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Abstract—Max-product “belief propagation” is an iterative, ~marginal and MAP probabilities efficiently. Comprehensive
message-passing algorithm for finding the maximum a postenti  surveys of various formulations of BP and its generalizatio
(MAP) assignment of a discrete probability distribution specified the junction tree algorithm, can be found in [2], [24], [1BP-

by a graphical model. Despite the spectacular success of theb d - lqorith h b ¢ f
algorithm in many application areas such as iterative decoihg ased message-passing algoriihms have been very sutcessiu

and combinatorial optimization which involve graphs with many in the context of, for example, iterative decoding for turbo
cycles, theoretical results about both the correctness anconver- codes, computer vision and finding satisfying assignmeorts f

gence of the algorithm are known in few cases [10], [17], [19] random k-SAT. The simplicity, wide scope of application and

[22], 23], [24]. , experimental success of belief propagation has attractet a
In this paper we will prove correctness and convergence of th f attenti tlv 121, 1111, T151. [171. [25
max-product for finding Maximum Weight Matching (MWM) in of attention recently [2], [11], [15], [17], [25].

bipartite graphs. Even though the underlying graph of the MWM BP (or max-product) iS. _kﬂOWH to converge to the correct
problem has many cycles, somewhat surprisingly we show that marginal (or MAP) probabilities on graphs with no cycles][16

the max-product algorithm converges to the correct MWM as  For graphs with a single cycle convergence and correctrfess o
long as the MWM is unique. We provide a bound on the number gp gre rigorously analyzed [1], [20]. For graphical models

of required iterations and show that for a graph of sizen, the . . . . .
computational cost of the algorithm scales a®)(n?), which is the with arbitrary underlying graphs, little is known about the

same as the computational cost of the best known algorithmef ~ correctness of BP. Partial progress cqnsists of [22] whege t
finding the MWM. correctness of BP for Gaussian GMs is proved, [10] where an

We also provide an interesting relation between the dynami  attenuated modification of BP is shown to work, [17] where
of the max-product algorithm and a well-known distributed algo-  the jterative turbo decoding algorithm based on BP is shawn t
rithm for solvmg the MWM, called auction algorithm proposed work in the asymptotic regime with probabilistic guarastee
by Bertsekas in the 1980s. . .

) _ _ _ _ and [23], [19] where fixed points of BP are shown to be locally

Index Terms—Auction algorithm, Dbelief propagation, dis-  gntimum. To the best of our knowledge, limited theoretical

tributed optimization, linear programming, Markov random .
fields, ma>2mum weight matchﬁ)ng? max-prgduct algorithm, min- progress has been made to resolve the question: when does

sum algorithm, message-passing algorithms. BP work on graphs with cycles?
Motivated by the objective of providing justification foreh

success of BP on arbitrary graphs, we focus on the applicatio
|. INTRODUCTION of BP to the well-known combinatorial optimization problem

Graphical models (GM) are a powerful method for repredf finding the Maximum Weight Matching (MWM) in a
senting and manipulating joint probability distributiorey Pipartite graph, also known as the "Assignment Problem”. It
have found major applications in several different redearts standard to represent combinatorial optimization pots,
communities such as artificial intelligence [16], statistj12], like finding the MWM, as calculating the MAP probability on
error-correcting codes [8], [11], [17] and neural network$ suitably defined GM which encodes the data and constraints
Two central problems in probabilistic inference over giaph ©f the optimization problem. Thus, the max-product aldwrit
models are those of evaluating tearginal and maximum €an be viewed at least as a heuristic for solving the problem.
a posteriori (MAP) probabilities, respectively. In general,In this paper, we study the performance of the max-product
calculating the marginal or MAP probabilities for an enséanbalgorithm as a method for finding the MWM on a weighted
of random variables would require a complete specification 80mplete bipartite graph.
the joint probability distribution. Further, the complgxbf a  Additionally, using the max-product algorithm for problem
brute force calculation would be exponential in the sizehef t like finding the MWM has the potential of being an exciting
ensemble. GMs assist in exploiting the dependency streict@pplication of BP in its own right. The assignment problem is
between the random variables, allowing for the design 8ktremely well-studied algorithmically. Attempts to findtter
efficient algorithms. MWM algorithms contributed to the development of the rich

The belief propagation (BP) and max-product aIgorithrﬁQeOfy of network flow algorithms [9], [13]. The assignment

[16] were proposed in order to compute, respectively, tmgol_:)lem ha; been studieq in various contexts such as jlob—
assignment in manufacturing systems [9], switch schedulin
M. Bayati is currently with Microsoft research and whileshivork was —algorithms [14] and auction algorithms [7]. Recently, wedis
qong he was at the department of EE at Stanford U_n|ve(5|ty;8mah the max-product algorithm effectively in high-speed switc
is with Department of EECS at MIT and M. Sharma is with IBM T.J. heduli d wirel heduli h he distributed
Watson Research Center. Email: mohsenb@microsoft.coraydg@mit.edu, scheauling an ywre €ss S_C e_ u 'n.g. where the distribu n
mxsharma@us.ibm.com. ture of the algorithm and its simplicity are very attractiee



implementation [5]. problems. Finally, we discuss some implications of our ltesu
in Section VI.

