting values by y∗j for 1 ≤ j ≤ M . Compute the loss probabilities L∗

i ,
for i ∈ R, as

1− L∗
i = exp

(

−
∑

j

Ajiy
∗
j

)

.

The algorithm described is iterative and in each iteration, the components
of y are updated one-by-one. To update variable associated with a link j, yj,
the information needed is the value of all the variables yℓ such that there is
a flow i that passes through link j and link ℓ simultaneously, i.e. Aji, Aℓi 6=
0. This creates an edge between components of variables y. More formally,
consider a graph with M nodes with node j, 1 ≤ j ≤ M correspond to yj.
In this graph, there is an edge between nodes corresponding to variables yj
and yℓ if there is a flow i that passes through links j and ℓ. Then the above
described algorithm can be imagined as passing ‘messages’ between the nodes
of this graph to perform iterative computation. Therefore, we call it a message-
passing algorithm.

3.3.3. Convergence, correctness of dual co-ordinate descent

Theorem 2 (Convergence & Correctness) Given a loss network with rout-
ing matrix A, link capacities C and rate vector ν, let y(t) be the vector of dual
variables produced by the dual co-ordinate descent algorithm at the end of iter-
ation t. Assume that each link is utilized by some route in the matrix A, that
is
∑

iAji > 0 for all j. Let Y∗ be the set of dual optimal solutions. Then,

d(y(t),Y∗) ≤ α exp (−βt) ,
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where α, β are positive constants that depend on the problem parameters, and
d(·,Y∗) is distance to the set Y∗. Further, for the primal optimal n∗

∥

∥

∥

∥

∥

∥

(

νi exp
(

−
∑

j

y
(t)
j Aji

)

)

1≤i≤N

− n∗

∥

∥

∥

∥

∥

∥

2

≤ α′ exp (−β′t) ,

for some positive constants α′ and β′.

The proof of the convergence and correctness of the “round-robin” coordinate
descent algorithm follows from a result of Luo and Tseng (1992). We first
recall their precise result and then show how it implies Theorem 2.

In order to state the result in Luo and Tseng (1992), some additional notation
needs to be introduced. Consider a real valued function φ : Rn → R defined
as

φ(x) = ψ(Ex) +
n
∑

i=1

wixi, (33)

where E ∈ R
m×n is an m×n matrix with no zero column (i.e., all coordinates

of x are useful), w = (wi) ∈ R
n is a given fixed vector, and ψ : Rm → R is a

strongly convex function on its domain

Dψ = {z ∈ R
m : ψ(z) ∈ (−∞,∞)} .

We have Dψ being open and let ∂Dψ denote its boundary. We also have that,
along any sequence zk such that zk → ∂Dψ (i.e., approaches the boundary of
Dψ), ψ(zk) → ∞. The goal is to solve the optimization problem

minimize φ(x) (34)

subject to x ∈ X ,

where we assume that X is of box-type, i.e.,

X =
n
∏

i=1

[ℓi, ui], ℓi, ui ∈ R ∪∞.

Let X ∗ be the set of all optimal solutions of the problem (34). The “round-
robin” or “cyclic” co-ordinate descent algorithm for this problem has the fol-
lowing convergence property, as proved in Theorem 6.2 of Luo and Tseng
(1992).
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Lemma 3 There exist constants α0 and β0 which may depend on the problem
parameters in terms of ψ,E,w such that starting from the initial value x0, we
have in iteration t of the algorithm

d(xt,X ∗) ≤ α0 exp (−β0t) d(x
0,X ∗).

Here, d(·,X ∗) denotes distance to the optimal set X ∗.

Proof. (of Theorem 2) Note that the optimization problem of interest (29) has
very similar form to that of (34) including a box-type domain set: R

N . The
dual objective function g(·) has the form

g(y) =
∑

i

νi exp

(

−
∑

j

yjAji

)

+
∑

j

yjCj.

Assuming that each link is utilized by some route in the matrix A, it can be
easily verified that g(·) can be written in the desired form (33) of the cost
function of the optimization problem (34). Therefore, the setup of Theorem 2
satisfies the conditions of Lemma 3 and it follows that

d(y(t),Y∗) ≤ α exp (−βt) ,

for some positive constants α, β.

As discussed earlier, due to strict concavity of objective and bounded convex
domain, the primal optimization problem (28) has a unique solution, n∗. And
for 1 ≤ i ≤ N ,

n∗
i = νi exp

(

−
∑

j

y∗jAji

)

.

The map y →
(

exp
(

−
∑

j yjAji

))

1≤i≤N
is from R

M
+ → [0, 1]N which is uni-

formly Lipschitz continous. Therefore, it immediately follows that

∥

∥

∥

∥

∥

∥

(

νi exp
(

−
∑

j

y
(t)
j Aji

)

)

1≤i≤N

− n∗

∥

∥

∥

∥

∥

∥

2

≤ α′ exp (−β′t) ,

for some positive constants α′ and β′. 2

24



3.4. Message-passing: Erlang approximation

The dual co-ordinate descent message-passing algorithm essentially obtains
asymptotically correct loss probabilities with respect to large network scaling.
In order to do so, it essentially makes the approximation that average number
of calls on each route is equal to the number of calls with respect to its mode,
i.e. E[ni] ≈ n∗

i . A classical Erlang approximation, derived from very different
considerations, does have very similar properties that we shall discuss here.

The Erlang formula for a single-link, single-route network with capacity C and
arrival rate ν states that the loss probability, denoted by E(ν, C), is given by

E(ν, C) =
νC

C!

[

C
∑

k=0

νk

k!

]−1

. (35)

Based on this simple formula, the Erlang fixed-point approximation for multi-
link, multi-route networks arose from the hypothesis that calls are lost due
to independent blocking events on each link in the route. More formally, this
hypothesis implies that the loss probabilities of routes L = (L1, . . . , LN) and
blocking probabilities of links E = (E1, . . . , EM) satisfy the set of fixed-point
equations

Ej = E(ρj, Cj),

ρj =
1

1− Ej

[

∑

i

νiAji
∏

ℓ

(1− Eℓ)
Aℓi

]

,

1− Li =
∏

j

(1− Ej)
Aji , (36)

for j = 1, . . . ,M and i ∈ R. Here recall that a call on route i requires Ajr
units of capacity on link j. A natural iterative algorithm that attempts to
obtain a solution to the above fixed-point equations is as follows:

Erlang fixed-point approximation.

1. Denote by t the iteration of the algorithm, with t = 0 initially. Start
with E

(0)
j = e−1 for all 1 ≤ j ≤M .
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2. In iteration t+ 1, update E
(t+1)
j according to

E
(t+1)
j = E(ρ

(t)
j , Cj),

where

ρ
(t)
j = (1− E

(t)
j )−1

∑

i

νiAji
∏

ℓ

(1− E
(t)
ℓ )Aℓi .

3. Upon convergence per appropriate stopping conditions, denote the re-
sulting values by EE

j for 1 ≤ j ≤ M . Compute the loss probabilities
from the Erlang fixed-point approximation, LE

i , i ∈ R, as

1− LE
i =

∏

j

(1− EE
j )
Aji .

3.4.1. Existence, correctness of Erlang approximation

Apriori it is not clear if there exists a solution to Erlang fixed-point approxima-
tion (36) for any given loss network. And even if it exists, it may not provide
good approximation to loss probabilities. Both of these questions have af-
firmative answers (see Kelly, 1986, Theorems 5.1, 5.3). To start with, each
iteration of the iterative procedure to find Erlang fixed point approximation
can be viewed as a continuous mapping from [0, 1]M → [0, 1]M . Therefore,
by an application of Brouwer’s fixed point theorem, existence of fixed point,
i.e. solution to (36) follows. However, this is hardly insightful in studying
its properties. The following result of Kelly (1986) provides it’s relation to a
useful optimization problem.

Theorem 3 (Existence & Uniqueness) There exists a unique vector E ∈
[0, 1]M that satisfies equations (36).

Proof. The existence and uniqueness of E ∈ [0, 1]M satisfying (36) will be es-
tablished by showing it to be a unique solution of certain convex minimization
problem. To that end, define a function U : R2

+ → R as follows:

U(y, C) = ν exp(−y), (37)

where ν is s.t. 1− E(ν, C) = exp(−y).
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Note that U is well defined because, E(·, C) : R+ → [0, 1] is a strictly decreas-
ing function ranging from 0 to 1 as its argument varies from 0 to ∞. Therefore,
for each y ≥ 0, there exists a unique value of corresponding ν (given C). Also
observe that U(·, C) is a strictly increasing function. Therefore,

∫ y

0
U(z, C)dz

is a strictly convex function. Consider the optimization problem

minimize
∑

i

νi exp
(

−
∑

j

Ajiyj

)

+
∑

j

∫ yj

0

U(z, Cj)dz (38)

subject to y ∈ R
M
+ .

The objective function of this optimization problem is a strictly convex func-
tion over a convex set. Further, as |y| → ∞, the value of the objective function
goes to ∞. Therefore, unique minimum must be achieved. Since the objective
function is differentiable, stationarity conditions can be obtained as

∑

i

Ajiνi exp
(

−
∑

ℓ

yℓAℓi
)

= U(yj, Cj), for all 1 ≤ j ≤M. (39)

Now suppose there exists a solution, say E, to (36). We shall show that under
one-to-one transformation Ej = 1 − exp(−yj), the corresponding y satisfies
(39). This will imply the desired claim that E uniquely satisfies (36).

Now with this transformation of E → y, (36) becomes

E
(

exp(yj)
[

∑

i

Aji exp
(

−
∑

ℓ

yℓAℓi

)]

, Cj

)

= 1− exp(−yj), for all 1 ≤ j ≤M.

