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Abstract We consider switched queueing networks in which there are constraints on
which queues may be served simultaneously. The scheduling policy for such a net-
work specifies which queues to serve at any point in time. We introduce and study
a variant of the popular maximum weight or backpressure policy which chooses
the collection of queues to serve that has maximum weight. Unlike the maximum
weight policies studied in the literature, the weight of a queue depends on logarithm
of its queue-size in this paper. For any multihop switched network operating under
such maximum log-weighted policy, we establish that the network Markov process
is positive recurrent as long as it is underloaded. As the main result of this paper, a
meaningful fluid model is established as the formal functional law of large numbers
approximation. The fluid model is shown to be work-conserving. That is, work (or
total queue-size) is nonincreasing as long as the network is underloaded or critically
loaded. We identify invariant states or fixed points of the fluid model. When under-
loaded, null state is the unique invariant state. For a critically loaded fluid model,
the space of invariant states is characterized as the solution space of an optimiza-
tion problem whose objective is lexicographic ordering of total queue-size and the
negative entropy of the queue state. An important contribution of this work is in over-
coming the challenge presented by the log-weight function in establishing meaning-
ful fluid model. Specifically, the known approaches in the literature primarily relied
on the “scale invariance” property of the weight function that log-function does not
possess.
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1 Introduction

The scheduling problem is ubiquitous. The stochastic processing network model in-
troduced by Harrison [10] has been quite effective in modeling a large class of such
problems arising in communications, computer networks, operations research, trans-
portation networks, etc. The switched network model (cf. Shah and Wischik [17])
considered in this paper is a restriction of the stochastic processing network model.
Despite the restriction, it faithfully models a variety of application scenarios includ-
ing core router’s operation through input-queued switch or wireless access network.
Further, it does seem to bring out the quintessential challenges involved in perfor-
mance analysis of scheduling policies. Therefore, developing methods for perfor-
mance analysis of switched networks are likely to lead to better understanding of
general stochastic processing networks.

1.1 Switched network model

Consider a collection of N queues. Let time be discrete, indexed by τ ∈ {0,1, . . .}.
Let Qn(τ) be the size of queue n at the beginning of timeslot τ , and write Q(τ )

for the vector [Qn(τ)]1≤n≤N . Let Q(0) be the prespecified vector of initial queue
sizes.

In each timeslot, each queue is offered either unit amount of service or no service
as per scheduling constraint described below. If the queue is empty and it is offered
unit amount of service, then we say that queue has idled by unit amount. Once work
is served, it gets routed to another queue or leaves the network. New work may arrive
in each timeslot; let each of the N queues have a dedicated exogenous arrival process.

The scheduling constraint is described by a finite set of feasible schedules S ⊂
{0,1}N . In every timeslot, a schedule π ∈ S is chosen; queue n is offered an amount
of service πn times the duration of the timeslot. We shall assume S to be monotone.
That is,

if π ∈ S, ρ ∈ {0,1}N and ρ ≤ π then ρ ∈ S.

Further, we shall assume that en ∈ S for all 1 ≤ n ≤ N where en is the schedule that
only serves queue n. Let Sπ (τ ) be the total length of time up to the beginning of
timeslot τ in which schedule π has been chosen, and let Sπ (0) = 0. Let Zn(τ) be the
total amount of idling at queue n up to the beginning of timeslot τ , and let Zn(0) = 0.

Let An(τ) be the total amount of work arriving to queue n up to the beginning of
timeslot τ , and An(0) = 0. We will take A(·) to be a random process satisfying the
following properties: (1) The components An(·) of A(·) are independent across n;
and (2) An(·) is a Bernoulli process with mean λn. That is,

λn = P
(
An(τ) − An(τ − 1) = 1

) = lim
τ→∞

1

τ
An(τ) (1)
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where the above limit exists almost surely for each queue due to strong law of large
numbers for Bernoulli process. In summary, each arriving customer or job or packet
has unit requirement.

Work served from a queue can get routed to another queue in the network or leave
the network. We shall assume deterministic, unicast and acyclic routing. Let R =
[Rmn] represent the N ×N routing matrix with Rmn = 1 if work departing from queue
m joins queue n and 0 otherwise due to deterministic routing assumption. Unicast
routing implies

∑
n Rmn ≤ 1 for all m. Define �R = (I − RT)−1. Acyclic routing

assumption implies that �R is well-defined as (I − RT)−1 = I + RT + (
RT

)2 + · · ·.
In this setup, all the components of �R are {0,1}. And �Rmn = 1 if work departing from
queue n eventually goes through queue m.

We will use the convention that Q(τ ) is the vector of queue sizes at the beginning
of timeslot τ , and then the schedule for timeslot τ is chosen and service happens, and
then arrivals for timeslot τ happen. Thus, with Σ(τ ) = ∑

π∈S πSπ (τ ),

Qn(τ) = Qn(0) + An(τ) − (
Σn(τ) − Zn(τ)

) +
∑

m

Rmn

(
Σm(τ) − Zm(τ)

)
. (2)

Equivalently,

Q(τ ) = Q(0) + A(τ ) − (
I − RT) [

Σ(τ ) − Z(τ )
]
.

Here,

Zn(τ) − Zn(τ − 1) = max
(
0,Σn(τ) − Σn(τ − 1) − Qn(τ − 1)

)
. (3)

1.2 Maximum weight scheduling

The operational problem of interest is to decide which queues to schedule for service
among all possible allowable options. This is done by a scheduling policy. A class
of myopic scheduling policies known as the Maximum Weight (MW) have been of
interest since their introduction by Tassiulas and Ephremides [19]. The basic version
of the policy works as follows. Define weight of a queue n in timeslot τ as Qn(τ) −
Qm(τ) if Rnm = 1 for some m and Qn(τ) if Rnm = 0 for all m. The weight of a
schedule π ∈ S is the summation of the weights of queues that are served. Then the
MW policy chooses for timeslot τ a schedule with the largest weight (breaking ties as
per a predetermined fixed order of schedules in S ). That is, in timeslot τ , a schedule
π is chosen so that

π · (I − R)Q(τ ) = max
ρ∈S

ρ · (I − R)Q(τ )

= max
ρ∈S

∑

n

ρn

(
Qn(τ) −

∑

m

RnmQm(τ)

)
(4)

with notation a · b = ∑
n anbn. The above policy is also referred to as the back-

pressure, since the weight of queue n is determined by the difference of its own
queue-size and the next-hop queue-size.
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This policy can be naturally generalized to choose a schedule which maximizes
π · (I − R)Q(τ )α , where the exponent is taken componentwise for some α > 0; call
this the MW-α policy. Or more generally, MW-f policy that chooses a schedule π in
each timeslot τ so that

π · (I − R)f
(
Q(τ )

) = max
ρ∈S

ρ · (I − R)f
(
Q(τ )

)
(5)

for some function f : R+ → R+; call this the MW-f policy. Here and throughout,
f (Q(τ )) = [f (Qn(τ))].

In the literature (cf. [17]), the choice of weight function is restricted to the class of
scale-invariant functions (see (10) for precise definition). In this paper, interest is in
the family of MW-f policies where the weight function f is weighted logarithm of
queue-size, which is not scale-invariant. Specifically, given a constant weight vector
w = [wn] with wn > 0 for all n and constant G ≥ 1, define weight of queue n at
timeslot τ as

LOGn

(
Qn(τ)

) = wn log
(
wnQn(τ) + G

) − wn logG. (6)

The policy of interest, called MWL chooses schedule π in timeslot τ so that

π · (I − R)LOG
(
Q(τ )

) = max
ρ∈S

ρ · (I − R)LOG
(
Q(τ )

)
(7)

with notation LOG(Q(τ )) = [LOGn(Qn(τ))]. Again, ties are broken uniformly at ran-
dom independent of everything else.

We shall consider a sequence of systems, indexed by r , to establish a fluid model
as a formal approximation and subsequently study its properties. Specifically, we
shall establish two main properties of the fluid model: one, work-conservation prop-
erty (see Definition 2, Sect. 3), and two, characterization of invariant manifold under
critical loading (see Sect. 4). The work-conservation property is establish in gener-
ality, i.e., for any value of G (including G = 1) in (6). However, to characterize the
invariant manifold, we shall assume that the G in the r th system in (6), denoted by
Gr , scales so that as r → ∞, Gr → ∞ (equivalently Gr = ω(1)) but not too fast, i.e.,
Gr/ log r → 0 (equivalently Gr = o(log r)). The requirement of Gr = o(log r) is to
make sure that the policy behavior in the fluid model is independent of the choice
of such constant; the requirement of Gr = ω(1); however, in Sect. 4 is primarily
technical and induced by the limitation of current proof method.

An implication of the monotonicity property of S is as follows: if Qn(τ) = 0 then
its weight, Qn(τ) − ∑

m RnmQm(τ) ≤ 0. Therefore, there is a schedule π ∈ S with
maximum weight so that πn = 0. We shall assume that such a schedule is chosen.
Therefore, under the MWL policy, we shall impose

Zn(τ) = 0, for all τ,n. (8)

Equivalently, the resulting queueing dynamics under the MWL policy is

Qn(τ) = Qn(0) + An(τ) − Σn(τ) +
∑

m

RmnΣm(τ)

Σn(τ) − Σn(τ − 1) = 0 if Qn(τ − 1) = 0. (9)
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1.3 Notations

Bold letters will be reserved for vectors in R
N . Let 0 be the vector of all 0s, and 1

be the vector of all 1s. Let 1{·} be the indicator function, 1true = 1 and 1false = 0. Let
x ∧y = min(x, y) and x ∨y = max(x, y) and [x]+ = x ∨0. For vectors x,y, notation
x ∧ y, x ∨ y and [x]+ means application of operators ∧,∨ and [·]+ componentwise.
Use |x| = maxi |xi | as a norm for vectors x. Use notation xmax = maxi xi and xmin =
mini xi . For vectors u and v and functions f : R → R, let

u · v =
N∑

n=1

unvn, and f (u) = [
f (un)

]
1≤n≤N

.

Let N be the set of natural numbers {1,2, . . .}, let Z+ = {0,1,2, . . .}, let R be the set
of real numbers, and let R+ = {x ∈ R : x ≥ 0}.

1.4 Related work

The primary performance goals of a scheduling policy are stability and small queue-
sizes. A queueing network is called stable if the underlying network Markov process
is positive (Harris) recurrent as long as the network is underloaded. Thus, a stable
policy leads to efficient utilization of network resources in the long term. The short
term efficiency of the network is captured by small queue-sizes—to begin with, on
average and more generally, with respect to higher moments.