A. OUR RESULTS

The main result of this paper is to show that the max-product II. SETUP AND PROBLEM STATEMENT
algorithm for MWM always finds the correct solution, as long

as the solution is unique. Our proof is purely combinataral . . e
uses only bipartite nature of the graph. We think that thisiite the M.WM In a weighted complete_blpartne grgph _and then
describe the max-product BP algorithm for solving it.

and in particular our methods may lead to further insights in
understanding how BP algorithms work when applied to a
class of optimization problems. A. MAXIMUM WEIGHT MATCHING

The algorithm’s complexity scales &n3w* /e), wheren i ) , L
is the size of the graph, being the difference between weight Consider an undirected weighted complete bipartite graph
of the unique maximum weight matching and the secorfgnn = (Vi Vo, E), where Vi = {0‘1/'_"’0‘”}' V2 =
maximum weight matching and* being the maximal value Pr,....0n} and(a;, ;) € Eforl < i,j < n. Let each
of edge weight. This is essentially the same as that of bggge(ai,ﬁj) have Welghtwij_- eR. _
centralized algorithm (assuming’, ¢ constant) and the Auc- | © = {7(1),...,m(n)} is & permutation of{1,...,n}
tion algorithm proposed by Bertsekas. Somewhat intergistin (€N the collection ofv edges{(a1, Hx(1)); - - -, (@n, Brm))}

we find that the dynamics of the auction algorithm and tHa called amatchingof K, ,. We denote both the permutation

max-product algorithm are essentially the same and leads?fef! the corresponding matching byThe weight of matching

a precise relation between these two algorithms. The auctiey denoted by, is defined as

algorithm with a relaxation method can find the maximum W, = Z Win(i)-

weight matching (as well as good approximation solution) 152

even in the absence of unique solution. The above relati _ _ . .
between auction and max-product suggests a modiﬁcation%(ﬁren’_the Maximum Weight Matching (MWM)z*, is the

the max-product. We show that for this modification of ma)matchmg such that

product, the fixed point of the algorithm implies a solutibatt 7 = argmax. W.

is good approximation solution and can lead to an MWM when

the parameters are chosen properly. In general, this stggg@&®te 1.In this paper, we always assume that the weights are
a method to obtain (a deterministic) modification of the masuch that the MWM is unique. In particular, if the weights
product so as to be successful in the presence of multipethe edges are independent, continuous random variables,
solutions as well as work as an approximation. We beliedieen with probabilityl, the MWM is unique. Specifically, one
that this heuristic should be of interest for other optitima may make MWM unique by adding small independent random
problem. noiseto each of the weight.

Finally, we note that our results establish that the max- Next, we model the problem of finding MWM as find-
product algorithm_, which essentially operates wi.th respec ing a MAP assignment in a graphical model where the
the dual formulation of the problem, finds the right answe,int probability distribution can be completely specified
This is in contrast to many unsuccessful distributed duglyms of the product of functions that depend on at most
algorithm (e.g. dual co-ordinate descent) and (succgssfill, variables (nodes). For details about GMs, we urge the

In this section, we first define the problem of finding

primal-dual algorithm such as the auction algorithm. reader to see [12]. Now, consider the following GM defined
on K, ,: Let X;,...,X,,Y7,...,Y, be random variables
B. ORGANIZATION corresponding to the vertices ok, , and taking values

The rest of the paper is organized as follows. In Section from {1,2,....n}. Let their joint probability distribution,
we provide the setup, define the Maximum Weight Matchirg(X = (z1,-.-,2,);Y = (y1,...,x)), be of the form:
problem (or assignment problem) and describe a version of 1
max-product algorithm, the min-sum algorithm, for findihgt 7 (X,Y) = = 1T Cais; @i up) [ o @i)ds. (wi), (1)
MWM. In this paper, we will use term max-product or min- bJ i

sum interchangeably for the same algorithm. Essentidily, twhere the pairwise compatibility functions,.(-,-), are de-
min-sum algorithm is obtained from max-product by replgcinfined as

its varlgble by their logarithms. _ _ 0 r—jands+#i
Section Il states and proves the main result of this paper. baus (rrs) =4 0 r+#jands=i
Section IV presents a simplification of the max-product algo A 1 Otherwise

rithm and evaluates its computational cost. Section V disesi

relation between the max-product algorithm and the cetebrdhe potentials at the nodes,(-), are defined as
auction algorithm proposed by Bertsekas. The auction algo-
rithm essentially solves the dual of LP relaxation for matgh
problem. Our result suggests possibility of deeper conmect andZ is the normalization constant. We note that the pair-wise
between max-product and dual algorithm for optimizatiopotential essentially ensures that the following two craists

(] (T) =e"ir, ¢ﬁj (T) =e"i, ¥V 1< 4,4, < n,



are satisfied for anyX,Y’) with positive probability: (a) If
node o; is matched to nod¢g; (i.e X; = j), then nodeg;

must be match to node; (i.e. Y; = ). (b) If node «; is

not matched ta3; (i.e. X; # j), then nodes; must not be (2)
matched to node; (i.e.Y; # 7). These two constraints encode
that the support of the above defined probability distrimuti

iterationk > 0, for 1 < 7,5 < n. Similarly, ngﬂm is
the message vector passed fromto «; in the iteration

k

Initially £ = 0 and set the messages as follows. Let

0

mtollﬂﬁj (n)]tv

is on matchings only. and
Claim 1: For the GM as defined above, the joint den- 0 0 0 "
sity p(X =(21,...,2,),Y = (y1,...,yn)) is nonzero if Mg o, =[mg, a,(1)...mg, _q, (n)]",
and only if 7,(X) = {(a1,Be,), (@2, Bas); - - -, (n, Bu,)} where
and m5(Y) = {(ay,,51), (ay,,B2),- .., (ay,,B,)} are both ) _
matchings a?d;a X)v: m3(Y). Further, when nonzero, they mgy_)ﬁj (r) = { wé-j o!tfh;rv:vi;e )
are equal to}e? > Wis;,
When, p(X,Y) > 0, then the product of.(-)'s essentially 0 wji if r=1
make the probability monotone function of the summation of M3, —a, (r) = { 0 otherwise 3)

edge weights as part of the corresponding matching. Foymal
we state the following claim.
Claim 2: Let (X ,Y") be such that

(X", Y") = argmax{p (X,Y)}.