(40)

For given j, in defining function U(yj, Cj) set

ν = exp(yj)
[

∑

i

Aji exp
(

−
∑

ℓ

yℓAℓi

)]

.

Then it immediately follows that E(ν, Cj) = 1−exp(−yj) and collectively they
satisfy (39). This completes the proof of Theorem 3. 2

As per proof of Theorem 3, the solution to the Erlang fixed point equations,
say E, is related to the solution of optimization problem (38), say y, through
the transformation 1 − Ej = exp(−yj) for 1 ≤ j ≤ M . Notice the syntactic
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similarity between estimation of loss probability as per dual co-ordinate de-
scent (step 3) and Erlang approximation (step 3) under this transformation.
Therefore, to establish asymptotic correctness of Erlang approximation, it is
sufficient to establish relation between E (or transformed y) and the optimal
solution, y∗, of dual optimization problem (29). This is precisely established
by Kelly (1986). Here we state some key intuition.

Note that the only difference between optimization problems (29) and (38) is
in the second part of the objective function: in one case, it is

∑

j yjCj while

in the other case it is
∑

j

∫ yj
0
U(z, Cj)dz. If U(z, Cj) ≈ Cj, then indeed both

of them become identical. This approximation is established for large values
of Cj (see Kelly, 1986, Lemma 5.2). Therefore, in the large network scaling,
the Erlang approximation becomes similar to the approximation based on dual
co-ordinate descent.

3.5. Message-passing: variational approximation

The primary reason for dual co-ordinate descent or Erlang approximation to
a provide good estimate for the loss probability arises from the approximation
E[ni] ≈ n∗

i based on large network scaling, where n∗ is the mode of the distri-
bution. This means that in the variational representation of stationary distri-
bution given in Lemma 1, these approaches completely ignore the effect of the
entropy term. Indeed the error induced by doing so is of order O(log r/r) for
large network scaling. However, for relatively smaller networks or for scenarios
where more accurate evaluation of the loss probability is desired, one needs to
account for the effect of the entropy term on the loss probability. Of course,
as discussed in the beginning, precise evaluation (solving MARG exactly) is
computationally hard. Therefore, the goal is to balance the complexity of the
algorithm and quality of solution (especially in its ability to capture the effect
of entropy term). This is precisely done by algorithms based on variational
approximation methods – they approximate entropy term in the variational
characterization (cf. Lemma 1) by utilizing tractable surrogates of entropy.
In what follows, we shall discuss two such approximations: the mean-field
method and belief propagation. Both of them utilize tractable approximations
that yield to message-passing evaluation of the loss probabilities.

3.5.1. Mean-field method

The variational characterization (Lemma 1) suggests that the approximation
by mode, n∗, leads to essentially a lower bound on F (π) = logZ(C). We
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start with a naive method, which we shall call the mean-field method after
the classical statistical physics approach, to obtain an upper bound on F (π)
with essentially the same computational cost compared to the dual co-ordinate
descent or Erlang approximation. As we shall see, in a nutshell, the mean-field
method boils down to running a dual co-ordinate descent algorithm for an
optimization problem (43) which is syntactically very similar to (29) but with
a different objective function.

Consider the following: using Lemma 1 with Q(n) =
∑

i ni log νi − log(ni!),

logZ(C) = F (π)

= Eπ[Q(n)] +HER(π)

= sup
µ∈M(C)

Eµ[Q(n)] +HER(µ)

≤ sup
µ∈M(C)

Eµ[Q(n)] +
∑

i

HER(µi), (41)

where by µi we mean marginal distribution of ni with respect to µ; the last
inequality follows because entropy of a joint distribution is no more than the
sum of the entropies of the individual marginals. Indeed, the approximation
is tight when π itself satisfies indepedence across its marginals, e.g. under
assumption that π is dirac with mode as its support. In (41), the choice of µ is
restricted to M(C), the space of all feasible distributions, which is intractable
to work with. Now the approximate variational characterization in (41) utilizes
only marginal distributions induced by a given µ ∈ M(C). Therefore one way
to achieve tractability is to consider a (tractable) relaxation of the ‘marginal
polytope’ induced by M(C). Here by marginal polytope we mean the set of
all marginal distributions (µi)1≤i≤N that are induced by feasible distributions
µ ∈ M(C). In what follows, we shall define such a relaxation by means of
inequality constraints utilizing only marginal information.

Let µ̂(i,k) denote the probability of route i having k active calls for 0 ≤ k ≤ |C|.
Note that at most Ki calls can be active for route i, where

Ki
△
=
⌊(

min
j

Cj
Aji

)⌋

.

Define a matrix Â as an extension of A as follows. For each Aji, create entries

Âj(i,k) with 1 ≤ k ≤ |C| as

Âj(i,k) = kAji.
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Thus, Â isM×N |C| matrix. For simplicity, we shall assume that columns are
organized so that all |C| columns corresponding to a given route i are adjacent.
Now consider a relaxation M1(C) of M(C) defined as

M1(C) = {µ̂ = (µ(i,k)) :
∑

k

µ̂(i,k) = 1, µ̂(i,k) ≥ 0, Âµ̂ ≤ C}.

In above, µ(i,k) represents the marginal probability of route i having k active

calls. Now Âµ̂ ≤ C represents that the feasibility constraints must be satis-
fied on average (this should explain our reason for defining Â). Indeed, for any
distribution µ ∈ M(C), its corresponding marginals µ̂ must satisfy this con-
straint. However, given µ̂ ∈ M1(C), it is not clear if there exists µ ∈ M(C)
with µ̂ as its marginals. The answer is always yes when all the extreme points
of the marginal polytope M1(C) belong to S(C). That is, the marginal con-
straints induced polytope (here M1(C)) and the marginal polytope are the
same if the extreme points of the earlier are contained in the support of the
space of distributions of interest. In such cases, M1(C) is not a relaxation; but
in general it is a relaxation (hence leads to weaker upper bound on logZ(C)).
Finally, for ease of notations, define

wik =

{

log
νki
k!
, 0 ≤ k ≤ Ki

−∞, Ki < k ≤ |C|.

With these notations, the following optimization serves as an upper bound on
logZ(C) for any loss network:

maximize
∑

1≤i≤N

∑

0≤k≤|C|

wikµ̂(i,k) − µ̂(i,k) log µ̂(i,k) (42)

over µ̂ = (µ̂(i,k)) ∈ R
N(|C|+1)
+ ,

subject to Âµ̂ ≤ C,
∑

k

µ̂(i,k) = 1, for all 1 ≤ i ≤ N.

Observe that optimization problem (42) has strictly concave objective with
bounded convex feasible region. Therefore, it achieves a unique optimum. Let
us consider the Lagrangian dual of the optimization problem (42) with dual
variables y = (yj) ∈ R

M
+ corresponding to capacity constraints. It can be
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checked that its dual objective ĝ : RM
+ → R is

ĝ(y) =
∑

i

log
(

∑

k

exp
(

wik −
∑

ℓ

yℓÂℓik

))

+
∑

j

yjCj.

And the dual optimization problem is given by

minimize ĝ(y) over y ∈ R
M
+ . (43)

By definition, the dual objective ĝ(·) is a convex function. By Slater’s condition
strong duality holds. Therefore, the pair of optimal solutions µ̂∗ and y∗ satisfy
the Karush-Kuhn-Tucker conditions. Specifically, given y∗, the µ̂∗ can be
recovered as follows: for each i,

µ̂∗
(i,k) ∝ exp

(

wik −
∑

ℓ

y∗ℓ Âℓik

)

;
∑

k

µ̂∗
(i,k) = 1. (44)

To obtain a message-passing algorithm for finding y∗, as before we can use dual
co-ordinate descent. The algorithm will be very similar to the one described
to solve optimization (29) with only one difference: use of ĝ in place of g.
Indeed, this makes the iterative steps somewhat more involved. However, it
still retains the distributed, iterative structure. Further, due to similarity of
structure the convergence property of dual co-ordinate descent carries over
as well. In summary, the mean-field method can lead to an upper bound
on partition function logZ(C) in contrast to lower bound obtained through
approximation based on the mode of the distribution.

Some remarks are in order. Observe similarities as well as difference with
the earlier approaches. The optimization problem (43) has very similar ‘form’
compared to the optimization problem (29). The primary difference arises from
the fact that mean-field approach inherently allows for richer parametrization
for estimating marginal of each call type compared to single parametrization
in earlier approaches. However, it should be noted that in both of the dual
formulations (29) and (43), the effective parameterization is the same and
their objective functions are quite similar as well. This leads us to speculate
that mean-field method may be getting more out of similar effort. Finally, we
believe that under large network scaling the mean-field method based on dual
co-ordinate descent should be asymptotically correct in estimating loss rates.
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3.5.2. Belief propagation: pair-wise loss network

The mean-field approach described earlier provides a valid upper bound by
optimizing approximate variational form over a relaxation of the marginal
polytope. The approximate variational form used independence hypothesis to
obtain tractable surrogate for entropy which involved only marginal entropies.
As the next step, it is reasonable to utilize entropy of higher-order marginals.
A belief propagation algorithm precisely does that and allows for its evalua-
tion by means of message-passing. In what follows, we shall describe the belief
propagation algorithm and its relation to the corresponding variational approx-
imation for a restricted instance of loss network, the pair-wise loss network, for
ease of exposition. The belief propagation algorithm for general loss network
will be described near the end. We note that the belief propagation algorithm
for the loss network model was first used by Ni and Tatikonda (2007).