In a single server system, like a G/G/1 queue, work-conservation property leads
to optimal performance in terms of minimizing unserved work in the system in a
strong, path-wise, sense. Such optimality properties make work-conservation prop-
erty highly desirable. In a system where many queues are served by a single server,
again work-conservation can be achieved as long as any queue can be scheduled to
serve at any time. In such systems, work conservation property has a strong impli-
cation: as long as there is work in the system, it is served at the maximal possible
rate.

Now in a generic constrained multiserver queueing network, such as that consid-
ered in this paper, a policy with such a work-conserving property is unlikely to exist.
Therefore, over the past few decades, attempts have been made to search for policies
that have asymptotic work-conservation property in multiserver, constrained queue-
ing networks such as the stochastic processing networks.

As the first step toward this, Harrison [9] proposed a parametric policy called
BIGSTEP to achieve work-conservation under heavy traffic or diffusion approxima-
tion by utilizing explicit knowledge of arrival process statistics like rate vector λ. This
establishes the existence of a policy that is indeed work-conserving with respect to
the diffusion approximation. However, it is a parametric policy and requires explicit
knowledge of the arrival process statistics. It would be more desirable to have such
an asymptotic work-conserving policy that is myopic like the MW policy both from
a designer’s viewpoint and for the sake of elegance.

Toward this, work by Stolyar [18] and Lin and Dai [14] establish work-
conservation property of myopic MW-1 policy for generalized switched network
and stochastic processing network respectively with respect to heavy traffic approx-
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imation. Their results are applicable to scenarios when essentially one resource is
critically loaded. This condition is known as the complete resource pooling. In a nut-
shell, these results say that when exactly one resource is critically loaded; the MW-1
policy organically identifies it and does not idle on it or serves it in a work-conserving
manner. These results do not extend beyond the complete resource pooling condition
or in the presence of multiple critically loaded resources.

To overcome this limitation of complete resource pooling, Shah and Wischik [17]
studied the performance of MW-α policy for α > 0, under heavy traffic or dif-
fusion scaling. They find that under the MW-α policy, the critically loaded fluid
model (which is used to establish state space collapse result) is approximate work-
conserving (see (40) for precise definition) even in the presence of multiple critically
loaded resources—the approximation error goes to 0 as α → 0+ suggesting that the
limiting policy, say MW-0+, is work-conserving with respect to the critically loaded
fluid model.

Few remarks are in order. First, the work-conservation property of critical fluid
model is weaker than work-conservation of the heavy traffic approximation. How-
ever, it is an important step toward it. Second, the limiting policy MW-0+ was con-
jectured by Shah and Wischik [17] to be work-conserving with respect to critical fluid
model. However, analyzing it seems quite challenging. Finally, the logarithm weight
policy, the MWL, considered in this paper is closely related to the conjectured MW-
0+ policy [17].

1.5 Contribution

As an important contribution of this work, we establish work-conservation property
(see Definition 2) of the MWL policy with respect to the critically loaded fluid model.
More generally, we establish that the work (total queue-size) is strictly decreasing
under the fluid model as long as there is some work in the network and the network
is underloaded.

We start by establishing stability property of switched network operating under
the MWL policy. Next, we identify fluid model of the switched network operating
under the MWL policy and establish it as the formal functional law of large num-
bers approximation. The work-conservation property shows up explicitly in this fluid
model (Eq. (36) in Sect. 3.2).

In all the prior work, such as [1, 8, 14, 16–18], that establishes fluid model as a for-
mal approximation of network operating under maximum weight scheduling policy,
the choice of weight function f in the MW-f policy always satisfies the following
assumption: f is differentiable and strictly increasing with f (0) = 0; for any q ∈ R

N+
and π ∈ S , with m(q) = maxρ∈S ρ · f (q),

π · f (q) = m(q) ⇒ π · f (κq) = m(κq), for all κ > 0. (10)

This “scale invariance” property (10) has been essential in obtaining useful fluid
model and subsequently to study heavy traffic scaled network. As a consequence
of the scale invariance, the fluid analog of queue-size vector evolves under the same,



Queueing Syst (2012) 71:97–136 103

maximum weight, policy. That is, the “fluid control” remains the same as “discrete
control.” This makes analysis relatively easier.

The logarithm weight function as defined in (6) does not satisfy (10), and hence it
is not clear what is the right “fluid control” that such policy will induce. An important
contribution of this work is to overcome this challenge and obtain useful fluid model
as a formal approximation.

Given work-conservation property of fluid model, it is natural to wonder the valid-
ity of work-conservation of MWL policy under the heavy traffic approximation. The
method proposed by Bramson [6] and Williams [20] to establish heavy traffic approx-
imation involves characterization of the invariant manifold of critical fluid model as
the key initial step. In this paper, we identify invariant manifold for critically loaded
fluid model as the solution space of a two stage optimization problem (see Sect. 4.3).
It is worth taking note of the fact that the form of optimization problem is unusual
compared to what is observed in literature, e.g., [13, 17].

We note that the characterization of invariant manifold is restricted to single-hop
network and requires certain additional assumptions that are stated in Sect. 4.1. How-
ever, we believe that such characterization must hold more generally. Finally, inspired
by the form of optimization problem arising in the characterization of invariant mani-
fold, we conjecture that the MWL policy is work-conserving in heavy traffic approx-
imation as long as appropriate weight vector, w > 0, is used (Condition (71)).

1.6 An illustration of results: input-queued switch

Here, we illustrate the main results of this paper about MWL policy in the context
of an instance of single-hop switched network, the input-queued switch. The input-
queued switch architecture is commercially popular for performing task of switching
packets in an internet router. Figure 1 illustrates an input-queued switch with three
input ports and three output ports. Packets arriving at input i destined for output j

are stored at input port i, in queue Qi,j , thus there are N = 9 queues in total. (When
we discuss the specific example of an input-queued switch, it is most natural to use
double indexing, e.g., Q3,2, whereas when we give general results about switched
networks we will use single indexing, e.g., Qn for 1 ≤ n ≤ N .)

The switch operates in discrete time. In each timeslot, the switch fabric can trans-
mit a number of packets from input ports to output ports, subject to the two constraints
that each input can transmit at most one packet and that each output can receive at
most one packet. In other words, in each timeslot, the switch can choose a matching
from inputs to outputs as its schedule. The matching or schedule π ∈ {0,1}3×3 is
given by πi,j = 1 if input port i is matched to output port j in a given timeslot, and
πi,j = 0 otherwise. Thus,

S =
{
π ∈ {0,1}3×3 :

∑

k

πi,k ≤ 1,
∑

k

πk,j ≤ 1, ∀1 ≤ i, j ≤ 3

}
.

It can be checked that an arrival rate vector λ ∈ [0,1]3×3 is supportable if
∑

k

λi,k ≤ 1,
∑

k

λk,j ≤ 1, ∀1 ≤ i, j ≤ 3.
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Define

L(λ) = max
1≤i,j≤3

(
3∑

k=1

λi,k,

3∑

k=1

λk,j

)

.

Now consider a switch operating under the MWL policy with w = 1, the vector of all
1s. The work-conservation property that is established in Sect. 3 implies1 that

3∑

i,j=1

dqi,j (t)

dt
≤ −1 − L(λ)

3
, if

3∑

i,j=1

qi,j (t) > 0.

In above, qi,j (·) represents fluid model analog for queue (i, j). It says that the sum-
mation of the queue-sizes, the total work, is nonincreasing and it decreases at a rate
that depends on the loading. Even when switch is critically loaded, i.e., L(λ) = 1, the
net queue-size is nonincreasing. And if all ports are critically loaded, i.e.,

∑
k λi,k = 1

for all 1 ≤ i ≤ 3, then net queue-size cannot decrease either. That is, in such a setting,∑
i,j qi,j (·) remains unchanged.
In this critically loaded setup, that is λi,· = λ·,j = 1 for all 1 ≤ i, j ≤ 3, where

λi,· = ∑
k λi,k , λ·,j = ∑

k λk,j , a lot more can be said about the invariant states of
the fluid model. To begin with, such a critically loaded switch corresponds to hav-
ing 6 servers critically loaded: each input-port i, 1 ≤ i ≤ 3 (similarly output-port
j , 1 ≤ j ≤ 3), receives data at net-rate λi,· and can serve at most at rate 1. Each
of these six servers, three input-ports, and three output-ports, are virtual resources
of the switch. And they are all critically loaded under the above described setting.
For generic switched network, virtual resources and critically loading is defined in
Sect. 4.2.

Under the above setting, Theorem 3 implies that q ∈ R
3×3+ is a fixed or invariant

state of the fluid model under critical loading if it solves the following optimization
problem:

minimize

(∑

i,j

yi,j ,
∑

i,j

yi,j logyi,j

)

over y ∈ R
N+

such that
3∑

k=1

yi,k ≥
3∑

k=1

qi,k,

3∑

k=1

yk,j ≥
3∑

k=1

qk,j , ∀1 ≤ i, j ≤ 3.

In the above optimization problem, the minimization is with respect to the lexi-
cographic ordering of two objectives: first minimize

∑
i,j yi,j and then minimize∑

i,j yi,j logyi,j . To understand solution of this optimization problem, consider q
such that qi,·,q·,j > 0 for all 1 ≤ i, j ≤ 3. Then the minimization of the first objective
suggests that the solution of optimization problem, say q∗, must preserve the “row-
sums” and “column-sums,” i.e.,

∑3
k=1 q∗

i,k = ∑3
k=1 qi,k and

∑3
k=1 q∗

k,j = ∑3
k=1 qk,j

1Tighter analysis for the specific instance of input-queued switch leads to denominator 3 in place of 81 as
per the general result.
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Fig. 1 An input-queued switch, and two example matching of inputs to outputs

for all 1 ≤ i, j ≤ 3. Subject to this, the minimization of strictly convex objective∑
i,j yi,j logyi,j leads to the form of q∗ such that

q∗
i,j = qi,·q·,j

q·,·
, for all 1 ≤ i, j ≤ 3, (11)

where qi,· = ∑3
k=1 qi,k , q·,j = ∑3

k=1 qk,j and q·,· = ∑
i,j qi,j . That is, effectively the

fixed or invariant point has extremely simple rank-1 matrix structure subject to the
work-conservation property. Such form of invariant or fixed point is highly desirable
to establish heavy traffic optimality property of scheduling policy as discussed in
work [17].