I o . .
(3) For k > 1, messages in iteratioh are obtained from
messages of iteratioh— 1 recursively as follows: for all

a;,B; and alll < g,p <n,

Then, the corresponding, (X ) = n3(Y ") is the MWM in me, ., (0) =

Ko
Claim 2 implies that finding the MWM is equivalent to
finding the maximum a posteriori (MAP) assignment on the
GM defined above. Thus, the standard max-product algorithm
can be used as an iterative strategy for finding the MWM.
In fact we show that this strategy yields the correct answey, ' .
Before proceeding further, we provide an example of the abo 4) DEf"_]e, the b_el|_ef57(_>< 1 vectors) at nodes,; and f;,

defined GM for the ease of readability. 1<4,5 <n, initerationk as follows:1 <r < n,

k—
Z mﬁtz—lﬂli (p) + wip
| {#3

max. Ve, (D5 Q)

k—
Z ma,ziﬁj (q) +wg;

| e#i
(4)

max o, 8, (P, q)

k —
mﬁjﬂai (p) - 1<q<n

Example 1:Consider a complete bipartite graph with= k() = wi+ ngﬁa»(r%
2. The random variablesX;,i = 1,2 corresponds to the ' Z '
|n.de.x of 8 node to whmhai is pc>_r1nected under the GM. bfgj 1) = wy +Zmiﬁﬁj (7). (5)
Similarly, the random variabl&;,i = 1,2 correspond to the 7

index of o node to whichg; is connected. For example, . . . o
X, = 1 means thata; is connected toB,. The pair- (5) The est]imate’dMWM at the eknd’of |terat|orﬁ is 7",
wise potential function).. encodes matching constraints. For _ Wherem" (i) = a?grgaxléjén{bai ()}, for 1 <i <n.

example, (X1, X2;Y1,Y2) = (1,2;1,2) corresponds to the (6) Repeat (3)-(5) till™ converges.

matching wherex; is connected tg3; and as is connected
to B>. This is encoded (and allowed) hy.: in this example,
Ya,p,(X1,Y2) = 9a,8,(1,2) = 1, etc. On the other hand, ["l.
(X1,X9;11,Y,) = (1,2;2,1) is not a matching asy; con-

nects tos; while 3; connects tan,. This is imposed by the
following: va, 8, (X1,Y1) = a5 (1,2) = 0. We suggest
the reader to go through this example in further detail

him/herself to get familiar with the above defined GM.

MAIN RESULT

Now we state and prove Theorem 1, which is the main
contribution of this paper. Before proceeding further, veeah
b&l;e following definitions.

Definition 1: Let ¢ be the difference between the weights
of the MWM and the second maximum weight matching; i.e.

€ = Wre — max(Wy).
B. MIN-SUM ALGORITHM FORY,, ,, p——

The max-product and min-sum algorithms can be seen to lBge to the uniqueness of the MWM, > 0. Also, define

equivalent. In this paper we will look at the min-sum versioff T; maxing_ll":iﬂ)' ahted ete binarti H
for the GM defined above. The max-product version and its eorem 1:For any weighted complete bipartite grap

equivalence to min-sum algorithm are given in [3]. Now, th&n.n with unique maximum weight mat(_:hmg, the max-
min-sum algorithm is described as follows product or min-sum algorithm when applied to the corre-

) ) ' sponding GM as defined above, converges to the correct MAP
Min-sum algorithm.

assignment or the MWM withirﬁ%} iterations.

k — [k k k t
(1) LetMai_)ﬁj - [mm—ﬁj (1)’ Mo, —p; (2)’ s Mgy, (n)] € INote that, as defineds® need not be a matching. Theorem 1 shows that

R"*1 denote the messages passed fre/ito 3; in the for large enoughk, 7% is a matching and corresponds to the MWM.



o o That is, fork large enough, the maximum weight T-matching
in T’“ chooses the edgey;, O~ z)) at the root.

“Theorem 1: Consider the min-sum algorithm. Léﬁ
[b% (1),...,b% (n)]". Recall thatt” = (7*(i)) wherer* (i) =
argmaxr{bii(r)}. Then, by Lemmas 1 and 2, fér> 22~

% 7wk =7, [ |
T Next, we present the proofs of Lemmas 1 and 2 in that order.
AN A NRS A A A ] Lemma 1: It is known [21] that under the min-sum
(or max-product) algorithm, the vectb‘gi corresponds to the
@ ® correct max-marginals for the roat of the MAP assignment