We shall start by introducing the restricted, pair-wise loss network. Under
this restriction on the loss network model, we shall require that each link is
shared by at most two routes. That is, |{i : Aji > 0}| ≤ 2 for each j. We
shall assume that Aji ∈ {0, 1} for all i, j without loss of generality. Further,
we shall assume that a given pair of routes will share at most one edge. In
this situation, we can effectively represent the bipartite factor graph (graphical
model) G = (U ∪ V,E) by an undirected graph G′ defined as follows: G′ =
(U,E ′) with vertices U = {1, . . . , N} corresponding to N different routes and
edges E ′ so that (i, j) ∈ E ′ if and only if routes i and j share a link. Let Cij
represent capacity of the link shared by routes i and j: if (i, j) ∈ E ′ then Cij is
finite, else set it to ∞. Call this graph G′ = (U,E ′). Define neighbors of node
i as N (i) = {j ∈ U : (i, j) ∈ E ′}. We call this pair-wise loss network model as
the constraints imposed on routes through link capacities can be represented
by means of the undirected graph G′.

Now we describe the belief propagation (BP) algorithm. The belief propaga-
tion is an iterative procedure that exchanges messages along each edge of G′

in both directions. The messages exchanged try to incorporate the philosophy
behind the dynamic programing in a local manner. More precisely, as part of
BP, each node (here route) i ∈ U wishes to estimate its marginal distribution,
µ̂(i,k), 0 ≤ k ≤ Ki. Initially, each node has no prior information about how
to estimate it. It refines its estimate over time by means of exchanging mes-
sages with its neighbors (as per G′). The information a node i ∈ U sends to its
neighbor j ∈ U (i.e. (i, j) ∈ E ′) represents ‘belief’ of node i about j’s marginal
distribution. This ‘belief’ is generated based on node i’s own estimate of its
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marginal distribution and the estimation of conditional probability of node j
given node i’s marginal through the constraint imposed by link joining them.
In a sense, generation of a message is a naive execution of Bayes’s rule (or
total probability theorem). Finally, the estimation of each node’s marginal
is updated based on messages or beliefs received from its neighbors using an-
other application of Bayes’s rule assuming that the messages generated by
all neighbors are independent of each other. In a sense, philosophically BP
is quite similar to the Erlang approximation – both try to iteratively reach
fixed point equations that are obtained assuming some form of independence
between quantities of interest. The precise description of BP is as follows.

Belief Propagation: Pair-wise Loss Network.

1. Denote by t the iteration of the algorithm, with t = 0 initially. For each
(i, j) ∈ E ′, let m

(t)
i→j(k) (resp. m

(t)
j→i(k)) denote message from node i to

j (resp. j to i) in iteration t about marginal probability of node j (resp.
i) taking value k. Initially, for all (i, j) ∈ E ′

m
(0)
i→j(k) = 1{k≤Kj}, and m

(0)
j→i(k) = 1{k≤Ki}.

2. In iteration t+1, update messages as follows: with notation wik = log
νki
k!

m
(t+1)
i→j (k) ∝ 1{k≤Kj}

(

∑

0≤k′≤Cij−k

exp(wik′)
∏

ℓ∈N (i)\{j}

m
(t)
ℓ→i(k

′)
)

,

m
(t+1)
j→i (k) ∝ 1{k≤Ki}

(

∑

0≤k′≤Cij−k

exp(wjk′)
∏

ℓ∈N (j)\{i}

m
(t)
ℓ→j(k

′)
)

. (45)

Each message vector (from i→ j, j → i) is normalized to sum to 1.

3. Each node (route) i estimates marginal distribution at the end of itera-
tion t+ 1 as

µ̂
(t+1)
(i,k) ∝ 1{k≤Ki} exp(wik)

∏

j∈N (i)

m
(t+1)
j→i (k), (46)

and the pair-wise marginal for (i, j) ∈ E ′ is estimated as

µ̂
(t+1)
(ij,kk′) ∝ 1{k+k′≤Cij} exp

(

wik + wjk′
)

(

∏

ℓ∈N (i)\{j}

m
(t+1)
ℓ→i (k)

)

×
(

∏

ℓ′∈N (j)\{i}

m
(t+1)
ℓ′→j (k

′)
)

. (47)
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The belief propagation algorithm as described above is an iterative procedure
with its messages being finite dimensional non-negative valued vectors normal-
ized to sum to 1. It’s iteration defined by (45) is a continuous map from a
bounded convex set to a bounded convex set. Therefore, by an application
of the Brouwer’s fixed point theorem, it does have a fixed point. The basic
question is, whether the fixed points are meaningful. As mentioned earlier, the
following result of Yedidia et al. (2001) shows that the belief propagation fixed
points are intimately related to the variational characterization (of Lemma
1) through an approximation. Specifically, consider the following variational
approximation known as the Bethe Variational Problem (BVP) :

maximize
∑

i

∑

0≤k≤Ki

wikµ̂(i,k) +
∑

i

HER(µ̂i)−
∑

(i,j)∈E′

I(µ̂ij) (48)

over µ̂(i,k) ≥ 0, µ̂(ij;kk′) ≥ 0, for all i, (i, j) ∈ E ′

subject to
∑

k

µ̂(i,k) = 1, for all i, (49)

∑

k′

µ̂(ij;kk′) = µ̂(i,k), for all (i, j) ∈ E, k ≤ Ki. (50)

In above µ̂(i,k) represent node (route) i’s marginal distribution – probability
of node i taking value k; µ̂(ij,kℓ) represent pair-wise marginal distributions –
probability of nodes i and j taking values k and ℓ respectively. Equation (49)
is a normalization constraint while (50) is the consistency constraint. Notation
I(µ̂ij) represents mutual information between nodes i and j based on pair-wise
marginal distribution µ̂ij defined as

I(µ̂ij) = HER(µ̂i) +HER(µ̂j)−HER(µ̂ij)

= −
∑

k

µ̂(i,k) log µ̂(i,k) −
∑

k

µ̂(j,k) log µ̂(j,k) +
∑

k,k′

µ̂(ij,kk′) log µ̂(ij,kk′).

(51)

Observe that the BVP replaces the entropy term in variational characterization
by the so called Bethe entropy, HBethe(µ) =

∑

iHER(µi)−
∑

(i,j)∈E′ I(µij) with

µi and µij representing marginals of node i and node pair (i, j) with respect
to µ.
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The fixed points of belief propagation algorithm are related to the zero gra-
dient points (or stationary points) of the Lagrangian of the Bethe Variational
Problem. To define Lagrangian, introduce variables yi for constraint (49) for
each i; variables zj→i(k) for constraint (50) for each (i, j) ∈ E ′ and k ≤ Ki

(similarly zi→j(k) for (i, j) ∈ E ′ and k ≤ Kj). Then the Lagrangian of BVP is

L(µ̂,y, z) =
∑

i

∑

0≤k≤Ki

wikµ̂(i,k) +HBethe(µ̂) +
∑

i

yi

(

1−
∑

k

µ̂(i,k)

)

+
∑

(i,j)∈E′

[

∑

k≤Ki

zj→i(k)
(

µ̂(i,k) −
∑

k′≤Kj

µ̂(ij,kk′)

)

+
∑

k≤Kj

zi→j(k)
(

µ̂(j,k) −
∑

k′≤Ki

µ̂(ij,k′k)

)]

. (52)

Theorem 4 (Fixed point characterization) Let (µ̂∗, z∗,y∗) be a zero gra-
dient point of L, i.e.

∂L(µ̂∗, z∗,y∗)

∂µ̂(i,k)

= 0, for all i, k ≤ Ki,

∂L(µ̂∗, z∗,y∗)

∂µ̂(ij,kk′)

= 0, for all (i, j) ∈ E ′, k ≤ Ki, k
′ ≤ Kj,

∂L(µ̂∗, z∗,y∗)

∂zi→j(k)
= 0, for all (i, j) ∈ E ′, k ≤ Kj,

∂L(µ̂∗, z∗,y∗)

∂zj→i(k)
= 0, for all (i, j) ∈ E ′, k ≤ Ki,

∂L(µ̂∗, z∗,y∗)

∂yi
= 0, for all i. (53)

Define vector of messages, m∗ as follows: for each (i, j) ∈ E ′,

logm∗
i→j(k) ∝ zi→j(k), k ≤ Kj, and logm∗

j→i(k) ∝ zj→i(k), k ≤ Ki.

Then m∗ is a fixed point of message updates under belief propagation and µ̂∗

is the node and pair-wise marginals based on m∗ obtained as per (46)-(47).

Proof. Since the partial derivatives of L with respect to yi, zi→j(k) and zj→i(k)
are 0 at (µ̂∗, z∗,y∗), it must be that µ̂∗ satisfies the constraints (49) and (50).
Let us consider partial derivatives of L with respect to µ̂(i,k) and µ̂(ij;kk′). It
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can be checked that

∂L(µ̂, z,y)

∂µ̂(i,k)

= wik + yi − 1− log µ̂(i,k) +
∑

j∈N (i)

zj→i(k)

∂L(µ̂, z,y)

∂µ̂(ij,kk′)

= −zj→i(k)− zi→j(k
′) + 1 + log µ̃(i,k) + log µ̃(j,k′) − log µ̂(ij,kk′),

(54)

where we have used the notation µ̃(i,k) =
∑

k′ µ̂(ij;kk′) and µ̃(j,k′) =
∑

k µ̂(ij,kk′).
Now using hypothesis of theorem that at (µ̂∗, z∗,y∗) these equal to 0, the fact
we observed earlier that µ̂∗ satisfies (49)-(50) and minor manipulation leads
to the following:

log µ̂∗
(i,k) ∝ wik +

∑

ℓ∈N (i)

z∗ℓ→i(k)

log µ̂∗
(j,k′) ∝ wjk′ +

∑

ℓ′∈N (j)

z∗ℓ′→j(k
′)

log µ̂∗
(ij;kk′) ∝ wik + wjk′ +

∑

ℓ∈N (i)\{j}

z∗ℓ→i(k) +
∑

ℓ′∈N (j)\{i}

z∗ℓ′→j(k
′). (55)

Let the vector of messages, m∗, be defined based on z∗ as stated in the state-
ment of the theorem, i.e.

logm∗
i→j(k) ∝ zi→j(k), k ≤ Kj, and logm∗

j→i(k) ∝ zj→i(k), k ≤ Ki.