1.7 Organization

Section 2 establishes positive recurrence of the network operating under the
MWL policy when it is underloaded. Section 3 presents fluid model and establishes
it as formal functional law of large numbers approximation. The fluid model is es-
tablished to possess work-conservation property when it is underloaded and critically
loaded. Section 4 studies properties of critically loaded fluid model. Specifically, the
invariant manifold under critically loaded fluid model is characterized. This charac-
terization suggests the form of state-space collapse. The results of Sect. 4 apply to
single-hop network while results of Sects. 2 and 3 apply in the general form.

2 Stability

This section establishes stability property of the network operating under the
MWL policy, i.e., the network Markov process is positive recurrent as long as the
network is underloaded. We start by formally defining notion of load of the system.
This will allow one to formally distinguish underloaded and critically loaded scenar-
ios.



106 Queueing Syst (2012) 71:97–136

2.1 Admissible arrival rates

In each timeslot, a schedule π ∈ S must be chosen. Let Σ be the convex hull of S ,

Σ =
{∑

π∈S
αππ :

∑

π∈S
απ = 1, and απ ≥ 0 for all π

}
. (12)

Given an arrival rate vector λ, the effective load induced on queues is given by �λ =
�Rλ. We say that an arrival rate vector λ is admissible if �λ ∈ Λ where

Λ =
{
μ ∈ R

N+ : μ ≤ σ componentwise, for some σ ∈ Σ
}
. (13)

Intuitively, this means that there is some combination of feasible schedules which
permits all incoming work to be served. Also define

Λ◦ =
{
ρ ∈ Λ : ρ ≤

∑

π∈S
αππ , where

∑

π∈S
απ < 1 and απ ≥ 0 for all π

}
,

∂Λ = Λ \ Λ◦.

Say that λ is strictly admissible or the system is underloaded if �λ ∈ Λ◦, and that λ

is critical or the system is critically loaded if �λ ∈ ∂Λ. A useful corresponding opti-
mization problem is PRIMAL(�λ):

minimize
∑

π∈S
απ

over απ ∈ R+ for all π ∈ S

such that �λ ≤
∑

π∈S
αππ componentwise

This problem asks whether it is possible to find a combination of schedules which can
serve arrival rates λ; clearly λ is admissible if and only if the solution to the problem
is ≤ 1; it is strictly admissible if the solution to the problem is < 1 and it is critically
loaded if = 1. We shall define the load of λ, denoted by L(λ), as the solution of the
optimization problem PRIMAL(�λ).

2.2 Positive recurrence

We establish the stability property of the MWL policy.

Theorem 1 Consider a switched network operating under the MWL policy with
w > 0, G ≥ 1. For any strictly admissible λ, i.e., L(λ) < 1, Q(·) is a positive recurrent
Markov chain.
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Proof First observe that Q(·) is a discrete time, countable state space Markov chain
under the MWL policy. This is because of the Bernoulli arrival process, the myopic
nature of the MWL policy and S ⊂ {0,1}N . The monotonicity property of S and
Bernoulli nature of arrival process makes Q(·) irreducible; aperiodicity follows be-
cause there is a positive probability of remaining at state 0. By Lyapunov and Foster’s
criteria, to establish positive recurrence of Q(·), it is sufficient to find an appropriate
Lyapunov function with negative drift, e.g., see [15]. Consider a candidate Lyapunov
function

L(Q) =
∑

n

(wnQn + G) log(wnQn + G) − wnQn logG − (wnQn + G). (14)

The choice of L(·) is made so that

∂L(Q)

∂Qn

= wn log(wnQn + G) − wn logG = LOGn(Qn).

Subsequently, L(·) is a strictly convex function over R
N+ . Therefore,

L
(
Q(τ + 1)

) − L
(
Q(τ )

) ≤ �L
(
Q(τ + 1)

) · (Q(τ + 1) − Q(τ )
)

=
∑

n

LOGn

(
Qn(τ + 1)

)(
Qn(τ + 1) − Qn(τ)

)
. (15)

Now |Qn(τ + 1) − Qn(τ)| ≤ 1 since arrival process is Bernoulli and S ⊂ {0,1}N .
LOGn is a concave strictly increasing function and dLOGn(x)

dx
≤ wn/G ≤ wmax/G

for all x ≥ 0, where recall wmax = maxn wn. Therefore, it follows that

−wmax/G ≤ LOGn

(
Qn(τ + 1)

) − LOGn

(
Qn(τ)

) ≤ wmax/G. (16)

Using (16) in (15),

L
(
Q(τ + 1)

) − L
(
Q(τ )

)

≤ Nwmax/G +
∑

n

LOGn

(
Qn(τ)

)(
Qn(τ + 1) − Qn(τ)

)
. (17)

Using (9) in (17) and using σ (τ ) = Σ(τ + 1) − Σ(τ ),

E
[
L

(
Q(τ + 1)

) − L
(
Q(τ )

)∣∣Q(τ )
]

≤ Nwmax/G +
∑

n

LOGn

(
Qn(τ)

)
E

[
Qn(τ + 1) − Qn(τ)

∣∣Q(τ )
]

= Nwmax/G +
∑

n

LOGn

(
Qn(τ)

)(
λn − σn(τ) +

∑

m

Rmnσm(τ)

)

= Nwmax/G +
∑

n

LOGn

(
Qn(τ)

)
λn

−
∑

n

σn(τ )

[
LOGn

(
Qn(τ)

) −
∑

m

RnmLOGm(Qm(τ))

]

= Nwmax/G + LOG
(
Q(τ )

) · λ − σ (τ ) · (I − R)LOG
(
Q(τ )

)
. (18)
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Since L(λ) < 1, i.e., value of optimization problem PRIMAL(�λ) is < 1, and using
monotonicity of S , we have

�λ =
∑

π∈S
αππ so that απ ≥ 0,

∑

π

απ = L(λ) < 1.

That is,

λ =
∑

π

απ

(
I − RT)

π .

Therefore, we obtain

E
[
L

(
Q(τ + 1)

) − L
(
Q(τ )

)∣∣Q(τ )
]

≤ Nwmax/G +
∑

π

αππ · (I − R)LOG
(
Q(τ )

)

− σ (τ ) · (I − R)LOG
(
Q(τ )

)

≤ Nwmax/G +
(∑

π

απ − 1

)
σ (τ ) · (I − R)LOG

(
Q(τ )

)
, (19)

where the last inequality follows since MWL policy chooses σ (τ ) that maximizes
ρ · (I − R)LOG(Q(τ )) over all ρ ∈ S . To complete the proof, we claim that

σ (τ ) · (I − R)LOG
(
Q(τ )

) ≥ 1

N
max

n
LOGn

(
Qn(τ)

)

≥ 1

N2

∑

n

LOGn

(
Qn(τ)

)
. (20)

To see this, observe that by monotonicity property of S , schedule en that only
schedules nth queue belongs to S . Consider a queue, say m, such that Qm(τ) =
maxn Qn(τ). Either Rmn = 0 for all n or there exists 1 ≤ l ≤ N − 1 and m1, . . . ,ml

so that Rmm1 = Rm1m2 = · · · = Rml−1ml
= 1 and Rmln = 0 for all n. In the former

case, schedule em has weight LOGm(Qm(τ)) and hence the weight of schedule with
maximum weight must be at least maxn LOGm(Qn(τ))/N . In the latter case, consider
schedules em, em1, . . . , eml . Summation of their weights is LOGm(Qm(τ)). Therefore,
the average weight of these, at most N , schedules is at least maxn LOGn(Qn(τ))/N .
And it provides a lower bound on the weight of maximum weighted schedule. To
complete the proof, from (19) and (20), we obtain

E
[
L

(
Q(τ + 1)

) − L
(
Q(τ )

)∣∣Q(τ )
]

≤ Nwmax

G
− (1 − L(λ))

N2

(∑

n

LOGn

(
Qn(τ)

))
. (21)

Therefore, for (
∑

n LOGn(Qn(τ))) ≥ 2N3wmax

G(1−L(λ))
, the RHS of (21) is at most

−Nwmax/G. That is, Lyapunov function L(·) has strictly negative drift outside set B
defined as

B =
{

Q = [Qn] :
∑

n

LOGn(Qn) ≤ 2N3wmax

G(1 − L(λ))

}
.
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The set B is clearly bounded since L(Q) → ∞ as ‖Q‖ → ∞. And recall that Q(·) is
irreducible, aperiodic discrete time Markov chain with countable state space. There-
fore, we have shown that Q(·) along with L(·) satisfies Lyapunov–Foster’s criterion
for establishing positive recurrence. In summary, we have established that the net-
work Markov chain Q(·) is indeed positive recurrent when L(λ) < 1. �

2.3 Concentration of L(·)

We state an exponential tail bound on the deviation of the Lyapunov function L(·).
This will be useful in establishing fluid model as an approximation of the associated
stochastic performance processes as well as in characterizing invariant manifold for
critically loaded fluid model.

Lemma 1 Given τ ≥ 0 and Q(τ ), consider any τ̃ > τ . Then the following holds with
probability at least 1 − δ:

L
(
Q(τ̃ )

) − L
(
Q(τ )

)

≤ Nwmax(τ̃ − τ)

G
− (1 − L(λ))

N2

τ̃−1∑

s=τ

(∑

n

LOGn

(
Qn(s)

))

+ 2Nwmax
(

1

G
+ log

(
wmax(Q(τ ) · 1 + τ̃ − τ + 1)

G
+ 1

))

×
√

2(τ̃ − τ) log

(
1

δ

)
. (22)

Proof Throughout, assume that Q(τ ) is given and fixed. Define

X(0) = L
(
Q(τ )

)

X(s) = L
(
Q(τ + s)

) − Nwmaxs

G
+ (1 − L(λ))

N2

s−1∑

�=0

(∑

n

LOGn

(
Qn(τ + �)

)
)

,

for s ≥ 1. (23)

Let Fs , s ≥ 0 be the smallest sigma algebra containing information about (Q(τ ),

Q(τ + 1), . . . ,Q(τ + s)). Then X(s), s ≥ 0 is measurable with respect to Fs . From
(21), it follows that X(s) is a super-Martingale. This is because for s ≥ 0,

E
[
X(s + 1) − X(s)

∣∣Fs

] = E
[
L

(
Q(τ + s + 1)

) − L
(
Q(τ + s)

)∣∣Fs

] − Nwmax

G

+ (1 − L(λ))

N2

(∑

n

LOGn

(
Qn(τ + s)

)
)

≤ 0, using (21). (24)

Now since at most one arrival happens per timeslot per queue,

Qn(τ + s) ≤ Qn(τ) + s, for all n. (25)
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And, hence

LOGn

(
Qn(τ + s)

) ≤ wn log

(
wn(Qn(τ) + s)

G
+ 1

)
.