on the GM corresponding tfﬂ(f The pairwise compatibility
functions force the MAP assignment on this tree to be a T-
matching. Now, each edge has two endpoints and hence its
weight is counted twice in the weight of T-matching.
A PROOE OF THEOREM 1 Next consider thg’" entry of b% , b% (j). By definition, it
corresponds to the MAP assignment with the valuevpfat
We first present some useful notation and definitions. Coifie root beingj. That is, («;, 3;) edge is chosen in the tree
sidera;, 1 <17 < n. Let T’C be the levelk unrolled tree corre- at the root. From the above dlscussub@ ) must be equal
sponding toa;, defined as foIIowsTkT is a weighted regular to 2tk (9). u
rooted tree of height+1 with every non-leaf having degree ~ Lemma 2 is the main step in proving Theorem 1 and its
All nodes have labels from the sétvy,...,a,,31,...,0,} Proof covers more than one page. Before going into the detail
according to the following recursive rule: (a) root has lab@f proof let us give a high level description of it. Consider
a;; (b) then children of the rootr; have labels3;,. .., 3,; the computation treeﬂéj) rooted at vertex«;) and look at
and (c) the children of each non-leaf node whose parent Hagximum weight7-matching on it. We assume that at the
label o, (or ) have labelsgy, ..., By —1, Brs1,..., B, (or root, maximum weight/'-matching ofT’C does not choose
1y ) Qp1,Qri1, .. ., ). The edge between nodes labelethe correct edg€a;, 3x.(;)). Then we use property of -
i, 3; in the tree is assigned weight;; for 1 < i,j < n. matchings that each vertex is connected to exactly one of
Examples of such a tree for= 3 are shown in the Figure 1. its neighbors to construct a nef-matching on computation
Note 2. T* is often called the level- computation treeat tree. This new matching is going to have larger total weight i
node o; co?responding to the GM under consideration. Th((j—:Gpth of the computation tree is large enough. This last-argu
ment useaugmenting pathbased argument for this matching

computation tree in general is constructed by replicathng t
o o . . problem. The above will contradict with the assumption that
pairwise compatibility functions),, (r,s) and potentials decision at the root is incorrect, and proves Lemma 2.

¢ofi (r), ¢p, (s), while preserving the local connectivity of the Lemma 2: Assume the contrary that for sore> 22
original graph. They are constructed so that the messages B

received by nodey; after k iterations in the actual graph are
equivalent to those that would be received by the radh the
computation tree, if the messages are passed up along éhe igen, let; = = *(i1) for i; # 4. Let A be the T-matching on
from the leaves to the root. Computation tree has been uqe’d whose weight ist? (A') We will modify A and find A’
in most of the previous work on analysis of the BP algonthnWhose weight is more tha.m and which connect&y;, B+ (;))
e.g. [8], [10], [20], [22], [23]. at the root instead ofc;, B,- (i, )), thus contradicting with (6).
A collection A of edges in computation tree is calledla First note that the set of all edges :qf whose projection
matchingif it no two edges ofA are adjacent in the treé\(is in K,,,, belong tor* is a T-matching which we denote by
a matching in the computation tree) and each non-leaf nod&s, Now consider path®,, ¢ > 0 in T’“ that contain edges
are endpoint of exactly one edge from Let ¢ (r) be the from II* and A alternatively defined as follows. Let;,
weight of maximum weight T-matching rﬁ’“ WhICh uses the root a;, i9 = ¢ and Py = (o) be a single vertex path Let
edge(«;, 3,) at the root. = (Br=(io)» Qig» Pr=(iy))» Wherei;y is such thato,;, = a;
Now, we state two important lemmas that will lead to this connected tQ3,-(;,y underA. Forr > 1, define P, and
proof of Theorem 1. The first lemma presents an importam, ,, recursively as follows:
characterization of the min-sum algorithm while the second B
lemma relates the maximum weight T-matching of the com- Por = (0, Por1, 04,),
putation tree and the MWM i, ,,. Pori1 = (Brei_ry> Pory Bre(ivi))
Lemma 1:At the end of thek!” iteration of the min-sum
algorithm, the belief at node; of K, , is preciselyb? =
2tk (1)...2tE (n)]".

Fig. 1. Whenn =3 (a) isT,, and (b) isT2,.

7 (i) # argmaxtf (r) 273, for somei. (6)

whereq;_, is the node at levelr to which the endpoint node
Br+(i_,,.) Of path P,y is connected to undeX, andi,, is
JaahT such thaty;, at level2r (part of ;) is connected t@,..; ., ,)
2mI;§mma 2:1f =™ is the MWM of graphK.y, , then fork > underA. Note that, by definition, such pati#% for 0 < ¢ < 2k
e » . exist since the treé”’“ hask+1 levels and can support a path
(i) = argmax{t,, (r)}- of length at mosek as defined above.



o 5 o b o ,, length at mostn. Since each simple cycle has at mast
vertices and the length d?; is 2k,
m>2%_k ™)

% P, % B % B 2n  n
@ () © Consider one of these simple cycles, $ay Construct the
matchingn’ in K, ,, as follows: (i) Foro; € C;, select edges
incident on¢; that belong toA. Such edges exist by the
property of the pathP; that containsC;. (i) For «; ¢ Cs,
connect it according ta*, that is, add the edg@x;, B.-())-

Now =’ # 7* by construction. Since the MWM is unique,
the definition ofe gives us

a B, o B, o, B,

Wﬂ—/ < Wﬂ—* —E.

But, W, — W, is exactly equal to the total weight of the
IT*-edges ofC;, denoted by« (), minus the total weight
of the A-edges ofC;, denoted byiV, ¢, . Thus,

Waieyy = Wiy = —Ware = W)
< —e (8)

]Fjig-fZ- . Cozsiderha graph(c\ﬁ/ith SAWM ShOde in((ba))- Pf(;]JeQCﬁOfnlbém;T Since the pathf) is of even length, either the first edge or the
k Tor k =4 as shown In IS decomposed to : pat of lengtl a H _ H . .
(c): cycle C of length 4. Thedashededges belong ta\ while bold edges q,%lSt edge is am\ edge' Without loss of generahty’ assume it
belong toIT*. is the last edge. Then, let

Q = (ﬁﬂ'*(ih ) O[ijlvﬁﬂ*(ijz)v s P (g, ) aijl76ﬂ-*(ijl+l)).