Then, (55) along with the constraint (50) implies that m∗ is indeed a fixed
point of the message update iteration of belief propagation algorithm (45).
This completes the proof of Theorem 4. 2

Some remarks are in order. Theorem 4 states that stationary or zero-gradient
points of Bethe Variational Problem (BVP) are fixed points of the message-
passing belief propagation algorithm. However, it is does not claim all fixed
points are of this form. Such a result can be established for distributions of
the Exponential family (the loss network distributions are not such due to
hard inequality constraints). An interested reader is referred to monograph by
Wainwright and Jordan (2008). It should also be noted that unlike dual co-
ordinate descent algorithm for mean-field approximation, belief propagation is
not known to converge to a fixed point.
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3.6. Belief propagation: General loss network

Now we provide description of belief propagation for the general loss network
setup. For this, we shall utilize the bipartite factor graph notation, G =
(U ∪ V,E). We shall utilize notation Nu(i) = {j ∈ V : (i, j) ∈ E} for i ∈ U
and Nv(j) = {i ∈ U : (i, j) ∈ E} for j ∈ V . In the description of the
algorithm that follows, we will stick to use of i (i′ etc) for routes and j (j′ etc)
for links.

Belief Propagation: General Loss Network.

1. Denote by t the iteration of the algorithm, with t = 0 initially. For
each (i, j) ∈ E, m

(t)
i→j(k) (resp. m

(t)
j→i(k)) denote message from node i

to j (resp. j to i). Message m
(t)
i→j(k) represents belief of node i about

marginal probability of route j having k active calls. They are always
normalized to 1. Initially, for all (i, j) ∈ E

m
(0)
i→j(k) ∝ 1{k≤Ki} and m

(0)
j→i(k) ∝ 1{k≤Ki}.

2. In iteration t+1, update messages as follows: with notation wik = log
νki
k!
,

for k ≤ Ki

m
(t+1)
i→j (k) ∝ exp

(

wik
)

(

∏

j′∈Nu(i)\{j}

m
(t)
j′→i(k)

)

,

m
(t+1)
j→i (k) ∝

(

∑

(ki′ )∈S(Cj ,i,k)

∏

i′∈Nv(j)\{i}

m
(t)
i′→j(ki′)

)

, (56)

where S(Cj, i, k) = {(ki′) :
∑

i′∈Nv(j)\{i}
Aji′ki′ ≤ Cj−Ajik}. All message

vectors (from i→ j and j → i) are normalized to 1.

3. Each node (route) i estimates marginal distribution at the end of itera-
tion t+ 1 as

µ̂
(t+1)
(i,k) ∝ 1{k≤Ki} exp

(

wik
)

∏

j∈Nu(i)

m
(t+1)
j→i (k). (57)
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3.7. Discussion, future directions

In this section, we discussed various message-passing algorithms for perfor-
mance evaluation for capacity planning problem modeled as a stochastic loss
networks. Primarily, we discussed algorithms based on optimization and vari-
ational approximation. The optimization based algorithms (include Erlang
approximation) tend to capture the dominant effect on loss rates induced by
the mode of the stationary distribution. On the other hand, the variational ap-
proximation based algorithms, the mean-field and belief propagation, attempt
to obtain a correction over them by utilizing surrogates for the ‘entropy’ term
that is entirely ignored in the optimization based method (or Erlang approx-
imation). While these algorithms are progress in the right direction, there
are various issues that remain open. In what follows, we summarize a set of
concrete questions.

To start with, it would be good to establish that the loss rate evaluation un-
der the mean-field algorithm is asymptotically correct under the large network
limit. We believe that this should be relatively easier compared to estab-
lishing a similar result for the belief propagation algorithm. While the dual
co-ordinate descent based implementation of mean-field provides a convergent
method, establishing convergence property of belief propagation (or design-
ing a convergent modification of belief propagation) would be of interest. It is
worth remarking that belief propagation always converges when the underlying
graphical model of the corresponding Markov Random Field is a tree, see for
example the book by Pearl (1988). In general, certain sufficient conditions for
convergence are implied by the conditions for uniqueness of Gibbs distribution
on infinite structure by Dobrushin and Simon (see book by Georgii (1988) for
these conditions and work by Tatikonda and Jordan (2002) on how they imply
convergence of belief propagation). In general, the convergence and correct-
ness property of belief propagation remain open and it is very much likely that
stochastic loss network model can provide fertile ground for developing such
an understanding.

More ambitiously, as an ideal solution it would make sense to develop a se-
quence of approximations that successively try to provide better evaluation of
the loss rates for generic loss network model by gracefully increasing the com-
plexity of the solution. Indeed, an initial attempt has been made towards this
by Jung et al. (2008) where the authors propose a modification of optimization
based method by utilizing it as a subroutine to refine the estimation of loss
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rates. They show its effectiveness especially when the network is ‘critically’
loaded.

Towards achieving the above mentioned ideal solution, it is reasonable to
speculate the possibility of utilizing some of the recent BP-like algorithms
for the MARG problem. For example, works by Weitz (2006), Gamarnik and
Katz (2007) and Bayati et al. (2007a) provide a dynamic programing and cavity
method of Parisi (1988), Mezard et al. (2002) and Mezard et al. (1987) based
approach for efficient approximation of MARG problem in order to obtain a
method for counting of combinatorial objects for a restricted class of graphs
and problems. The work by Jung et al. (2009) provides a simple, local BP-like
linear time algorithm that utilizes the geometry of graphical model to obtain
MAP as well as compute the logarithm of partition function (logZ(C)). The
sophisticated variational approximations like the Tree Reweighted Algorithm
by Wainwright et al. (2005a,b) provides efficient convex relaxation based so-
lutions for MAP and MARG. Finally, an entirely different line of approach
based on the classical Markov Chain Monte Carlo (MCMC) method seem to
be little explored in the context of loss network. Given that under the large
network scaling, the distribution is well approximated through a unimodular
distribution with concave density, we strongly believe that MCMC based ap-
proaches for large loss networks could be quite effective. This comment is
particularly motivated by works of Dyer et al. (1991), Lovász and Vempala
(2003), Bertsimas and Vempala (2004) and Kalai and Vempala (2006) where
authors have managed to design provably efficient MCMC based methods for
both MARG and MAP problem when underlying distribution has concave
density with convex support.

4. Scheduling

This section discusses message-passing algorithms for scheduling or contention
resolution in a queueing network modeled as a stochastic processing network
with constraints of the type (1). We start with the description of the queue-
ing model. We shall be interested in two classes of efficient, myopic policies:
the maximum weight policy by Tassiulas and Ephremides (1992) and the fair
bandwidth sharing policy proposed by Kelly et al. (1998); Mo and Walrand
(1998). We shall describe message-passing implementations for both of these
policies. Specifically, the primal-dual algorithm provides message-passing im-
plementation for the bandwidth sharing model; the maximum weight policy

39



is implemented using belief propagation. The description of these algorithms
is restricted to examples of bandwidth sharing or congestion control in the
Internet (a la TCP) and scheduling in an input-queued switch in an Internet
router. The primal-dual algorithm for fair bandwidth sharing policy extends
easily for generic stochastic processing network considered here. However, the
belief propagation for the maximum weight policy in general is only heuristic.
The associated challenges and directions for future work are summarized near
the end of the section.

4.1. Model

We define a general queueing network model for resource allocation. Here
our interest is in two contention resolution or scheduling policies. We shall
consider two example scenarios: scheduling in an input-queued switch and
bandwidth sharing in the Internet. The dynamics of queueing network model
is described by means of the fluid model. The precise stochastic models that
are well approximated by the fluid model can be found in the literature; see
for example Dai and Prabhakar (2000); Kelly and Williams (2004); Shah and
Wischik (2011); Dai and Lin (2005, 2008); Gromoll and Williams (2009).

As stated earlier, we have a collection of N queues with infinite buffers. Queues
can be served as per an action that is feasible with respect to constraints (1).
That is, at any time a queue can receive service as per x ∈ R

N
+ where x ∈ S

and S is the space of all feasible solutions to (1), i.e.

S = {x ∈ ΣN : Ax ≤ C},

where C ∈ R
M
+ and Σ is either a discrete or continuous subset of R+. We

shall assume that every queue is serviceable, i.e. for every i there exists some
x ∈ S such that xi > 0, and the empty schedule is feasible, i.e. 0 ∈ S. Let
〈S〉 represent the convex hull of the set of all feasible schedules S defined as

〈S〉 =
{

y ∈ R
N
+ : y ≤

∑

k≥1

βkxk,
∑

k≥1

βk ≤ 1, and βk ≥ 0, xk ∈ S for all k
}

.

As we shall see, the effective service rates provided to queues over time belong
to 〈S〉. In S, if Σ is a finite discrete set then by definition S has finitely many
elements and hence 〈S〉 defines the convex set obtained by all sorts of convex
combinations of elements of S. Else, Σ is a continuous interval. Since 0 ∈ S
is a requirement, we must have Σ = [0, b] for some b > 0 or Σ = R+. In this
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case, S is a polytope with finitely many extreme points. Therefore, 〈S〉 can
be thought of as obtained by convex combinations of the extreme points of S.
We shall assume a single-hop network, i.e. once work is served from a queue,
it leaves the network. Each queue i receives work as per exogeneous arrival
process at rate λi ∈ R+. Let λ ∈ R

N
+ denote the arrival rate vector. For any

D ∈ N, let ACD denote the space of absolutely continuous trajectories in R
D.