Therefore, using arguments similar to those in (15)–(17), it follows that
∣∣L

(
Q(τ + s + 1)

) − L
(
Q(τ + s)

)∣∣

≤ Nwmax

G
+ Nwmax log

(
wmax(Q(τ ) · 1 + s + 1)

G
+ 1

)
. (26)

And, therefore, for any 0 ≤ s ≤ τ̃ − τ ,

∣∣X(s + 1) − X(s)
∣∣ ≤ 2Nwmax

G
+ 2Nwmax log

(
wmax(Q(τ ) · 1 + s + 1)

G
+ 1

)

≤ 2Nwmax

G
+ 2Nwmax log

(
wmax(Q(τ ) · 1 + τ̃ − τ + 1)

G
+ 1

)

�= �(τ, τ̃ ). (27)

We recall inequality for super-Martingales with bounded increments by Azuma [2]
and Hoeffding [12]. �

Proposition 1 Let {Yk}k≥0 be super-Martingale. Let {Ck}k≥0 be nonnegative con-
stants so that with probability 1, |Yk+1 − Yk| ≤ Ck for k ≥ 0. Then for any γ > 0 and
m ≥ 1,

P(Ym − Y0 > γ ) ≤ exp

(
− γ 2

2
∑m−1

k=0 C2
k

)
.

From Proposition 1, (24) and (27) it follows that for any γ > 0,

P
(
X(τ̃ − τ) − X(0) ≥ γ

) ≤ exp

(
− γ 2

2(τ̃ − τ)�(τ, τ̃ )2

)
. (28)

That is, for any δ ∈ (0,1),

P
(
X(τ̃ − τ) − X(0) ≥ �(τ, τ̃ )

√
2 log(1/δ)(τ̃ − τ)

) ≤ δ. (29)

That is, with probability at least 1 − δ,

L
(
Q(τ̃ )

) − L
(
Q(τ )

) ≤ Nwmax(τ̃ − τ)

G
− (1 − L(λ))

N2

τ̃−1∑

s=τ

(∑

n

LOGn

(
Qn(s)

))

+ �(τ, τ̃ )
√

2 log(1/δ)(τ̃ − τ).

This completes the proof of Lemma 1.

3 Fluid model

This section introduces fluid model for switched network operating under the
MWL policy with λ ∈ Λ. The fluid model is established as the formal functional
law of large numbers approximation of the network. An important feature of the fluid
model is that it is work conserving for any λ ∈ Λ (specifically see (36)).
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3.1 Technical preliminaries

We begin with necessary technicalities. For a given fixed T > 0, let C(T ) be the set
of continuous functions [0, T ] → R

I for some I ∈ N, where R
I is equipped with the

norm |x| = maxi |xi |. Here, we want I = 3N + |S|. Equip C(T ) with the norm

‖x‖ = sup
t∈[0,T ]

∣∣x(t)
∣∣.

Let d(·, ·) be the metric induced by this norm on C(T ), i.e.,

d(x, y) = ‖x − y‖ for all x, y ∈ C(T ).

For E ⊂ C(T ) and x ∈ C(T ), define

d(x,E) = inf
{
d(x, y) : y ∈ E

}
.

Define the modulus of continuity by

mcδ(x) = sup
|s−t |<δ

∣∣x(s) − x(t)
∣∣

where s, t ∈ [0, T ]. Since [0, T ] is compact, each x ∈ C(T ) is uniformly continuous,
therefore, mcδ(x) → 0 as δ → 0.

3.1.1 Cluster points

We shall build on the methodology of Bramson [6] that utilizes notion of cluster
points that we shall introduce next. In what follows, we shall use C in place of C(T )

when T is clear from the context. Here, interest is in convergence in space (C,‖ · ‖)
endowed by metric ‖ · ‖. The appropriate concept is cluster points. Consider any
metric space E with metric d and a sequence (E1,E2, . . .) of subsets of E. Say that
x ∈ E is a cluster point of the sequence if lim infr→∞ d(x,Er) = 0 where d(x,Er) =
inf{d(x, y) : y ∈ Er}.

Proposition 1 (Cluster points in C)2 Given K > 0, A > 0 and a sequence Br → 0,
let

Kr = {
x ∈ C : ∣∣x(0)

∣∣ ≤ K and mcδ(x) ≤ Aδ + Br for all δ > 0
}

and consider a sequence (E1,E2, . . .) of subsets of C for which Er ⊂ Kr . Then
supy∈Er

d(y,CP) → 0 as r → ∞, where CP is the set of cluster points of
(E1,E2, . . .).

3.2 Fluid model solution

We introduce the fluid model for network operating under MWL policy. Let time be
measured by t ∈ R+. Let q, a and z all be functions R+ → R

N+ , and let s = (sπ )π∈S

2Taken from Bramson [6, Proposition 4.1].
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be a collection of functions R+ → R+. The vector of queue sizes at time t is q(t), the
cumulative arrivals up to time t is a(t), the cumulative idleness up to time t is z(t),
and sπ (t) is the total amount of time spent on schedule π up to time t .

We say that the process x(·) = (q(·),a(·), z(·), s(·)) satisfies the fluid model for
the MWL scheduling policy if

a(t) = λt (30)

q(t) = q(0) + a(t) − (
I − RT)∑

π

sπ (t)π + z(t) (31)

∑

π∈S
sπ (t) = t (32)

each sπ (·) and zn(·) is increasing (not necessarily strictly increasing) (33)

all the components of x(·) are absolutely continuous (34)

for almost all t , all n, żn(t) = 0 if qn(t) > 0 (35)

And the additional fluid model equations that capture the work-conservation property
of MWL policy are (with definition wmin = minn wn)

for almost all t , (36)

if q(t) �= 0 then
∑

n

q̇n(t)wn ≤ − (1 − L(λ))wmin

N2

for all t, z(t) = 0 (37)

We define notion of fluid model solution.

Definition 1 (Fluid Model Solution) Given T > 0, we call x(·) ∈ C(T ) a fluid
model solution for a switched network operating under MWL policy if x(·) satisfies
Eqs. (30)–(37).

We shall use notation FMS to denote the set of all fluid model solutions for a
switched network operating under the MWL policy.

Definition 2 (Work-Conservation) Given vector w ∈ R
N+ with w > 0 component-

wise, a policy is called w work-conserving if the corresponding fluid model satisfies
the following: there exists constant C = C(w,N, S) > 0 such that for any λ ∈ Λ and
starting state q0, all fluid model solutions q(·) satisfy

∑

n

wn

dqn(t)

dt
≤ −C

(
1 − L(λ)

)
, for almost all t > 0, (38)

as long as q(t) �= 0.
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In the above definition, by corresponding fluid model, we mean one that can
be established to be a formal approximation. As per the above definition of work-
conservation, when λ is critical, i.e., L(λ) = 1, we have that for any t > 0,

∑

n

wnqn(t) ≤
∑

n

wnqn(0). (39)

Given β ≥ 1, we call a policy β-approximate w work-conserving if for any t > 0
∑

n

wnqn(t) ≤ β

(∑

n

wnqn(0)

)
, (40)

under any critical loading, i.e., L(λ) = 1.

3.3 Fluid model as a formal approximation

We state how the fluid model formally approximates the original system here. To that
end, we introduce a fluid model scaling followed by statement of the main result.

3.3.1 Fluid scaling

Consider a sequence of systems of the type described in Sect. 1.1, indexed by
r ∈ N. Write Xr(τ) = (Qr (τ ),Ar (τ ),Zr (τ ), Sr (τ )), τ ∈ Z+, for the r th system.
The scaling parameter will be denoted by r . Define the scaled system xr(t) =
(qr (t),ar (t), zr (t), sr (t)) for t ∈ R+ by

qr (t) = Qr (rt)/r, ar (t) = Ar (rt)/r,

zr (t) = Zr (rt)/r, sr
π (t) = Sr

π (rt)/r

after extending the domain of Xr(·) to R+ by linear interpolation in each interval
(τ − 1, τ ). Then each sample-path of the fluid-scaled systems xr(·) over [0, T ] must
lie in C(T ) with I = 3N + |S|.

3.3.2 Main result

We now state the result formally for the multihop switched network.

Assumptions Our goal is to study the dynamics of xr(t), for t in a fixed inter-
val [0, T ], as r → ∞. We will assume that for every r the arrival process Ar (·) is
Bernoulli with rate vector λr . Further,

lim
r→∞λr = λ for some λ ∈ Λ. (41)

We assume that the initial queue sizes are uniformly bounded (need not be non-
random/deterministic). That is, for all r

∣∣qr (0)
∣∣ ≤ K for some K ∈ R+. (42)

The r th system operates under scheduling policy MWL that utilizes weight function
LOGn for queue n, where

LOGn(y) = wn log(wny + Gr) − wn logGr. (43)
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The constant Gr ≥ 1 and in general it may depend on r . However, we shall always
assume that Gr = o(log r). Note that the results of this section do not require Gr to
be changing with r ; Gr = 1 for all r is a perfectly valid choice of constants. An event
of interest is

ARRr =
{

sup
t∈[0,T ]

∣∣ar (t) − λr t
∣∣ < ε(r)

}
,

where ε(r) = K0

√
log r

r
= Θ

(√
1

r
log r

)

for appropriate choice of large enough constant K0. Given that the arrival process to
each queue n is an independent Bernoulli process with rate λn, an immediate applica-
tion of the Azuma and Hoeffding’s inequality (cf. Proposition 1) or Chernoff bound
implies that for K0 large enough (depending on T ,N ),

P
(
ARRr

) ≥ 1 − 1

r2
. (44)

Another event of interest will be

CONr =
{

max
0≤τ<τ̃≤rT

Γ (τ, τ̃ ) ≤ 0
}
,

where Γ (τ, τ̃ ) is defined as

Γ (τ, τ̃ ) = L
(
Q(τ̃ )

) − L
(
Q(τ )

) − Nwmax(τ̃ − τ)

G

+ (1 − L(λ))

N2

τ̃−1∑

s=τ

(∑

n

LOGn

(
Qn(s)

))

− 8Nwmax
(

1

G
+ log

(
wmax(Q(τ ) · 1 + τ̃ − τ + 1)

G
+ 1

))

× √
(τ̃ − τ) log r. (45)

By Lemma 1, using the fact that total number of possible pairs (τ, τ̃ ) such that 0 ≤
τ < τ̃ ≤ rT are O(r2) and union bound, it follows that

P
(
CONr

) ≥ 1 − 1

r2
, for all large enough r. (46)

Notice that the definition of event CONr (equivalently, Γ (τ, τ̃ )) may seem ad hoc.
But in fact, it is precisely the event that is implied by the concentration inequality
established in Lemma 1.