Example 2:The Figure 2(d) provides an example of sucljow consider the cycle
a path. The corresponding bipartite graph has 3 with its
MWM shown in figure 2(a). The Figure 2(d) shoﬂgl, the C = (Bre(isy)s QXigy s B (i) -+ aﬁﬂ*(m%am’ﬁﬂ*(in))-
computation tree for node,, till depth £ + 1 = 4. A path,  ajernate edges of’ are from the maximum weight matching

Py, is highlighted with thick edges alternativetpmplete and .« Hence, using the same argument as above, we obtain
bold (edges fronil*) anddashededges from\). In the figure,

Py = (a1); Pr = (B1,010,02); P2 = (a2, B1,01,02,00) = WaQ) — W) = Z Wi, mx (i, ) — Z Wij, 7= (ij,.)
(a3, P2, an) and so on. Finally, 1<r<l 1<r<i
Py = (ay, B2, a2, B1, 0, P, a2, B3, 3) = CL U Q S et Wi | WG
4 — 1, M2, 25 1, 1 25 2, 35 3) — 1 b S _6+2w* (9)

where Oy = (a1, b1, a2, f2,01) is @ cycle of lengthd (see (7)-(9), we obtain that for T-matching$ andA in 7% :
Figure 2(c)) and?l = (a1, f2, ae, B3, a3) is a path of length ‘

4 (see Figure 2(b)). weight of A — weight of A’ < —(m + 1)(e) + 2w*
Now consider the pathP, of length 2k. Its edges are - _E€+2w*

alternately partitioned into edges from and edgedI*. Let - n

us refer to the edges df as theA-edges ofP;. Replacing the < 0. (10)
A-edges ofP, with their complement inP;, (all IT* edges of
P,) produces a new matchinyf in T(fi; this follows from the
way the paths are constructed. Note thafs exactly equal to
A on Tjj except along the patk,, where it uses edges from

This completes the proof of Lemma 3. [ |

IV. COMPLEXITY

1", In this section, we will analyze the complexity of the
Lemma 3:The weight of T-matching\’ is strictly higher min-sum algorithm described in Section 1I-B. Theorem 1
than that ofA on treeT" . suggests that the number of iterations required to find MWM

This completes the proof of Lemma 2 since Lemma 3 shousO % . Now, in each iteration of min-sum algorithm each

that A is not the maximum weight T-matching @f , leading node sends a vector of size(i.e. n numbers) to each of the

to a contradiction. B n nodes in the other partition. Thus, total number of messages
Now, we provide the proof of Lemma 3. exchanged in each iteration af§n?) with each message of

Lemma 3: It suffices to show that the total weight oflengthn. Now, each node perform@(n) basic computational

the A-edges is less than the total weight of their complemeaperations (comparison, addition) to compute each element

in P,. Consider the projectio®, of P in the graphK, ,. amessage vector of size That is, each node perforni¥n?)

P/ can be decomposed into a union of a set of simple cyclesmputational operations to compute a message vector in eac

{C1,Cs,...,Cy} and at most one even length path of iteration. Since each node sendsnessage vectors, the total



cost isO(n?) per node orO(n*) per iteration for all nodes. Proof: Consider the min-sum algorithm. In particular,

Thus, total cost folO(nw* /¢) iterations isO(n’w* /¢). consider a message vecthﬁﬁ, in iteration k. First, we
Thus, for fixedw* and e, the running time of algorithm claim that all for any giverk > O,]m’;ﬁﬁ_(r),r # 4 are the

scales asO(n”). The known algorithms such as Edmondsame. That is, for; # r» andry,rs # 4,

Karp’s algorithm [9] or Auction algorithm [7] have compléxi i i

of O(n?). In what follows, we simplify the min-sum algorithm Ma,—p,(11) = Mg, ., (12)-

so that overall running time of the algorithm beconi&s:?) For k = 0, this claim holds by definition. Fok > 1,

for fixed w* ande. We make a note here that Edmond-Karp’sonsider the definition ofnf;_éﬁ’_ (r),r # .

algorithm is strongly polynomial (i.e. does not dependugn Y

ande) while Auction algorithm’s complexity i€ (n3w* /c).

mlgziﬁﬁj (7‘) = 112?<Xn waiﬁj (q’ r) Wig + Z mg;ocli (q)
A. SIMPLIFIED MIN-SUM ALGORITHM FORK,, ., 7
We first present the algorithm and show that it is exactly the = max [wi, + Z m’;;; (q)] - (12)
same as min-sum algorithm. Later, we analyze the complexity 977 (£ o

of the algorithm. The first equality follows from definition in min-sum algdrin

Simplified min-sum algorithm. while second equality follows from property ¢f,,s, (-, -). The
equation (12) is independentof# ¢). This proves the desired
claim.

The above stated property of min-sum algorithm immedi-
ately implies that the vectoMC’ji_}Bj has only two distinct

(1) Unlike min-sum algorithm, now eaafy; sends a number
to 3; and vice-versa. Let the message framto (3; in
iteration k be denoted as

m’;ﬁﬁj values, one corresponding tofyﬁﬁj (7) and the other corre-
sponding tom, 5 (r),r # i. Now subtractnf, _; (r),r #

Similarly, the messages from; to «; in iteration k be

denoted as i from all coordinates of\/} ;. Lemma 4 guarantees the

ik resulting matchingr™ for all m does not change. Performing
Bj—ei the same modification to all message vectors yieldwdified
(2) Initially £ = 0 and set the messages as follows. min-sumalgorithm with the same outcome as Min-Sum. But
Y —ws each message vectM(’;i_}Bj in this modified min-sum has
@i—h; " all coordinates equal to zero except tife coordinate. Denote
Similarly, thesei’* coordinates bymf;i_}ﬁj. Now equation (4) shows
mgﬁai = Wij these for alli, j, k numbersmm_}ﬁj satisfy the following