We describe the queueing dynamics of interest through a fluid model.

Definition 1 (Fluid queueing dynamics) Let λ ∈ R
N
+ . Say that the triple

q(·) ∈ ACN , z(·) ∈ ACN , s(·) ∈ ACN is a fluid model solution for the queueing
dynamics with arrival rate vector λ if s(0) = 0, z(0) = 0, and the following
equations are satisfied for all t:

q(t) = q(0) + λt− s(t) + z(t) (58)

1

t
s(t) ∈ 〈S〉 (59)

each si(·) and zi(·) are non-decreasing for all i (60)

for all i and all regular time t, żi(t) = 0 if qi(t) = 0 (61)

z(t) ≤ s(t). (62)

In above, by regular time t we mean any t at which all components of triple
(q, z, s) are differentiable. Since they are all absolutely continuous, almost all
t are regular.

Here q(t) represents the vector of queue sizes at time t, z(t) represents the
cumulative idleness up to time t, and s(t) represents the total amount of service
provided to queues up to time t.

Next, we define two contention resolution or scheduling policies in terms of
fluid model. Given that s(·) is absolutely continuous, the derivative of s(·),
that is the instantaneous rate vector allocated to queues, is well defined for
almost all (regular) t. Therefore, we shall define these two policies in terms of
properties of these instantaneous rate allocation.

Definition 2 (Max-weight policy) Given α > 0, we say that (q, z, s) is a
fluid model solution for the α max-weight policy, denoted as MW-α, if (q, z, s)
is a fluid model solution for the queueing dynamics and in addition for any
regular t,

d

dt
s(t)·qα(t) = max

σ∈〈S〉
σ ·qα(t). (63)
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Definition 3 (α-fair policy) Given α ∈ R+\{1}, we say that (q, z, s) is a
fluid model solution for the α-fair policy if (q, z, s) is a fluid model solution
for the queueing dynamics and in addition for any regular t,

d

dt
s(t) ∈ argmax

ρ∈〈S〉

qα(t) ·
ρ1−α

1− α
. (64)

Implementing the maximum weight MW-α policy or α-fair policy requires
solving the following type of network-wide problem: given vector of queue-
sizes q, the schedule is a solution of

maximize F (q,x)

over x ∈ ΣN

subject to Ax ≤ C. (65)

For the maximum weight MW-α policy

F (q,x) =
∑

i

qαi xi;

and for the α-fair policy

F (q,x) =
∑

i

qαi
x1−αi

1− α
.

Therefore, the goal is to obtain a message-passing algorithm to solve optimiza-
tion problem (65) with linear objective for MW-α and concave objective for
α-fair policy. Next, we describe two examples of practical interest for which
we shall describe such message-passing algorithms.

4.1.1. Model application: input-queued switch

The role of a switch in an Internet router is to transfer (or switch) packets
arriving at the input (or ingress) ports of the router to their corresponding
output (or egress) ports through a switch fabric. The input-queued switch
is a specific switch architecture in which all packets that are waiting to be
transfered are buffered (or queued) at the input ports with separate queues
at each input port for different output ports. Usually, each port in a router
acts as both input and output port. Therefore, logically a switch has, say n
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input ports and n output ports. Thus an input-queued switch has total of
N = n2 queues: n input ports, each with n queues. In such an architecture,
the switch fabric imposes constraints that at any given time instance, each
input port can transfer data at unit rate to at most one other output port and
each output port can receive data at unit rate from at most one other input
port. Thus, the contention resolution or scheduling constraint corresponds
to finding a ‘matching’ of n input and n output ports at each time instance
so that each input (respectively output) port is matched to a distinct output
(respectively input) port. Equivalently, at each time instance the scheduling
algorithm needs to pick a permutation of n inputs with i permuted to j if and
only if input i is matched to output j.

Such an input-queued switch can be effectively modeled as a collection of
N = n2 queues operating in slotted time; in this application it is most natural
to consider the queue lengths to be a matrix in R

n×n
+ rather than a vector

in R
N
+ ; the (i, j)th component corresponds to the length of queue of packets

waiting at input i for output j. At the beginning of each timeslot, a (random)
integer number of packets arrive, and there may be arrivals to any queue.
Then a service action x is chosen from the set S ⊂ {0, 1}n×n consisting of
all n! permutation matrices, chosen according a scheduling policy. During
the timeslot, x is the offered service to each queue, and served work leaves
the system at the end of the timeslot. Interest is in utilizing the maximum
weight MW-α policy for selecting the service action or permutation. Then, the
MW-α policy will require solving the following optimization problem at each
time instance t: given queue-sizes q(t) ∈ R

n×n
+ ,

maximize
∑

1≤i,j≤n

xijqij(t)

over xij ∈ {0, 1}, for all 1 ≤ i, j ≤ n

subject to
∑

k

xik ≤ 1,
∑

k

xkj ≤ 1, for all 1 ≤ i, j ≤ n. (66)

We note that the maximum weight policy for input-queued switch was first
studied by McKeown et al. (1996) and its fluid model was introduced by Dai
and Prabhakar (2000).

4.1.2. Model application: bandwidth sharing in the Internet

Roberts and Massoulie (2000) introduced a model for bandwidth-sharing in
the Internet. They took there to be a finite set M of links, and for each link
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j an associated capacity Cj ≥ 0, and a finite set R = {1, . . . , N} of routes
where each route i being a subset of M links. At every instant in time t,
there is a certain number qi(t) of active flows on route i. These flows receive
service at a certain rate, which depends only on the number of active flows:
let xi(q(t))/qi(t) be the service rate for each flow on route i. We can think
of the Internet’s congestion control algorithm (TCP) as selecting a service
rate vector x(q(t)) that satisfies the capacity constraint Ax(q(t)) ≤ C where
Aji = 1 if route i utilizes link j and 0 otherwise. Let S be the set of all feasible
rate allocations {x ∈ R

N
+ : Ax ≤ C}. Then the constraint can be written as

x(q(t)) ∈ 〈S〉. The α-fair bandwidth-sharing policy suggests that x(q(t)) is
obtained by solving the following optimization problem:

maximize
∑

i

qαi (t)
x1−αi

1− α

over x ∈ R
N
+

subject to Ax ≤ C. (67)

Kelly et al. (1998) suggested that in a stationary flow-level model, the band-
width sharing or congestion control (TCP) protocol can be viewed as attempt-
ing to reach network-wide rate allocation as per α-fair policy for certain value
of α. Based on this, the notion of α-fairness for general α was introduced by
Mo and Walrand (1998). Bonald and Massoulie (2001) and Kelly and Williams
(2004) introduced and analyzed fluid model equations for this system for the
case that each route i has flows arriving as per Poisson process of rate λi with
flow size having exponential distribution of mean 1.

4.1.3. Network stability

An important reason for attractiveness of MW-α and α-fair bandwidth shar-
ing policy is their throughput optimality property despite being myopic, i.e.
utilize only current network state in terms of q(t) to make scheduling deci-
sions. Roughly speaking, by throughput optimality we mean that as long as
the network is not overloaded then queues remain finite. Precise definition is
as follows.

Definition 4 (Throughput optimal) A policy is called throughput optimal
if for every fluid model solution, q(t) = 0 for all t > 0 if q(0) = 0 as long as
λ ∈ 〈S〉o, the interior of 〈S〉, defined as

〈S〉o =
{

y ∈ R
N
+ : y ≤

∑

k≥1

βkxk,
∑

k≥1

βk < 1, and βk ≥ 0, xk ∈ S for all k
}

.
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In what follows, throughput optimality of MW-α and α-fair policies are estab-
lished using Lyapunov functions. The appropriate Lyapunov functions were
introduced by Tassiulas and Ephremides (1992) and Bonald and Massoulie
(2001) as well as de Veciana et al. (2001) for MW-α and α-fair policies respec-
tively.

Lemma 4 Given α > 0, define Lyapunov function L(q) = 1 ·q1+α =
∑

i q
1+α
i .

Let λ ∈ 〈S〉o. Then for any fluid model solution q(·) under MW-α policy,

d

dt
L(q(t)) < 0, if q(t) 6= 0,

for almost all t. Therefore, q(t) = 0 if q(0) = 0.

Proof. Consider a fluid model solution operating under MW-α policy with
λ ∈ 〈S〉o. Let t be such that x(t) = d

dt
s(t) is well defined. Then, x(t) maximizes

qα(t)·x over x ∈ 〈S〉. Since λ ∈ 〈S〉o, there exists ε > 0 so that

λ ≤
∑

ρ∈S

βρρ, such that
∑

ρ∈S

βρ = 1− ε, βρ ≥ 0. (68)

From the fluid model solutions, it follows that

d

dt
L(q(t)) = (1 + α)

∑

i

qαi (t)
d

dt
qi(t)

= (1 + α)
∑

i

qαi (t)(λi − xi(t) + zi(t))

= (1 + α)qα(t)·(λ− x(t) + z(t))

= (1 + α)qα(t)·(λ− x(t)) because of (61)

≤ (1 + α)qα(t)
(

∑

ρ∈S

βρρ− x(t)
)

= (1 + α)
(

∑

ρ∈S

βρq
α(t)·ρ− qα(t)·x(t)

)

≤ (1 + α)
(

∑

ρ∈S

βρ − 1
)(

qα(t)·x(t)
)

< 0, if q(t) 6= 0. (69)
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In the above, we have used the fact that for any ρ ∈ 〈S〉, qα(t)·ρ ≤ qα(t)·x(t).
Now L(q(t)) = 0 if and only if q(t) = 0. From (69), it follows that

L2(q(t))− L2(q(0)) = 2

∫ t

0

L(q(s))
d

ds
L(q(s))ds

≤ 0. (70)

Therefore, if q(0) = 0 then L(q(t)) = 0 for all t > 0. Therefore, q(t) = 0. 2

Lemma 5 Given α ∈ R+\{1}, define Lyapunov function G(q) = λ−α ·q1+α =
∑

i λ
−α
i q1+αi . Let λ ∈ 〈S〉o. Then for any fluid model solution q(·) under α-fair

bandwidth sharing policy,

d

dt
G(q(t)) < 0, if q(t) 6= 0,

for almost all t. Therefore, q(t) = 0 if q(0) = 0.