Formal statement The following result establishes fluid model as a formal approx-
imation of the fluid scaled network operating under the MWL policy. It should be
noted that the fluid model defined by (30)–(35) is applicable to any measurable
scheduling policy. In addition, under the MWL policy with monotonicity of schedul-
ing set S , (36)–(37) are satisfied.

Theorem 2 Given fixed T > 0, let FMS be the set of all x(·) ∈ C(T ) satisfying fluid
model equations, namely
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• Equations (30)–(35) and (36)–(37)
• |q(0)| ≤ K .

And for any δ > 0, define FMSδ to be the δ-fattening of FMS as

FMSδ =
{
x ∈ C(T ) : sup

t∈[0,T ]
∣∣x(t) − y(t)

∣∣ < δ for some y ∈ FMS

}
.

Let assumptions (41)–(42) be satisfied. Then under the MWL policy

P
(
xr(·) ∈ FMSδ

) → 1 as r → ∞.

Corollary 1 In addition to the setup of Theorem 2, suppose qr (0) → q0 as r → ∞
with qr (0),q0 nonrandom. With FMS as defined in Theorem 2, let FMS(q0) ⊂ FMS
be such that in addition q(0) = q0. Then

P
(
xr(·) ∈ FMSδ(q0)

) → 1 as r → ∞.

3.4 Justifying the fluid model: proof of Theorem 2

The proof of Theorem 2 will build on methodology of Bramson [6] that utilizes notion
of cluster points introduced earlier. Rather than following [6]’s use of cluster points,
we might instead have used the approach based on weak convergence such as that
used by Dai [7] or Kelly and Williams [13]. The general line of argument would be
(i) the sequence of measures of xr(·) is tight; (ii) by Prohorov’s theorem Billingsley
[4, Theorem 5.1], it is relatively compact, so there exists a weakly convergent sub-
sequence; (iii) by the Skorohod representation theorem Billingsley [4, Theorem 6.7],
we can express this weak convergence as pathwise convergence; (iv) pathwise limits
must satisfy the fluid model equations. Lemma 2 below does the job of (i), Lemma 3
does the job of (iv), and Proposition 1 does the rest of the work—notice how similar
it is to the characterization of compact sets in (C,‖ · ‖) from Billingsley [4, Theo-
rem 7.2]. The benefit of the cluster-point technique is that it gives tighter control of
the probability of rare events. The results of this paper are established with the hope
that they may be useful in future for establishing other results requiring such tighter
control over rare events. For example, the multiplicative state space collapse result
(cf. [17]).

3.4.1 Proof of Theorem 2

The proof strategy is to show that under well-behaved arrival process, the entire pro-
cess xr is well-behaved in that it is close to a cluster point; then to show that all
cluster points of this sequence are fluid model solutions, i.e., satisfy the fluid model
equations.

System behavior under good arrivals Let Er = {xr(ω) : ω ∈ ARRr ∩ CONr}, i.e.,
the set of all possible system trajectories induced under well-behaved sample-paths
of arrival process (over [0, T ]). Lemma 2 below shows that Er ⊂ Kr , Kr defined in
Proposition 1, for appropriate constants K , A and Br . Therefore,

sup
ω∈Er

d
(
xr(ω),CP

) → 0 as r → ∞
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where CP is the set of cluster points of the sequence of events, Er . Lemma 3 below
shows that by our choice of Er , all cluster points satisfy the fluid model equations,
therefore,

sup
ω∈Er

d
(
xr(ω),FMS

) → 0 as r → ∞.

Finally, from (44) and (46), it follows that

P(Er) ≥ 1 − 2/r2 → 1, as r → ∞.

This establishes Theorem 2. �

Lemma 2 (Tightness of fluid scaling) For every r , with Kr as defined in Proposi-
tion 1 and Er as defined above in the proof of Theorem 2, Er ⊂ Kr . The constants
used to define Kr are K as given in (42), and A and Br from (49) below.

Proof We will prove that xr ∈ Er satisfies the two defining conditions of Kr .
For the condition about initial state, note from the definition of the model in

Sect. 1.1 that the only nonzero component of xr(0) is qr (0), and that |qr (0)| ≤ K

by Assumption 42.
For condition about the modulus of continuity, consider any 0 ≤ s < t ≤ T with

t − s < δ. Write �t� or �t� for t rounded up or down to the nearest integral timeslot.
We will now look at each component of xr in turn.

For arrivals,
∣∣ar (t) − ar (s)

∣∣ ≤ ∣∣ar (t) − λr t
∣∣ + ∣∣ar (s) − λr s

∣∣ + ∣∣λr (t − s)
∣∣

≤ 2ε(r) + ∣∣λr
∣∣δ from definition of Er

≤ 2ε(r) + Amaxδ,

where the last inequality uses bound
∣∣λr

∣∣ ≤ Amax for all r, (47)

which follows from Assumption (41).
For idling, consider the following. The maximum amount of service that can be

offered to any queue per unit time is unit since S ⊂ {0,1}N . Then, based on (3), for
each n

∣∣zr
n(t) − zr

n(s)
∣∣ < δ + 2/r.

For each π , since Sπ (·) is increasing and since a schedule must be chosen not more
than once every timeslot,

∣∣sr
π (t) − sr

π (s)
∣∣ ≤ 1

r

(
Sr

π

(�rt�) − Sr
π

(�rs�)) < δ + 2/r.

For queue size, note that (2) carries through to the fluid model scaling, i.e.,

qr (t) = qr (0) + ar (t) − (
I − RT)∑

π

sr
π (t)π + zr (t),

thus
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∣∣qr
n(t) − qr

n(s)
∣∣ ≤ ∣∣ar

n(t) − ar
n(s)

∣∣

+
∑

π

∣∣[(I − RT
)
π

]
n

∣∣ ∣∣sr
π (t) − sr

π (s)
∣∣ + ∣∣zr

n(t) − zr
n(s)

∣∣

< δ
(
Amax + |S|N + 1

) + (
2|S|N + 2

)
/r + 2ε(r).

Putting all these together,

wδ

(
xr

)
< δA + Br, (48)

where constants A and Br are

A = (
2NAmax + 2N + (

N2 + 1
)|S|),

Br = (
4N + 2

(
N2 + 1

)|S|)/r + 4Nε(r).
(49)

�

Lemma 3 (Dynamics at cluster points) Let x be a cluster point of the sequence Er =
{xr(ω) : ω ∈ ARRr ∩ CONr}. Then x ∈ FMS.

Proof By definition of cluster point we can find a subsequence rk and a collection
xrk ∈ Erk such that xrk → x. For simplicity, we shall drop the index k hence forth,
i.e., xr → x with xr ∈ Er . We now use this in proving that x satisfies all the fluid
model equations: (30)–(37).

Proof of (30) Observe that

sup
t∈[0,T ]

∣∣a(t) − λt
∣∣ ≤ sup

t∈[0,T ]

∣∣a(t) − ar (t)
∣∣ + sup

t∈[0,T ]

∣∣ar (t) − λr t
∣∣ + T

∣∣λr − λ
∣∣.

Each term converges to 0 as r → ∞: the first because xr → x, the second because
xr ∈ Er so ar is consistent with the event ARRr , the third by (41). Since the left-hand
side does not depend on r , it must be that a(t) = λt .

Proof of (31)–(33) The discrete (unscaled) system satisfies these properties, there-
fore, the scaled systems xr do, also. Taking the limit yields the fluid equations.

Proof of (34) In Eq. (49), we found constants A and Br such that
∣∣xr(t) − xr(s)

∣∣ ≤ A|t − s| + Br,

with Br → 0 as r → ∞. Taking the limit as r → ∞, we find that |x(t) − x(s)| ≤
A|t − s|, i.e., x is (globally) Lipschitz continuous (of order 1). And, this immediately
implies that x is absolutely continuous.

Proof of (35) Since x is absolutely continuous, each component is too, which means
that zn is differentiable for almost all t . Pick some such t , and suppose that qn(t) > 0.
Consider some small interval I = [t, t + δ] about t . Since qn is continuous, we can
choose δ sufficiently small such that infs∈I qn(s) > 0. Since ‖qr (·) − q(·)‖ → 0, we
can find α > 0 such that infs∈I qr

n(s) > α for all r sufficiently large. In the unscaled
version of the process, this means infs∈I Qr

n(rs) > rα. By (3), there is too much
work in the queue over this entire interval for there to be any idling, so after rescaling
we find zr

n(t + δ/2) = zr
n(t). (The switch from δ to δ/2 sidesteps any discretization
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problems.) Therefore, the same holds for zn in the limit. We assumed zn to be differ-
entiable at t ; the derivative must be 0.

Proof of (37) The monotonicity property of S immediately implies that the discrete
(unscaled) system satisfies (8). Therefore the scaled systems xr do, also. Taking the
limit yields the fluid equation.

Initial queue size Clearly, |q(0)| ≤ K since |qr (0)| ≤ K .

Proof of (36) As discussed earlier, x(·) is absolutely continuous. Therefore, q(·) is
differentiable for almost all t ∈ [0, T ]. Consider any such t . We wish to establish the
validity of (36) for such t . We shall prove it by contradiction.

To that end, if q(t) = 0 then there is nothing to prove. Therefore, let q(t) �= 0 and
assume on the contrary that

∑
n wnq̇n(t) > −wmin(1−L(λ))/N2. Note that, L(λ) ≤ 1

for λ ∈ Λ. Therefore, when L(λ) = 1 the above inequality becomes
∑

n wnq̇n(t) > 0.
Therefore, for any small enough ε, ε1 > 0, we have

∑

n

wn

(
qn(t + ε) − qn(t)

)
> −εwmin(1 − L(λ)

)
/N2 + 2εε1.

Since ‖qr (·) − q(·)‖ → 0, for all r large enough,
∑

n

wn

(
qr
n(t + ε) − qr

n(t)
)
> −εwmin(1 − L(λ)

)
/N2 + εε1.