(3) Fork > 1, messages in iteratioh are obtained from '€CUrsive equations:

messages of iteratioh — 1 recursively as follows: m(’;ﬁﬁj = wij — %X(mgﬁab + wig),
J ‘
~ k ~k—1
fmd s — ~ k ~ fo—
My, —3; Wij %?JX Mg, o, mﬁj"ai = wij — I?gf((ma[iﬁj + ng) (13)
~k o L ~k—1 Lo )
Mpj—as = Wij = TPAXMa, —p, (1) similarly for new beliefs we have:
(4) The estimated MWM at the end of iteratidnis 7", VE(r) = W ., + Wi,
by — Sk : -
wheren" (i) = argmaxi<j<n{rg ., }, for 1 <i <n. bgj(s) — mgséﬁj + wy; (14)

(5) Repeat (3)-(4) tillr® converges. _ _ L
Now by addingw;; to each side of (13) and dividing them

~ k
Mo, —p; TWij

Now, we state and prove the claim that relates the abolog 2 it can be seen from (11) that numbers—*—— and
modified algorithm to the original min-sum algorithm. fnf;i_ﬁj satisfy the same recursive equations. They also satisfy

Lemma 4:In min-sum algorithm adding an equal amounthe same initial conditions. As result for dllj, & we have

to all coordinates of any message vecMﬁ,Hﬁj (similarly mk g+ wi
B a;—[3; )

M[’;ﬁai) at anytime does not change the resulting estimated m’;ﬁﬁj  —— ba, (5) (15)
matching=™ for all k, m. q

Proof: If a number is added to all coordinates]tdfgjﬁﬁj an mk T Wi
it is not hard to see from equation (4) and structure of mgjéai = % = bg, (1) (16)

Ya,p,(:,-) that other message and belief vectors will Chan%g _ . _
only up to an additive constant to their coordinates. HenddiS shows that the estimated matching computed at nodes

these changes do not affeet (i) = arg maxi <<, {b™ ()}, M modified min-sum and simplified min-sum algorithms are
for1<i<n. S/ m exactly the same at each iteration which completes the proof
Lemma 5: The algorithms min-sum and simplified min-sunff Lemma 5. u
produce identical estimated matching$ at the end of every Note 3.The simplified min-sum equations can also be derived
iterationm. in a direct way by looking interpretation of the messages



{m’;ﬁﬁj}iyj_,k in the computation tree. More specifically Theorem 2:The simplified min-sum algorithm finds the
consider the levelk+1) computation tree rooted at, 7% '.  Maximum Weight Matching irO % iterations with total
Also consider its subtred?o’jiﬁj , that is built by adding the
edge(«;, 3;) at the root of ¥+ to graph of all descendants
of 3;. One can show that the messa@@jﬂai is equal to the
difference between weight of maximum weidghitmatching in
Tk 5 thatuses the eddev;, 3;) at the root and weight of the V. AUCTION AND MIN-SUM

maximum weightZ’-matching inTc’jiﬁj that does not use that In this section, we will first recall the auction algorithr [7
edge. Now a simple induction gives us the update equaticasd then describe its relation to the min-sum algorithm.
(11).

computation cost of) (”%Tw) and O ("QT“J) total number
of message exchanges.

B. COMPLEXITY OF SIMPLIFIED MIN-SUM A. AUCTION ALGORITHM FOR MWM

The Lemma 5 and Theorem 1 immediately imply that the The Auction algorithm finds the MWM via an "auction”:
implified mi like mi o {nw* all o;; become buyers and a#l; become objects. Let; denote
simpiified min-sum, 1ike min-sum, converges arter = the price of3; andw;; be the value of object; for buyer

iterations. As described above, the simplified min-sum alggi_ The net benefit of an assignment or matchinig defined
rithm requires totalO(n?) messages per iteration. Thus, fogg

fixed w* ande the algorithm requires totaD(n?) messages n
to be exchanged. Z (wiﬂ-(i) - Pﬂ(i)) .
Now, we consider the number of computational operations =1

done by each node in an iteration. From the description The goal is to findr* that maximizes this net benefit. It is clear
simplified min-sum algorithm, it may seem that each nodaat for any set of priceg, . . ., p,, the MWM maximizes the
will require to doO(n) work for sending each message andet benefit. The auction algorithm is an iterative method for
thus O(n?) work overall at one node. But, we present @inding the optimal prices and an assignment that maximizes
simple method that shows each node can compute mess@ggenet benefit (and is therefore the MWM).

for all of its n neighbors withO(n) computational operation
(comparison, addition/subtraction). This will result @(n?)

overall computation per iteration. Thus, it will tal@e(";“ ) o Initialize the assignmens = (), the set of unassigned
buyersI = {a1,...,a,}, and pricegp; = 0 for all 5.
o The algorithm runs in two phases, which are repeated

Auction algorithm.