Proof. Define function F (q,x) =
∑

i q
α
i
x1−α
i

1−α
. Consider a fluid model solution

operating under α-fair policy with λ ∈ 〈S〉o. And let t be such that x(t) =
d
dt
s(t) is well defined. Then, x(t) maximizes F (q(t),x) over x ∈ 〈S〉. By

definition F (q(t), ·) is a concave function and x(t) is its maximizer over a
convex feasible set. Therefore, it follows that for any feasible ρ ∈ 〈S〉,

∇xF (q(t),x(t))·(ρ− x(t)) ≤ 0. (71)

By concavity of function F (q(t), ·),

∇xF (q(t),ρ)·(ρ− x(t)) ≤ ∇xF (q(t),x(t))·(ρ− x(t)). (72)

Now there exists ε > 0 so that (1 + ε)λ ∈ 〈S〉 since λ ∈ 〈S〉o. Therefore,
ρ = (1 + ε)λ is feasible and from (71)-(72), we have

∇xF (q(t), (1 + ε)λ)·((1 + ε)λ− x(t)) =
∑

i

qαi (t)

(1 + ε)αλαi
((1 + ε)λi − xi(t))

≤ 0. (73)

Therefore

∑

i

qαi (t)

λαi
(λi − xi(t)) ≤ −ε

∑

i

qαi (t)λ
1−α
i

< 0, if q(t) 6= 0. (74)
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From fluid model solutions, it follows that

d

dt
G(q(t)) = (1 + α)

∑

i

λ−αi qαi (t)
d

dt
qi(t)

= (1 + α)
∑

i

λ−αi qαi (t)(λi − xi(t) + zi(t))

= (1 + α)
∑

i

λ−αi qαi (t)(λi − xi(t)) because of (61)

< 0, (75)

where the last inequality uses (74). From (75), using an argument similar to
that used in Lemma 4 it follows that q(t) = 0 if q(0) = 0. This completes the
proof of Lemma 5. 2

4.2. Message-passing implementation

Implementation of α-fair bandwidth sharing and the MW-α policy requires
solving network wide optimization problem (65) with appropriate objective
function at each time instance. This is equivalent to solving a MAP problem
over Markov Random Field of the type discussed in Section 2.1. To see this,
consider the following. Given queue-size vector q, let a collection of N random
variables X have their joint distribution defined as (like (2))

P

(

X = x
)

∝ exp
(

F (q,x)
)

∏

1≤j≤M

1{
∑

k Ajkxk≤Cj}. (76)

Then, solution of the MAP problem for this MRF solves the optimization
problem (65). As discussed earlier, the MAP problem is hard in general.
Therefore, implementing these scheduling policies in general require solving
hard problem.

Now in the context of bandwidth sharing in the Internet or scheduling in
an input-queued switch, it is essential to design message-passing implemen-
tation of such policies so as to have practical, scalable architectures. In gen-
eral, message-passing solution is unlikely since the MAP problem is hard. As
it happens, the examples of bandwidth sharing in the Internet and schedul-
ing in input-queued switch are instances where it is indeed possible to design
such message-passing solutions. The message-passing algorithm for bandwidth
sharing in the Internet is based on primal-dual algorithm for concave maxi-
mization problem while that for input-queued switch scheduling is based on a
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belief propagation algorithm. In the case of input-queued switch, the auction
algorithm by Bertsekas (1992) can be used as well. The auction algorithm is
based on a modification (known as the ǫ-relaxation method) of dual co-ordinate
descent algorithm. In contrast, belief propagation is a graphical model based
dynamic programming approximation. Somewhat surprisingly, these two al-
gorithms turn out to be essentially the same (at least syntactically). We shall
explain this in detail later in this section.

In general, it is unlikely to have an exact message-passing implementation and
best one can hope for is a reasonable heuristic. Since scheduling as per the pol-
icy of interest is merely a MAP in an MRF, we can utilize belief propagation,
which is a heuristic for the MAP problem in MRF, as a heuristic for schedul-
ing in general network. This belief propagation based scheduling heuristic is
explained near the end of this section.

4.2.1. Bandwidth sharing using primal-dual

Given α ∈ R+\{1}, the α-fair bandwidth sharing policy requires finding ag-
gregate rate vector x(t) at time t such that it solves optimization problem
(67) given the vector of number of backlogged flows q(t). In what follows, we
shall drop notation of t for convenience. Now the optimization problem (67)
has strictly concave objective over a bounded convex domain. Therefore, it
has a unique solution, the x∗ = x∗(t). Now observe close similarity of the
optimization problem (67) with the optimization problem (28) that appeared
in the context of stochastic loss network under large network scaling. Both
optimization problems have exactly the same feasible region and have strictly
concave objective that is separable1. Subsequently, they have very similar La-
grangian dual. As before, let y ∈ R

M
+ denote the dual variables associated

with constraint Ax ≤ C. Then the Lagrangian dual of (67) can be presented
as

minimize
α

1− α

∑

i

qi

(

∑

j

yjAji

)1− 1

α

+
∑

j

yjCj (77)

over y ∈ R
M
+ .

In Section 3, it was established that dual co-ordinate descent provides message-
passing algorithm to solve the optimization problem (29) exactly. Given the

1A function f : RN → R is called separable if it can be represented as f(x) =
∑

i
fi(xi)

with fi : R
N → R.
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similarity of (77) and (29), similar dual co-ordinate descent algorithms would
provide a message-passing implemention for finding optimal solution y∗ of (77)
as well. The Karush-Kuhn-Tucker conditions will imply that the pair of primal
and dual optimal solutions (x∗,y∗) should satisfy

x∗i = qi

(

∑

j

Ajiy
∗
j

)−1/α

for 1 ≤ i ≤ N. (78)

Therefore, given a dual optimal y∗, the unique primal optimal x∗ could be re-
covered. Like Theorem 2 and Lemma 3, such an algorithm will have excellent
convergence properties (linear rate of convergence). However, implementing
such a dual co-ordinate descent algorithm in the context of bandwidth sharing
in the Internet does not seem feasible. Recall that each dual variable, say
yj, is associated with the link j of capacity Cj. The dual co-ordinate descent
requires updates to be done in a partially synchronized (round-robin) man-
ner which could be hard to achieve in a distributed system like the Internet.
Further, the updates of co-ordinate descent could possibly change value of
variables drastically. In a large distributed system like the Internet, drastic
changes could lead to undesirable behavior like oscillations in the presence of
noisy information. Finally, in an autonomous system like the Internet made of
collection of decentralized entities, it unlikely to expect all links to maintain
and update corresponding dual variables. In a sense, implementing bandwidth
sharing in the context of Internet is a lot more constrained than the standard
requirements faced in designing generic message-passing algorithm.

Somewhat miraculously, through an interpretation of queue-sizes as dual vari-
ables, an appropriate primal-dual algorithm can be designed where dual vari-
ables (interpreted as queues at links) are updated depending upon their load-
ing and link capacity while the primal variables (rates allocated) are updated
with the aim of maximizing individual objective value penalized appropriately
through dual variables. Such a message-passing implementation provides an
intuitively pleasing interpretation of the TCP protocol that is currently im-
plemented to achieve bandwidth sharing. Such an interpretation was first
explained by Kelly et al. (1998).

In the primal-dual algorithm, the allocated rates and value of dual variables
are updated iteratively. With an abuse of notation, we shall use t to represent
the algorithm iteration index. The backlogged number of flows, q, should be
thought of as constant. Equivalently, it is assumed that the time scale at
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which the primal-dual algorithm operates is much faster than the time-scale
over which flows arrive and depart. The primal-dual updates are given by

d

dt
xi(t) = K1(t)

(

qαi x
−α
i −

∑

j

yj(t)Aji

)

, (79)

d

dt
yj(t) = K2(t)

(

∑

k

Ajkxk(t)− Cj

)+

yj(t)
. (80)

In the above, K1(t), K2(t) are possibly time varying strictly positive valued
quantities; [a]+b equals a if b > 0 and equals max(a, 0) if b = 0. The (79) is
attempting to reach the relation between primal-dual optimal solutions implied
by Karush-Kuhn-Tucker condition (78). The (80) is attempting to satisfy the
complementary slackness condition related to the constraint

∑

k Ajkxk ≤ Cj.

An interpretation of the update equations (79) and (80) is as follows. The
variable yj(·) is like the buffer size at link j and equation (80) represents its
rate level dynamics; as per (79) the rate variable xi(·) tries to increase itself
inversely proportional to xi(·) and decrease its value proportional to the round-
trip ‘delay’,

∑

j yj(t)Aji. An interested reader is referred to the monography by
Srikant (2004) for a detailed account on relation between primal-dual algorithm
for α-fair policy and the TCP proptocol.

Finally, we take note of the convergence and correctness property of the primal-
dual algorithm. It’s proof can be found in a standard text on optimization or
in this context in the monograph by Srikant (2004).

Theorem 5 Under the primal-dual algorithm described as per (79)-(80),

x(t) → x∗, as t→ ∞,

where x∗ is the unique solution of optimization problem (67).