That is,
(
qr (t + ε) − qr (t)

) · w > −εwmin(1 − L(λ)
)
/N2 + εε1. (50)

Since q(t) �= 0, ‖qr (·) − q(·)‖ → 0 and q(·) being Lipschitz continuous, it follows
that by choice of ε > 0 small enough, there exists δ > 0 so that for all s ∈ [t, t + ε]
and r large enough,

qr (s) · w ≥ δ. (51)

Therefore, for any s ∈ [t, t + ε],
∑

n

LOGn

(
rqr

n(s)
) =

∑

n

wn log

(
rwnq

r
n(s)

G
+ 1

)

≥ wmin log

(
max

n

rwnq
r
n(s)

G
+ 1

)

≥ wmin log

(
rδ

NG
+ 1

)

≥ wmin log r + K(δ), (52)

where K(δ) = log δ − logN − logG is a finite real valued constant that does not scale
with r but depends on N,G and δ. We would like to use (50) and (52) to argue that
they will lead to violation of event CONr , and thus reach desired contradiction. For
this, we shall use relation between L(Q) and the LHS of (50) that is stated below in
the Proposition 2.
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Proposition 2 Consider x ∈ R
N+ with |x| ≤ B for some constant B . Then with respect

to large r ,
∣∣∣∣L(rx) −

[
r log

(
r

eGr

)]
x · w − rentr(x ◦ w)

∣∣∣∣ = O
(
log2 r

)
,

where entr(y) = ∑
n yn logyn and x ◦ w denotes component-wise multiplication, i.e.,

x ◦ w = [xnwn]. The constant in O(·) term depends on N and B .

Due to the bound on initial queue-size |qr (0)| ≤ K and Lipschitz continuity of
qr (·), it follows that |qr (s)| ≤ B for any s ∈ [0, T ] for an appropriately defined con-
stant B , dependent on T ,K . Therefore, by an application of Proposition 2, it follows
that

L
(
rqr (t + ε)

) − L
(
rqr (t)

)

= r log

(
r

eGr

)
(
qr (t + ε) − qr (t)

) · w

+ r
(
entr

(
qr (t + ε) ◦ w

) − entr
(
qr (t) ◦ w

)) + O
(
log2 r

)

= r log r
(
qr (t + ε) − qr (t)

) · w + O(r), (53)

because entr(·) is a bounded continuous function on {x ∈ R
N+ : |x| ≤ B} (with bound

dependent on N , B). From (50) and (53), it follows that for r large enough

L
(
rqr (t + ε)

) − L
(
rqr (t)

) ≥ −r log r
εwmin(1 − L(λ))

N2
+ r log r

εε1

2
. (54)

We wish to show that (54) violates event CONr . To see this, use τ̃ = rt + rε and
τ = rt in (45), to obtain

L
(
rqr (t + ε)

) − L
(
rqr (t)

)

≤ O
(
r
) − (1 − L(λr ))

N2

(
rt+rε−1∑

rs=rt

∑

n

LOGn

(
rqr

n(s)
)
)

+ O
(√

r log3 r
)

(a)≤ −1 − L(λr )

N2

(
rεwmin log r + rεK(δ)

) + O(r)

(b)≤ −r log r
εwmin(1 − L(λ))

N2
+ r log r

εε1

4
+ O(r), (55)

where (a) follows from (52) and (b) holds for large enough r since λr → λ as r → ∞
and L(·) is a continuous function. Thus, we have that if CONr is satisfied then (55)
holds, which is contradicted by (54) for r large enough. This completes the proof of
(36) and subsequently proof of Lemma 3. �

Proof of Corollary 1 Essentially, we need to show that each cluster point satisfies ad-
ditional equation q(0) = q0. That follows trivially, since for all ω ∈ ARRr for which
qr (0) does not converge to q0 has zero probability. �

Proof of Proposition 2 Define Fn : R+ → R+ as

Fn(x) = (wnx + Gr) log(wnx + Gr) − wnx logGr − (wnx + Gr) .
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And hence L(rx) = ∑
n Fn(rxn). Now for any x ≥ 0,

Fn(rx) = (rxwn + Gr) log(wnrx + Gr) − rxwn logGr − (rxwn + Gr)

= (rxwn + Gr)
[
log r + log(wnx + Gr/r)

] − rxwn log eGr − Gr

= rxwn[log r − log eGr ] + rxwn log

(
wnx + Gr

r

)

+ Gr

[
log(rxwn + Gr) − 1

]

= rxwn log

(
r

eGr

)
+ rxwn log

(
wnx + Gr

r

)
+ O

(
log2 r

)
, (56)

where the last equality follows from the fact that Gr = o(log r), ‖x‖∞ ≤ B , and hence
| log(rxwn +Gr)| = O(log r). To complete the proof, we would like to establish that

rxwn log

(
wnx + Gr

r

)
= rxwn logwnx + O

(
log2 r

)
. (57)

To that end, consider two cases: (i) x ≤ 1/r2, (ii) x > 1/r2. In case (i) when x ≤ 1/r2,
it follows that

∣∣∣∣rxwn log

(
wnx + Gr

r

)∣∣∣∣ ≤ O(log r), (58)

|rxwn logwnx| ≤
∣∣∣∣
wn

r
log

(
wn

r2

)∣∣∣∣ = O(log r). (59)

Therefore, (57) follows immediately when x ≤ 1/r2. For case (ii), when x > 1/r2,
consider first-order Taylor’s expansion of function f (z) = log z around z = wnx to
obtain

log

(
wnx + Gr

r

)
= log(wnx) + Gr

r

1

θ
,

where θ ∈ [wnx,wnx + Gr/r]. Therefore, it follows that
∣∣∣∣rwnx log

(
wnx + Gr

r

)
− rwnx log(wnx)

∣∣∣∣ ≤ Gr = O(log r). (60)

In summary, for both cases we have established (57). Therefore, we obtain
∣∣∣∣Fn(rx) − rxwn log

(
r

eGr

)
+ rxwn log(wnx)

∣∣∣∣ = O
(
log2 r

)
. (61)

Therefore,

L(rx) = r log

(
r

eGr

)(∑

n

wnxn

)
+ r

(∑

n

wnxn log(wnxn)

)
+ O

(
log2 r

)
.(62)

This completes the proof of Proposition 2. �
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4 Critical fluid model: fixed points

This section characterizes invariant manifold or equivalently the space of fixed points
of fluid model solutions. Unlike the previous section, results in this section are limited
to single hop network setting. If λ is such that L(λ) < 1, then from (36) it follows im-
mediately that q(t) = 0 is the only fixed point. When L(λ) = 1, nontrivial fixed points
do exist. We shall characterize the corresponding space of fixed points for critically
loaded fluid model solutions. It is worth remarking here that such characterization of
fixed points for critical fluid model solutions is an essential step toward establishing
multiplicative state space collapse in the method developed by Bramson [6] and sub-
sequently utilized by Shah and Wischik [17] to study the class of MW policies for the
switched network with weight function satisfying scale invariance property. As men-
tioned earlier, the MWL policy of interest does not have this property. Results of this
section, therefore, will serve as an important step toward establishing multiplicative
state space collapse of switched network operating under the MWL policy.

4.1 Assumptions

We shall restrict our attention in this section to single-hop network, i.e., R = 0. Pri-
mary motivation for studying fixed points for critical fluid models is multiplicative
state space collapse (cf. see [6, 17]). Therefore, we shall consider the standard heavy
traffic scaling. Specifically, as before consider a sequence of systems indexed by
r ∈ N. The stochastic model of the r th system obeys all the assumptions stated in
Sect. 1.1 and this sequence of systems satisfy assumptions stated in Sect. 3.3.2. In
addition, we shall impose additional constraints on Gr that

lim inf
r→∞Gr → ∞ and lim sup

r→∞
Gr

log r
= 0. (63)

As mentioned earlier in the paper, the condition Gr = o(log r) with Gr → ∞ is to
make sure that the policy behavior at fluid scale is not affected by the choice of
constant Gr and only the fluid queue-state appears in the critical fluid model as well
as characterization of the invariant points. However, Gr = ω(1) is imposed by the
proof method of this paper and not clear if essential.

The arrival rate λr of the r th system is such that

λr = λ − 1

r
Ω, (64)

for all large enough r , for some vector Ω ∈ R
N+ and λ such that L(λ) = 1. We shall

assume that λ > 0 component-wise. This is because, if λn = 0, then we shall ignore
such a queue from consideration.

4.2 Preliminaries

Since the network is single-hop, i.e., R = 0, �λ = λ. Recall from Sect. 2.1, that for a
critical λ, i.e., L(λ) = 1, the cost of the optimal solution of problem PRIMAL(λ) is 1.
The dual of PRIMAL(λ), denoted by DUAL(λ), is as follows:
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maximize ξ · λ
over ξ ∈ R

N+
such that max

π∈S
ξ · π ≤ 1

The solution is clearly attained when the constraint is tight. Define the dual feasible
ξ s as virtual resources, i.e.,

VR =
{
ξ ∈ R

N+ : max
π∈S

ξ · π ≤ 1
}
.

Given a queue size vector Q and ξ ∈ VR, define ξ · Q as the workload at the vir-
tual resource ξ . In this section, our interest is in critical λ. That is, λ such that
PRIMAL(λ) = 1. By strong duality we have PRIMAL(λ) = DUAL(λ) = 1. Define
critical virtual resources as CVR(λ) where

CVR(λ) = {ξ ∈ VR : ξ · λ = 1}.
It can be checked that CVR(λ) is non-empty and finite dimensional bounded poly-
tope. Therefore, it has finitely many extreme points. Let S ∗ = S ∗(λ) be the set of
extreme points of CVR(λ). We shall denote ξ ∈ S ∗ by principal critically-loaded vir-
tual resources. Subsequently, any ζ ∈ CVR can be expressed as

ζ =
∑

ξ∈S ∗
xξ ξ with

∑
xξ = 1 and all xξ ≥ 0. (65)

The following is a useful proposition.

Proposition 3 Given critically loaded λ, let q, q̃ ∈ R
N+ be such that

q̃ · ξ ≥ q · ξ , ∀ξ ∈ S ∗(λ).

Then there exists U ≥ 0 and σ ∈ Σ so that

q̃ = q + U(λ − σ ).

Further, if |q|, |̃q| ≤ B for some constant B , then U is uniformly bounded.