computation inO (%) iterations. This will result in total

complexity ofO ("?’Tw) in terms of overall messages as well  yntil S is a complete matching.
as computation operations. o Phase 1: Bidding.
Here we describe an algorithm to compute messages For all o; € I,
~ . . . ok—1
miﬁﬁjvl_ < j < n using received messagmkﬁap 1< (1) Find benefit maximizing3;. Let,
j < n. This is the same algorithm that all, 1 <: < n, and '
Bj,1 < j <n, need to employ. Now, define Ji = argmax{w;; —p;}, v; = m;ﬁiX{wij —Dpjits
o= argmax.;, g L,
iz = afgma)igjgn.,j#nmg;—l»m andu; = ?%)f{wij ~pi (18)
— A k—1 N A
Mx; = Mg, —ay (2) Compute the_ bid o_f buyeai: _denoted PYoa,— ;.
Mxy = 1 Z;Lal as follows: given a fixed positive constamnt
Then, from (11) we obtain bai—p;, = Wij, — ui + 0.
miﬁﬁh = wy, — Mxa, o Phase 2: Assignment.
Wk, = wiy;—Mx, forj#i.  (17)  Foreach object, | _
’ _ (3) LetP(j) be the set of buyers from whighy received
We see that computing all message§, ;. takesO(n) a bid. If P(j) # 0, increasep; to the highest bid,
operations. From (17), it takes node O(n) computations
to find i1,i2, MX1, MX2, then it takesO(1) computation to pj = a%%)gj)baﬁﬁj-
compute each of thm’géﬁﬁj,l < j <n. Thatis, totalO(n) T
operations for computing all messagégl_}ﬁj,l <j<n. (4) Remove the maximum bidder;, frpm I and add
Thus, we have established that each nadel < i < n, (cvi;, B5) t0 S If (o, B5) € S, k # ij, then putay,
and g;,1 < j < n, need to performO(n) computation to back in[.

compute all of its messages in a given iteration. That is, the _
total computation cost per iteration 8(n?). In summary, ~ Theorem 3 ([6]):If 0 < § < ¢/n, then the assignmertt

Theorem 1, Lemma 5 and discussion of this Section [v-onverges to the MWM irO(nw* /<) iterations with running
immediately yield the following result. time O(n3w*/e) (wheree andw* are as defined earlier).



B. CONNECTING MIN-SUM AND AUCTION

The similarity between equations (17) and (18) suggestsTheorem 4:The algorithms min-sum auction | and Il are
a connection between the min-sum and auction algorithn@sjuivalent.
In auction algorithm the equations for calculation of the  Proof: Let b% =B, andp’ denote the bids and prices at
bids are exactly similar to those for updating messages tite end of iteratiort: |n algorithm min- sum auction I. Now,
simplified min-sum algorithm. But when updating the pricesdentify b 5 with mg _ 5 andpy with mg ., . Thenitis
maximum is taken over all incoming bids which is differenimmediate that min-sum auction Il becomés identical to min-
from dynamics of simplified min-sum equations. Moreover ifum auction I. This completes the proof of Theorem 4.m
auction algorithm bidders do not bid at any iteration anddp n  Next we will prove that if the min-sum auction algorithm
bid to every object but in simplified min-sum each vertex senderminates (we omit reference to | or 1), it finds the correct
a message tall of its neighbors amny iteration. Based on maximum weight matching. As we will see, the proof uses
these similarities and difference we made modificationsth b standard arguments (see [7] for example).
simplified min-sum and auction algorithm which are called Theorem 5:Let o be the termination matching of the min-
min-sum auction land min-sum auction |l respectively. We sum auction | (or Il). Then it is the MWM, i.er = 7*.
will show that these versions are equivalent and derive some Proof: The proof follows by establishing that at termi-
of their key properties. Here we consider the naive aucti®@tion, the messages of min-sum auction form the optimal
algorithm (whens = 0) and deal with the casé > 0 in the solution for the dual of the MWM problem and is the

next section. corresponding optimal solution to the primal, i.e. MWM. To
Min-sum auction | do so, we first state the dual of the MWM problem
(1) Each a; sends a number tos; and vice-versa. . - -
Let the messages in iteratiork be denoted as i Zr Zp /
-~k
malﬂﬁg mﬁj €R. Subject to ri + Dy > Wij - (21)
(2) Initialize k = 0 and setn’ —a; = 0.
(3) Fork > 1, update messages as follows: Let (r*,p*) be the optimal solution to the above stated dual
i o1 problem and letr* solve the primal MWM problem. Then,
Ma;—p; = Wij = I?j;({wil =G, ot the standard complimentary slackness conditions are:
My o, = WAX G, g, (19) H AP = Win(): (22)
(4) The estimated MWM at the end of iteratioh is Thus,(r*,p*,w*_) are the optimal c_iual—primal_ solution for the
the set of edgest" = {(O‘wvﬁj)} where i; = MWM problem if and only |_f (@)r* is a matching, (b}r*, p*)
arg maxi <¢<p, (mk s ) andma 5, > 07 Z_—ux satisfy (21)_, and (c) the 'mple satisfies (22). To compléie t
5 R t (3)(4 tlhlrk | t wchi I proof we will prove the existence of , p* such tha{r*, p*, o)
(5) Repeat (3)-(4) ti is a complete matching. satisfy (a), (b) and (c).
Min-sum auction 1. To this end, first note that is a matching by the termination

condition of the algorithm; thus, condition (a)is satisfigd'll
consider the min-sum auction Il algorithm for the purpose of
the proof Suppose the algorithm terminates at some iterati

o Initialize the assignment = () and pricep; = 0 for all

J- : O
o The algorithm runs in two phases, which are repeatdd -etr; ' andpy be the prices off; in iterationsk — 1 and
until S is a complete matching. k respectively. Since alb;s are matched at the termination,
o Phase 1: Bidding. from step (4) of the min-sum auction Il, we obtain
For all a, Py > piTh v (23)

1) Find 8, that maximizes the benefit. Let, L . . .
(1) b At termination (|terat|onk) «; is matched with3,;) or f;

Ji = argmax{w;; — p;}, v; = max{w;; — p;}, is matched witha,-1(;. By the definition of the min-sum
J auction Il algorithm,

k—
andu; = Ijl;eﬁ({ww —pjt (20) p? = We-1(3j)j — r?;&i;( [wo—1(jy¢ — P§ 1} . (29)