4.2.2. Switch scheduling using belief propagation

We describe message-passing implementation of MW-α policy using belief
propagation for input-queued switch scheduling. In the context of input-
queued switch, the MW-α algorithm is required to solve the optimization
problem (66) each time instance. The optimization problem (66) corresponds
to finding a maximum weight matching in a complete weighted bipartite with
n nodes in each partition for a switch with n input and output ports. That
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is, find a matching of inputs and outputs so that the sum of weights of the
matched input-output pairs is maximized; here weight of an edge between in-
put i and output j is qαij (which is qαij(t) at time t; for convenience we shall
drop notation of t hence forth). Equivalently, each input i (respectively out-
put j) wishes to find which of the n possible outputs (respectively inputs) it
ought to connect to so that overall weight of all connections is maximized. In
what follows, we shall use notation Ii to denote input node i and Oj to denote
output node j for 1 ≤ i, j ≤ n.

The belief propagation algorithm, in general is a heuristic, to find these con-
nections iteratively by exchanging messages between all input-output nodes.
The basic idea behind the belief propagation algorithm is to iteratively reach
the fixed point equations that are induced by the Hamilton-Jacobi-Bellman
(HJB) equation of dynamic programing with respect to the underlying prob-
lem (graph) structure (see book by Bertsekas (1995) for detailed account on
dynamic programing). To understand this, let us consider the bipartite max-
imum weight matching problem. Node Oj wishes to decide which input to
connect to as per optimal assignment. Let mIi→Oj

be the weight of the opti-
mal matching among all matchings in which Oj is connected to Ii. If node Oj

has access to mIi→Oj
for all i, then under the maximum weight matching, it

should connect to i∗ such that

i∗ ∈ argmax
i

mIi→Oj
.

The above conclusion remains true even ifmIi→Oj
does not represent the weight

of optimal assignment conditioned on Ii connecting to Oj, but instead it rep-
resents the difference between the weights of the optimal assignments in which
Oj connects to Ii and Oj does not connect to Ii. Now the basic question is how
to find such mIi→Oj

. That is, the difference between the weights of optimal
assignment with conditions that Oj connects to Ii and Oj does not connect to
Ii.

Belief propagation is a heuristic to find these mIi→Oj
values iteratively assum-

ing that the underlying graph is tree. Imagine that mIi→Oj
is the value that

input Ii sends to output Oj based on similar values that it has received from
other outputs {Ok : k 6= j}. Then dynamic programing for a tree graph would
suggest that

mIi→Oj
= qαij −max

k 6=j
mOk→Ii .
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This is essentially because the difference between weights of optimal matching
under which Oj connects to Ii and does not connect to Ii includes the gain in
terms of the weight of edge (i, j), i.e. qαij, and the loss in terms of Ii not able
to connect to the best of the other outputs in {Ok : k 6= j}. This suggests
a natural recursion to find mIi→Oj

for all i, j. Based on this, we arrive at the
following belief propagation algorithm.

Belief propagation: input-queued switch.

1. Denote by t the iteration of the algorithm. For each input Ii and output
Oj, let m

(t)
Ii→Oj

and m
(t)
Oj→Ii

denote messages from nodes Ii to Oj and Oj

to Ii respectively. Initially, t = 0 and m
(0)
Ii→Oj

= m
(0)
Oj→Ii

= qαij.

2. In iteration t+ 1, update messages as follows: for 1 ≤ i, j ≤ n,

m
(t+1)
Ii→Oj

= qαij −max
k 6=j

m
(t)
Ok→Ii

,

m
(t+1)
Oj→Ii

= qαij −max
k 6=i

m
(t)
Ik→Oj

. (81)

3. Each node estimates its assignment as follows: for 1 ≤ i, j ≤ n,

Ii → argmax
Ok:1≤k≤n

m
(t+1)
Ok→Ii

,

Oj → argmax
Ik:1≤k≤n

m
(t+1)
Ik→Oj

. (82)

The belief propagation as described above is merely a heuristic. It is an it-
erative procedure. Apriori it is not clear if its estimates converge and if so,
whether they are correct. The case of matching in bipartite graph is special
and indeed belief propagation finds the correct solution. The precise statement
is as follows.

Theorem 6 Given α > 0 and queue-sizes q, let there be a unique optimal so-
lution to optimization problem (66). Then the estimation of belief propagation

algorithm described above equals the optimal solution for all t > 2n|qα|
δ

for all
nodes. Here δ is the difference between weight of the optimal solution and the
weight of second optimal solution of (66).

Theorem 6 was established by Bayati et al. (2008b). The use of belief propa-
gation for switch scheduling was proposed by Bayati et al. (2007b).

52



4.2.3. Belief propagation, co-ordinate descent and auction algorithm

The optimization problem (66) is an integer program. All the feasible integral
solutions of this optimization problem are perfect matchings in a complete
bipartite graph or equivalently a permutation matrix. That is, x = [xij ] ∈
{0, 1}n×n where each row and column sums upto 1 (equality is assumed since
the weights are non-negative and hence optimal will be achieved when all
inequalities are tight). By Birkhoff and Von Neumann’s result, these are pre-
cisely the extreme points of the space of all doubly stochastic matrices, i.e.
z = [zij ] ∈ [0, 1]n×n so that all row-sums and column-sums are equal to 1.
Therefore, solving (66) is equivalent to solving the following linear program:

maximize
∑

1≤i,j≤n

zijq
α
ij

over zij ∈ [0, 1], for all 1 ≤ i, j ≤ n

subject to
∑

k

zik = 1,
∑

k

zkj = 1, for all 1 ≤ i, j ≤ n. (83)

To obtain a message-passing algorithm to solve this linear program, we turn
to its dual:

minimize
∑

i

ri +
∑

j

pj

subject to ri + pj ≥ qαij, for all 1 ≤ i, j ≤ n. (84)

The co-ordinate descent algorithm for this optimization problem will iterative
over ris and pjs by updating their values as per following rule:

rnewi = max
j

(

qαij − poldj
)

,

pnewj = max
i

(

qαij − roldi
)

. (85)

While this is a quite simple and intuitively pleasing algorithm, due to the form
of inequality constraints, it may not converge to the optimal solution of (85) in
general. Further, even if it converged to the optimal dual solution, it is not clear
how one can recover optimal primal solution. To overcome these issues, a clever
method was proposed by Bertsekas (1992) known as the ǫ-relaxation method.
The resulting algorithm is known as the auction algorithm. It maintains a
feasible primal solution and modifies the dual co-ordinate descent algorithm:
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in an (85) like update equation, an appropriate ǫ > 0 is added as a penalty
and such updates are performed in an appropriate order. Indeed for ǫ =
0, it reduces to the update of (85). Bertsekas (1992) established that such
a modification of co-ordinate descent algorithm, the auction algorithm, will
always converge for any ǫ > 0 in O(n|qα|/ǫ) iterations; the resulting matching
will have weight that is no less than the weight of the optimal matching by ǫn.

The auction algorithm or dual co-ordinate descent algorithm is tantalizingly
closely connected to the belief propagation. To explain this, consider update
of dual co-ordinate descent as per (85). The update of ri and pj are based on
the following ‘messages’: define

m̂Ii→Oj
= qαij − ri.

With this new definition and assuming that all updates of (85) are done in
parallel, then we can re-write all the updates only in terms of m̂Ii→Oj

for all
1 ≤ i, j ≤ n as follows: for iteration t+ 1,

m̂
(t+1)
Ii→Oj

= qαij − r
(t+1)
i

= qαij −
(

max
j′

qαij′ − p
(t)
j′

)

= qαij −
(

max
j′

qαij′ −
(

max
i′

m̂
(t−1)
Ii′→Oj′

))

. (86)

Now let us re-write the message updates as per (81) under belief propagation

only in terms of m
(·)
Ii→Oj

for all 1 ≤ i, j ≤ n (we shall ignore the index t for

iteration):

m
(t+1)
Ii→Oj

= qαij −
(

max
j′ 6=j

m
(t)
Oj′→Ii

)

= qαij −
(

max
j′ 6=j

qαi′j′ −
(

max
i′ 6=i

m
(t−1)
Ii′→Oj′

))

. (87)

Note that (86) and (87) are essentially the same with the only exception that
in belief propagation j′ 6= j and i′ 6= i is required in message update while such
is not the case in dual co-ordinate descent. This syntactic similarity suggests
a deeper connection between the belief propagation, dual co-ordinate descent
and auction algorithm. It is worth noting that the overall complexity bound
known for belief propagation and auction algorithm are essentially the same
(but are based on very different proof methods). This relation between dual co-
ordinate descent and belief propagation was made by Bayati et al. (2008b) for
matching and by Sanghavi et al. (2009) for the maximum weight independent
set.
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4.2.4. Belief propagation: general stochastic network

The MW-α policy or α-fair policy in the context of stochastic network of
general sort described through constraint (1) requires solving optimization of
the following form:

maximize
∑

i

F (qi, xi)

over x ∈ ΣN

subject to Ax ≤ C. (88)

In above the function F (qi, ·) is linear or concave. In so far, we have explained
message-passing algorithms for two special cases: a primal-dual algorithm for
bandwidth sharing in the Internet, and belief propagation (as well as auction
algorithm) for scheduling in an input-queued switch. In both cases, these al-
gorithms provably solve the optimization problem of interest with reasonable
complexity. When Σ = R+, the problem (88) is essentially solvable using al-
gorithm described in the context of bandwidth sharing in the Internet. The
problem becomes particularly hard when Σ is a discrete set. In such a case,
it is not reasonable to expect message-passing algorithm to be able to solve
the problem exactly in an efficient manner. Next we describe belief prop-
agation based heuristic for this problem. Specifically, we shall assume that
Σ = {1, . . . , K}. We shall end with remarks on conditions under which it is
known to solve the problem exactly.