Proof Consider the space of all virtual resources VR. It is a finite dimensional poly-
tope. Since S ⊂ {0,1}N , S is monotone and en ∈ S for all 1 ≤ n ≤ N , it follows that
for each ξ ∈ VR, ξn ≤ 1 for all n. Further VR has finitely many extreme points. Let
they be denoted by EVR. Given critically loaded λ, as explained earlier, there is a
subset of EVR, denoted by S ∗(λ) so that for each ξ ∈ S ∗(λ) we have ξ · λ = 1. For
all ξ ∈ EVR\S ∗(λ), ξ · λ < 1. Let,

ε = 1 − max
ξ∈EVR\S ∗(λ)

ξ · λ. (66)

And define

σ = λ − 1

U
(̃q − q), (67)
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where

U = max(̃qmax,qmax)

min(ε,λmin)
. (68)

Here, U is well defined since λ > 0 component-wise, i.e., λmin > 0. We claim that
σ ∈ Σ . To start with, note that σ ≥ 0 due to choice of U . Next, we shall establish
that ξ ·σ ≤ 1 for all ξ ∈ VR. This will, immediately imply that DUAL(σ ) ≤ 1. There-
fore, PRIMAL(σ ) ≤ 1, i.e., σ ∈ Σ as desired. To complete the proof, note that it is
sufficient to consider ξ ∈ EVR. For ξ ∈ S ∗(λ),

ξ · σ = ξ · λ − 1

U
(ξ · q̃ − ξ · q)

= 1 − (ξ · q̃ − ξ · q)

≤ 1, (69)

where we have used hypothesis of Proposition that ξ · q̃ ≥ ξ · q for all ξ ∈ S ∗(λ).
For ξ ∈ EVR\S ∗(λ), due to choice of U , it can be checked that ξ · σ ≤ 1. This com-
pletes the proof. Note that the choice of U is uniform when |̃q|, |q| are bounded by a
constant B . �

4.3 A useful optimization

Define a function � : R
N+ → R

2 as

�(y) = (
y · w,entr(y ◦ w)

)
,

where recall that entr(z) = ∑
n zn log zn and y ◦ w represents component-wise mul-

tiplication [ynwn]. The function �(y) is to be interpreted as assigning a real valued
tuple to each N dimensional vector y ∈ R

N+ with strict lexicographic order on these
resulting tuples. That is, �(y) < �(y′) if and only if either y ·w < y′ ·w or y ·w = y′ ·w,
entr(y ◦ w) < entr(y′ ◦ w).

Given q ∈ R
N+ , define optimization problem opt(q) as follows:

minimize �(y)

over y ∈ R
N+

such that ξ · y ≥ ξ · q for all ξ ∈ S ∗(λ)

4.4 Fluid model: fixed points

Theorem 2 implies that under the above stated assumptions, the fluid scaled system
is well approximated by fluid model solutions, denoted by FMS, that were defined
earlier for given λ. That is, fluid limit points of the fluid scaled system satisfy the fluid
model Eqs. (30)–(37). Here, we study additional properties of these fluid limit points.
Specifically, we characterize fixed or invariant points for the limiting dynamics of the
fluid scaled system.

Given T > 0 let FMS′ be the set of all x(·) = (q(·),q(·), z(·), s(·)) ∈ C(T ) such
that they satisfy
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• Equations (30)–(35) and (36)–(37)
• |q(0)| ≤ K

• and, for any regular point t ∈ [0, T ],
q̇(t) = 0 iff q(t) solves opt

(
q(t)

)
. (70)

As before, define FMS′
δ to be the δ-fattening of FMS′ as

FMS′
δ =

{
x ∈ C(T ) : sup

t∈[0,T ]

∣∣x(t) − y(t)
∣∣ < δ for some y ∈ FMS′}.

Theorem 3 Given fixed T > 0 and λ with L(λ) = 1, let the MWL policy utilize
weights w such that

cw ∈ CVR(λ), for some c > 0. (71)

Then under the above stated assumptions,

P
(
xr(·) ∈ FMS′

δ

) → 1 as r → ∞.

4.5 Proof of Theorem 3

We shall essentially build on proof of Theorem 2. Recall that the proof strategy for
Theorem 2 involved showing that under well-behaved arrival process, the entire pro-
cess xr is well-behaved in that it is close to a cluster point; then to show that all
cluster points of this sequence are fluid model solutions, i.e., satisfy the fluid model
equations. Here, we shall use the same definition for well-behaved arrival process.
To this end, Er = {xr(ω) : ω ∈ ARRr ∩ CONr}, i.e., the set of all possible paths for
the entire system for any well-behaved arrival process (over time interval [0, T ]).
Here we shall use definition of CONr with G = Gr ; as per assumption in The-
orem 3 lim infr→∞ Gr = ∞, lim supr→∞ Gr/ log r = 0. Recall that, in the defini-

tion of ARRr , ε(r) = Θ
(√ 1

r
log r

)
. An important consequence of initial condition

|qr (0)| ≤ K , event ARRr and λr → λ is that for given fixed T , we have that for any
t ∈ [0, T ] and all r

∣∣qr (t)
∣∣ ≤ B, (72)

for some constant B (dependent on N,T ,K,λ). That is qr (·) is always in a bounded
set [0,B]N over [0, T ].

By similar application of Lemma 2 as in proof of Theorem 2, it follows that

sup
ω∈Er

d
(
xr(ω),CP

) → 0 as r → ∞

where CP is the set of cluster points of the Er . Lemma 3 shows that by our choice
of Er , all cluster points satisfy the basic fluid model equations: (30)–(37). In what
follows (Sect. 4.6), we shall establish that state q is a fixed point for cluster points of
Er if and only if q solves optimization problem opt(q). Then it follows that

sup
ω∈Er

d
(
xr(ω),FMS′) → 0 as r → ∞.

Finally, from (44) and (46), it follows that

P(Er) ≥ 1 − 2/r2 → 1, as r → ∞.

This establishes Theorem 3. �
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4.6 Fixed-point characterization

By the definition of a cluster point, we can find a subsequence rk and a collection
xrk ∈ Erk such that xrk → x. For simplicity, we shall drop the index k hence forth,
i.e., xr → x with xr ∈ Er . We have that x satisfies all the basic fluid model equa-
tions: (30)–(37). We wish to establish that x satisfies the fixed-point equation (70).
Equivalently, we wish to show that with q(0) = q, q(t) = q for all t > 0 if and only
if q solves opt(q). Note that q = 0 is a fixed point from work-conservation property
and it solves opt(0). Therefore, we need to establish this property for the case when
q �= 0.

In what follows, we shall establish this by studying evolution of the unscaled sys-
tem in detail. Naturally, the remainder of the proof will be divided into two parts with
the first part establishing implication that if q solves opt(q) then it is a fixed point;
the second part establishing the reverse implication.

4.6.1 q solves opt(q) ⇒ q is a fixed point

We shall establish that if q solves opt(q), then it is a fixed point, i.e., for such a
q if q(0) = q then q(t) = q for all t > 0. As mentioned earlier, we shall do this by
analyzing evolution of the unscaled system. To this end, let the r th system have scaled
initial state qr (0) such that qr (0) → q as r → ∞. That is, qr (0) = q(0) + ε1(r) with
|ε1(r)| → 0 as r → ∞. It will be sufficient to show that |qr (t) − qr (0)| → 0 as
r → ∞.

With the above goal in sight, let us start by defining useful optimization problems.
Recall the Lyapunov function

Lr(Y) =
∑

n

(wnQn + Gr) log(wnQn + Gr) − wnQn logGr − (wnQn + Gr),

where explicit use of r in Lr(·) is to note that G = Gr varies with r . Define optimiza-
tion problem OPTr (Q) as follows:

minimize Lr(Y)

over Y ∈ R
N+

such that ξ · Y ≥ ξ · Q for all ξ ∈ S ∗(λ)

The Lagrangian form, denoted as Lagrr (Q), of OPTr (Q) is as follows:

minimize Lar (Y,φ;Q)
�= Lr(Y) −

∑

ξ∈S ∗(λ)

φξ (ξ · Y − ξ · Q)

over Y ∈ R
N+

suchthat φξ ≥ 0 for all ξ ∈ S ∗(λ)

For any Q ∈ R
N+ , the optimization problem OPTr (Q) has a convex objective with

linear constraints. Since Q itself is a feasible solution, the domain can be restricted
to a bounded convex set. Over this restricted set, the objective function is strictly
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convex, and hence achieves a unique minimum, say Q̂. The optimization problem
OPTr (Q) satisfies the Slater’s condition, and hence by strong duality (cf. see [3, 5]),
the following holds: there exists a choice of Lagrangian dual variables φ(Q), so that
(Q̂,φ(Q)) is a solution of Lagrr (Q) and

Lar
(
Q̂,φ(Q);Q

) = Lr(Q̂). (73)

And, for any Y ∈ R
N+ and choice of nonnegative dual variables φ,

Lar (Y,φ;Q) ≥ Lr(Q). (74)

Consider objective Lar (Y,φ;Q) of Lagrr (Q). For any n,

∂ Lar (Y,φ;Q)

∂Yn

= ∂Lr(Y)

∂Yn

−
∑

ξ∈S ∗(λ)

φξ

(∑

m

ξm

∂Ym

∂Yn

)

= LOGr
n(Yn) −

∑

ξ∈S ∗(λ)

φξ ξn, (75)

where LOGr
n is the same as LOGn with G = Gr , that is,

LOGr
n(x) = wn log(wnQn + Gr) − wn logGr.

Since Q̂ and φ(Q) is an optimal solution of Lagrr (Q), either of the following
holds: (i) Q̂n = 0 and ∂ Lar (Y,φ(Q);Q)

∂Yn
|
Y=Q̂ > 0, or (ii) ∂ Lar (Y,φ(Q);Q)

∂Yn
|
Y=Q̂ = 0. Since

LOGr
n(0) = 0 for all n, r , and dual variables φ are always nonnegative, from (75) it

follows that (i) is not possible. That is, the optimal solution (Q̂,φ(Q)) must satisfy
the following: for all n,

LOGr
n(Q̂n) −

∑

ξ∈S ∗(λ)

φξ (Q)ξn = 0. (76)

Now we shall embark on proving |qr (t) − qr (0)| → 0 as r → ∞ assuming
qr (0) ≈ q with q being a solution of opt(q). To this end, let rq̂r (0) be the solu-
tion of OPT(rqr (0)). From the above discussion, there exists a choice of nonnegative

valued φr �= φ(rqr (0)) such that

Lar
(
rq̂r (0),φr ; rqr (0)

) = Lr
(
rq̂r (0)

)
,

Lar
(
ry,φr ; rqr (0)

) ≥ Lr
(
rq̂r (0)

)
, for any y ∈ R

N+ .
(77)

Next we state two important lemmas. They assume that xr(·) ∈ Er . Their proofs
are provided later.