(2) Compute the "bid” of buyewy;, denoted by, .3,: From (23) and (24), we obtain that
bas—p,, = Wij, — i, andba, g, = wi; —vi, j # ji- Woi(gyy — Py 2 max[wenge—pf]. (25)

o Phase 2: Assignment. Define, 7} = wi,;) — pF . andp* = p¥. Then, from (25)
For each objecB; ' o) = " 7
_ 7 ) ) (r*,p*) satisfy the dual feasibility, that is (21). Further, by
(3) Set pricep; to the highest bidp; = maxa, ba;—p,-  definition they satisfy the complimentary slackness cooulit
(4) ResetS = (). Then, for eacty add the pair(;, ;)  (22). Thus, the triple(r*, p*, o) satisfies (a), (b) and (c) as
to Sif ba, 5, > p;, Wherea;; is a buyer attaining required. Hence, the algorithm min-sum auction Il produces
the maximum in step (3). the MWM, i.e.o = 7*. -



The min-sum auction Il algorithm looks very similar to theD. IMPLICATIONS

auction algorithm and inherits some of its properties. H®ve  The relation between min-sum and auction resulted in
it also inherits some properties of the min-sum algorithimsT qyivalent algorithms min-sum auction | and 1. The further
causes it to behave differently fr.om the guction.algorithrrmodiﬁcation of the min-sum auction | (or 1) based on the
The proof of convergence of auction algorithm relies on twg re|axation method allows for designing (deterministiy-d
properties of the auctioning mechanism: (a) the prices &ffuted algorithm that works even in the presence of non-
_always non-decreasing and (b) th_e number of matched Obje&Fﬁque MWM (Theorem 7). This suggests a method for
is always non-decreasing. By design, (&) and (b) can be shoydigning modification of min-sum or max-product for gehera
to hold for the auction algorlthm. Hoyvever, it is not clear 'Bptimization problem so as to work in presence of non-unique
(a) and (b) are true for min-sum auction. In what follows, Wggytion. Further, the min-sum auction | algorithm by desig

state the result that prices are eventually non-decredsingis qual unlike the auction being primal-dual. This may be of
the min-sum auction algorithm; however it seems difficult tgyierest in optimization methods on its own.

establish a statement similar to (b) for the min-sum algarit

as of now. VI. DISCUSSION AND CONCLUSION

Theorem 6:I1f #* is unique then in the min-sum auc- o )
tion Il algorithm, prices eventually increase. That ¥ <  In this paper, we proved that the max-product algorithm
Z4; 3T > kst Vt>T; ph>ph, 1<j<n converges to the desirable fixed point in the context of figdin

Proof: Proof of Theorem (6) is essentially based on (i) the MWM for a bipartite graph, even in the presence of loops.
equivalence between the min-sum auction algorithms | and Tihis result has a twofold impact. First, it will possibly ape
and (i) arguments very similar to the ones used in the progyenues for a demystification of the max-product algorithm.
of Lemma 2 , where we relate prices with the computatiopecond, the same approach may provably work for other

tree. m combinatorial optimization problems and possibly lead to
Our simulations suggests that in the absence of the conditietter algorithms.
“mﬁi.—ﬁj > mg;ia from step (4) of min-sum auction I, Using the regularity of the structure of the problem, we

the algorithm always terminates and finds the MWM as |O,;%anaged to simplify the max-product algorithm. In the sim-

as it is unique. This along with Theorem 6 leads us to tidified algorithm each node needs to perfofhin) addition-
following conjecture. subtraction operations in each iteration. Sii@:) iterations

Conjecture 1:1f 7* is unique then the min-sum auction@'e required in the worst case, for finit¢ ande, the algorithm
| terminates in a finite number of iterations if conditior/€duiresO(n?) operations at the most. This is comparable with

“mk > mE 1 " is removed from step (4). the best known MWM algorithm. Furthermore, the distributed
g = e nature of the max-product algorithm makes it particularly
C. RELATION TOS-RELAXATION suitable for networking applications like switch schedgli

In the previous section, we established a relation betweW}ere scalability is a necessary property. _
the min-sum and auction (with = 0) algorithms. In [7], [6] The relation that we established between the auction algo-

the author extends the auction algorithm to obtain guaeahtd!thm and the min-sum algorithm is tantalizing. It suggests
convergence in a finite number of iterations vid-gelaxation Method to design modification of max-product algorithm for

for somed > 0. At termination thed-relaxed algorithm 9eneral optimization problem that may work even in the

produces a triplér*, p*, 7*) such that (al)* is a matching, PréSence of non-unique solution.

(b1) (r*,p*) satisfy (21) and (c1) the following modified thure work wi.II consist of trying to extend our result to
complimentary slackness conditions are satisfied: finding the MWM in a general graph, as our current arguments
do not carry over Also, we would like to obtain tighter

T +P;*(i) < Wipe(y + 0. (26) pounds on the running time of the algorithm since simulation
The conditions (c1) are referred to &CS conditions in [7]. Studies show that the algorithm runs much faster on average
This modification is reflected in the description of the anmti than the worst case bound obtained in this paper.
algorithm where we have addedto each bid in step (2).
We established the relation between min-sum and auction for ACKNOWLEDGMENT
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is modified as follows: modify step (3) of min-sum auction |

=k ~ k—1 ;
asrig, 5, = wij — maxez;{wie =g, }+ 0, and modify
step (2) of min-sum auction Il a8,, .5, = wij, — u; +
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5, an.d b5, Wij = Vi +0, 7é gi- For the.se modified Iterative Decoding on Graphs with a Single Cycle,”Rnoc. IEEE Int.
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Theorem 7:Ford > 0, let s be the matching obtained from ~ Trans. Inform. TheoryVol. 46, pp. 325-343, 2000.
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