As described in Section 4.2.2, the basic idea behind belief propagation is to
design an iterative procedure that mimics the evoluation of dynamic program-
ing on tree graph (through HJB equation) at each node in the graph. In
general, the graph is defined through the graphical model of Markov Random
Field of the optimization problem (88) as described in Section 2.1. Specifically,
G = (U ∪ V,E) is the graphical model where U = {1, . . . , N} corresponds to
variables x1, . . . , xN and V = {1, . . . ,M} corresponds to inequality constraints
∑

iAjixi ≤ Cj for 1 ≤ j ≤ M . And E = {(i, j) : i ∈ U, j ∈ V, Aji 6= 0}.
Let Nu(i) = {j ∈ V : (i, j) ∈ E} and Nv(j) = {i ∈ U : (i, j) ∈ E}. The be-
lief propagation algorithm for optimization problem (88) based on reasoning
similar to that explained in Section 4.2.2 is described as follows.

Belief propagation: general stochastic network
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1. Denote by t the iteration of the algorithm, with t = 0 initially. For each
(i, j) ∈ E, m

(t)
i→j(k) (resp. m

(t)
j→i(k)) denote message from node i to j

(resp. j to i). The message m
(t)
i→j(k) (resp. m

(t)
j→i(k)) represents belief of

node i (resp. j) regarding cost of optimal assignment subject to xj = k
(resp. xi = k) for 1 ≤ k ≤ K. Initially, for all (i, j) ∈ E

m
(0)
i→j(k) = 0 and m

(0)
j→i(k) = 0.

2. In iteration t+ 1, update messages as follows: for 1 ≤ k ≤ K

m
(t+1)
i→j (k) = F (qi, k) +

∑

j′∈Nu(i)\{j}

m
(t)
j′→i(k),

m
(t+1)
j→i (k) = max

(ki′ )∈S(Cj ,i,k)

∑

i′∈Nv(j)\{i}

m
(t)
i′→j(ki′), (89)

where S(Cj, i, k) = {(ki′) :
∑

i′∈Nv(j)\{i}
Aji′ki′ ≤ Cj − Ajik}.

3. Each node i estimates its optimal assignment at the end of iteration t+1
as

x
(t+1)
i ∈ argmax

1≤k≤K
F (qi, k) +

∑

j∈Nu(i)

m
(t+1)
j→i (k). (90)

4.3. Discussion, future direction

In this section, we discussed message-passing implementation of the fair band-
width sharing policy and the maximum weight policy in the context of con-
gestion control in the Internet and scheduling in a input-queued switch re-
spectively. The primal-dual algorithm provides exact solutions for the fair
bandwidth sharing policy for generic instance of stochastic processing net-
work considered here as the underlying optimization problem of interest is
concave maximization over a continuous, convex domain. The belief propaga-
tion provides exact solutions for the maximum weight policy in the context of
input-queued switch. However, in general the maximum weight policy requires
solving a combinatorial optimization problem and this is computationally hard
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in general. Therefore, it is unlikely to have an efficient, message-passing im-
plementation for the exact maximum weight problem in general. And for that
reason, belief propagation is unlikely to provide an exact solution.

The quest of understanding strengths and limitations of belief propagation
heuristics is an active area of research. We quickly summarize the state-of-
art. As mentioned in the section, the belief propagation is closely related
to the auction algorithm, a modified dual co-ordinate descent algorithm, for
the matching or assignment problem in the weighted bipartite graph. This
suggests a strong relation between belief propagation and linear programing
relaxation of combinatorial optimization problem as first observed by Bayati
et al. (2008b). In the context of matching for general graph, this relation was
made precise by Sanghavi et al. (2007) and Bayati et al. (2008a): belief propa-
gation solves the maximum weight matching in a given graph if and only if the
corresponding edge-based linear programming relaxation has unique integral
solution. This relation, while tempting to conjecture to be true in the context
of general combinatorial optimization, is in fact not true. This was established
by producing a simple counter-example by Sanghavi et al. (2009) in the con-
text of finding maximum weight independent set. Now on the other hand, it is
true that whenever belief propagation solves the problem exactly, linear pro-
gramming relaxation is likely to have integral solution (this was established in
the context of independent set by Sanghavi et al. (2009) and is believed to be
true more generally). Thus belief propagation solvable problems are roughly
speaking contained in the set of problems solvable by linear programming re-
laxation. However, this containment does not seem too restrictive. Specifically
Gamarnik et al. (2009) have shown that BP solves all network flow problems
(in polynomial time), an important and large class of linear programming solv-
able problems (it includes matching in bipartite graph as a special instance).
Further, a minor modification of belief propagation solves the maximum weight
independent set in a bipartite graph as well. In summary, it seems that for
a large class of combinatorial optimization problems, the belief propagation
seems as powerful as their linear programming relaxation. Precise strengths
and limitations of belief propagation remains an outstanding problem going
forward.

It is worth remarking on related important results in the context of continuous
optimization. Specifically, in a sequel of works, Moallemi and Van Roy (2008,
2009) showed that a class of unconstrained convex optimization problems can
be solved efficiently by belief propagation. These results are related to analysis
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of belief propagation for what is known as the Gaussian Graphical Model, for
example see work by Johnson et al. (2006) which provides interesting sets of
convergence conditions for belief propagation in that context. These results
have been recently improved by Ruozzi and Tatikonda (2010).

Now while it may seem that belief propagation is only as powerful as linear
programming and may be one may use other linear programming based meth-
ods for solving the optimization problem arising in the context of scheduling,
it is worth noting that belief propagation does not require any problem specific
fine tuning – it is a one fixed recipe that applies to all sorts of problems; when
problem is not too complicated, it seem to solve them exactly or else it pro-
vides a reasonable approximation. It would be interesting to understand how
well does belief propagation performs as an approximation method. For exam-
ple, an initial empirical study in the context of maximum weight independent
set (in the context of wireless scheduling) suggests that when the linear pro-
gramming relaxation does not have integral solution, the linear programming
based methods provide very poor answers while the belief propagation (and its
variants) seem to provide reasonable approximation, see Giaccone and Shah
(2010) for details.

Finally, closer to the topic of this survey, in the context of designing scheduling
in wireless networks, also known as the medium access protocol, where node
can not even exchange messages explicitly, building upon insights provided by
variational characterization of an appropriate product-form distribution, an
efficient queue-based randomized algorithm has been proposed recently by Ra-
jagopalan and Shah (2008); Rajagopalan et al. (2009); Shah and Shin (2009).
In effect, this algorithm is a combination of variational approximation along
with the Markov Chain Monte Carlo based method. Such a possibility of ex-
istence of an efficient algorithm without explicit message-passing has created
a lot of excitement including other recent such works, for example by Jiang
and Walrand (2008); Jiang et al. (2010). While these implementations provide
efficiency in terms of long term throughput, they do suffer from large latency
or delay. In general, designing algorithm with high throughput and low la-
tency is impossible Shah et al. (2009). Therefore, an ideal solution would be
an algorithm that utilizes given per-node budget of message-passing and com-
putation in order to provide as high throughput as possible with a constraint
on the finiteness of buffer-size.

Indeed, such an ideal solution is quite ambitious and will require us to take
many steps towards it before even getting in its vicinity. Some initial steps
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are taken towards this: specifically, Shah and Shin (2010) utilize the network
geometry to design low delay, high throughput medium access protocol with
minimal message-passing in the context of wireless networks deployed in a
geographic area in a reasonable manner.

5. Conclusions

In this survey, we have provided an overview of message-passing algorithms in
the context of stochastic processing networks through two prototypical prob-
lems: estimation of loss rate which is equivalent to MARG in a Markov Ran-
dom Field and scheduling as per myopic MW-α and α-fair policies which are
equivalent to MAP problem in a Markov Random Field. The message-passing
algorithms discussed in this survey were primarily based upon theory of opti-
mization and variational approximation. While the message-passing algorith-
mic solutions described provide reasonable (exact or approximate) answers,
there seem to be a long way before we can find ideal solution for both prob-
lems. Various concrete open problems were discussed in detail near the end of
Sections 3 and 4.

Now the quest of efficient message-passing algorithms for the problems of
MARG and MAP in a Markov Random Field, which is precisely of inter-
est in the context of stochastic processing networks, has been of interest much
more broadly and is very actively pursued in recent years. Therefore, we fore-
see that interaction between stochastic networks and message-passing through
the interface of dynamic resource allocation problem can lead to a rich in-
tellectual development. It is no surprise that such an interplay has started
handsomely rewarding various other disciplines including de-randomization in
computer science, e.g. Weitz (2006), Bandyopadhyay and Gamarnik (2006),
Gamarnik and Katz (2007), Bayati et al. (2007a); combinatorial optimization,
e.g. Gamarnik et al. (2006), Salez and Shah (2009), Gamarnik et al. (2010);
statistical inference and computational geometry, e.g. Jung et al. (2009), high
dimensional statistics Lu et al. (2008), Donoho et al. (2009), Chandar et al.
(2010); and convex analysis Wainwright et al. (2005a,b). Even practically,
these algorithms are seeing day of light. For example, message-passing algo-
rithms have become crucial in designing codes for high bandwidth modern
communication systems and have found place in IEEE standards (see book by
Richardson and Urbanke (2008)).
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In summary, message-passing algorithms will play an instrumental role in ar-
chitecting large complex networked systems in the near future. Therefore,
understanding strengths and limitations of existing algorithms as well as de-
veloping novel designs are urgent and of utmost importance. We believe that
stochastic processing networks through interface of resource allocation will
provide a fertile ground for their development.
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