Lemma 4 For any t ∈ [0, T ],
∣
∣Lar

(
rqr (t),φr ; rqr (0)

) − Lar
(
rq̂r (0),φr ; rqr (0)

)∣∣ = o(r).

Lemma 5 For any t ∈ [0, T ],
∣∣qr (t) − q̂r (0)

∣∣ = O

(√
|Lar (rqr (t),φr ; rqr (0)) − Lar (rq̂r (0),φr ; rqr (0))|

r

)
.
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As per Lemmas 4 and 5, it follows that |qr (t) − q̂r (0)| → 0 as r → ∞ for all t .
Therefore, it must be that |qr (t) − qr (0)| → 0 as r → ∞. This is because ‖qr (·) −
q(·)‖ → 0 as r → ∞ and q(·) is Lipschitz continuous. Therefore, it follows that
|q̂r (0)− q| → 0 as r → ∞ and q(t) = q(0) = q. This completes the proof of q being
a fixed point.

Proof of Lemma 4 Consider the following:

Lar
(
rqr (t),φr ; rqr (0)

)

= Lr
(
rqr (t)

) −
∑

ξ∈S ∗
φr

ξ

(
ξ · rqr (t) − ξ · rqr (0)

)

= Lr
(
rq̂r (0)

) + [
Lr

(
rqr (0)

) − Lr
(
rq̂r (0)

)]

+ [
Lr

(
rqr (t)

) − Lr
(
rqr (0)

)] − r
∑

ξ∈S ∗
φr

ξ ξ · (qr (t) − qr (0)
)
. (78)

Define,

δ1(r)
�= Lr

(
rqr (0)

) − Lr
(
rq̂r (0)

)
,

δ2(r)
�= Lr

(
rqr (t)

) − Lr
(
rqr (0)

)
,

δ3(r)
�=

∑

ξ∈S ∗
φr

ξ ξ · (qr (t) − qr (0)
)
.

Given that Lar (rq̂r (0),φr ; rqr (0)) = Lr(rq̂r (0)), Lar (rqr (t),φr ; rqr (0)) ≥
Lar (rq̂r (0),φr ; rqr (0)) and (78), it is sufficient to prove the following:

1. δ1(r) ≤ o(r), i.e., lim supr→∞ δ1(r)/r ≤ 0,

2. δ2(r) ≤ o(r), i.e., lim supr→∞ δ2(r)/r ≤ 0, and

3. δ3(r) ≥ −o(1), i.e., lim infr→∞ δ3(r) ≥ 0.

1. Proof of δ1(r) ≤ o(r). Recall that rq̂r (0) solves OPTr (rqr (0)). Therefore, by fea-
sibility conditions

q̂r (0) · ξ ≥ qr (0) · ξ , ∀ξ ∈ S ∗(λ), (79)

and since rqr (0) is a feasible solution,

Lr
(
rq̂r (0)

) ≤ Lr
(
rqr (0)

)
. (80)

By assumption in statement of Theorem 3, we have cw ∈ CVR(λ) for some c > 0.
Therefore, (79) implies that

cq̂r (0) · w ≥ cqr (0) · w, equivalently q̂r (0) · w ≥ qr (0) · w. (81)

Let θ1(r) = (q̂r (0) − qr (0)) · w then θ1(r) ≥ 0. Now δ1(r) = Lr(rqr (0)) −
Lr(rq̂r (0)) ≥ 0 and we need to upper bound it. By Proposition 2,
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δ1(r) = Lr
(
rqr (0)

) − Lr
(
rq̂r (0)

)

= r log

(
r

eGr

)(
qr (0) − q̂r (0)

) · w + r
(
entr

(
qr (0) ◦ w

)

− entr
(
q̂r (0)

) ◦ w
) + O

(
log2 r

)

= −r log

(
r

eGr

)
θ1(r) + r

(
entr

(
qr (0) ◦ w

) − entr
(
q̂r (0)

) ◦ w
)

+ O
(
log2 r

)
. (82)

We need the RHS of (82) to be o(r). First some observations about θ1(r). As stated
earlier, θ1(r) ≥ 0. Suppose lim supr θ1(r) > 0. Then lim infr δ1(r) = −∞. This is
because qr (0), q̂r (0) are in a bounded set, entr(·) is bounded continuous function and
(82). However, this is a contradiction to δ1(r) ≥ 0 as established earlier. Therefore,
lim supr θ1(r) = 0, i.e.

θ1(r) = o(1). (83)

In fact, the same argument will imply that
∣∣θ1(r)

∣∣ = O(1/ log r). (84)

Subsequently, to conclude δ1(r) ≤ o(r) as desired, it is sufficient to establish that

entr
(
q̂r (0) ◦ w

) ≥ entr
(
qr (0) ◦ w

) − o(1). (85)

Towards this, recall that ε1(r) = qr (0) − q(0) with ‖ε1(r)‖ = o(1). Again, since
entr(·) is a bounded continuous function on bounded sets of type [0,B]N , it follows
that

entr
(
qr (0) ◦ w

) = entr
(
q(0) ◦ w

) + o(1). (86)

Now let ε2(r) = q̂r (0) − qr (0). Either |ε2(r)| = o(1), i.e., lim supr |ε2(r)| = 0, or
|ε2(r)| = Ω(1), i.e., lim infr |ε2(r)| > 0. When |ε2(r)| = o(1), entr(q̂r (0) ◦ w) =
entr(qr (0) ◦ w) + o(1) follows from uniform continuity of entr(·) on bounded set,
and hence we obtain desired (85). Therefore, the situation to worry is the one when
|ε2(r)| = Ω(1).

Toward this, define θ2(r) = (q̂r (0) − q(0)) · w. And let O(ε, θ) be the value of
optimization problem

minimize entr(x ◦ w) over x ∈ R
N+

subject to x · ξ ≥ q(0) · ξ + ε · ξ , ∀ξ ∈ S ∗
∣∣x · w − q(0) · w

∣∣ ≤ |ε · w| + |θ |.

(87)

By definition, rq̂r (0) solves OPT(rqr (0)). Now qr (0) = q(0) + ε1(r), θ2(r) =
(q̂r (0) − q(0)) · w, it follows that q̂r (0) is feasible for optimization (87) with
(ε, θ) = (ε1(r), θ2(r)). Therefore, it follows that

entr
(
q̂r (0) ◦ w

) ≥ O
(
ε1(r), θ2(r)

)
. (88)

Now
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θ2(r) = (
q̂r (0) − q(0)

) · w

= (
q̂r (0) − qr (0) + qr (0) − q(0)

) · w

= θ1(r) + θ ′
1(r),

where θ ′
1(r) = (qr (0) − q(0)) · w = ε1(r) · w, which is o(1) since |ε1(r)| = o(1).

From (83), θ1(r) = o(1), and hence

θ2(r) = o(1). (89)

Finally, since q(0) solves opt(q(0)), we have that

entr
(
q(0)

) = O(0,0), (90)

where 0 is the vector of all 0s. Finally, we claim that since |ε1(r)| → 0 and θ2(r) → 0
as r → ∞ (i.e., both are o(1) terms),

lim
r→∞

∣∣O(0,0) − O
(
ε1(r), θ2(r)

)∣∣ = 0, (91)

or equivalently, O(ε1(r), θ2(r)) = O(0,0) + o(1). Therefore, (85) follows from (86)
and (88). Thus, establishing δ1(r) ≤ o(r). Now we justify (91). Note that optimization
problem (87) has strictly convex objective with linear constraints. The region of op-
timization can be easily restricted to a bounded set. Therefore, it achieves minimum
and this optimal solution is unique. Let x(r) denote this solution for optimization
problem with ε1(r), θ2(r); entr(x(r)) = O(ε1(r), θ2(r)) as defined earlier. As stated
in (90), q(0) = q is the solution to optimization problem with 0,0 since it solves
opt(q); entr(q) = O(0,0). Now consider q(0) + ε1(r) = qr (0). Then by definition it
satisfies constraints of optimization problem (87) with ε1(r), θ2(r). That is,

entr
(
qr (0)

) ≥ entr
(
x(r)

)
. (92)

By definition qr (0) → q, and hence entr(qr (0)) → entr(q). It can be argued that x(r)

is always in a bounded, compact set. Hence, x(r) has limit points which all by the
fact that |ε1(r)| → 0 and θ2(r) → 0, satisfy feasibility conditions of optimization
problem (87) for 0 and 0. Therefore, from the above discussion, it follows that

lim
r→∞ entr

(
x(r)

) = entr(q)

= lim
r→∞ entr

(
qr (0)

)
. (93)

That is, O(ε1(r), θ2(r)) → O(0,0) as r → ∞. This complete the justification of (91)
and hence the proof of δ1(r) ≤ o(r).

2. Proof of δ2(r) ≤ o(r). Since CONr ⊂ Er , from (45) it follows that for any xr ∈ Er ,

Lr
(
rqr (t)

) − Lr
(
rqr (0)

) ≤ Nrt

Gr

+ 8Nwmax

Gr

+8Nwmax
√

rt log r log

(
wmax(rqr (0) · 1 + rt + 1)

Gr

+1

)

≤ Nrt

Gr

+ O
(√

r log3 r
)

≤ o(r), (94)
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for t ∈ [0, T ]. This establishes that δ2(r) ≤ o(r).

3. Proof of δ3(r) ≥ −o(1). We wish to show that
∑

ξ∈S ∗(λ)

φr
ξ

(
qr (t) · ξ − qr (0) · ξ) ≥ −o(1).

By assumption xr(·) ∈ Er and Er ⊂ ARRr . That is, under this event the following
component-wise inequality holds: for any t ∈ [0, T ]

ar (t) − λr t ≥ −ε(r)1, (95)

with ε(r) = Θ(

√
1
r

log r). The dynamics of qr (·) implies that

qr (t) = qr (0) + ar (t) −
∑

π

sr
π (t)π + zr (t).

Therefore,

qr (t) = qr (0) + ar (t) −
∑

π

sr
π (t)π + zr (t)

≥ qr (0) + ar (t) −
∑

π

sr
π (t)π .

Hence, for any ξ ∈ S ∗(λ)

ξ · qr (t) ≥ ξ · qr (0) + ξ · ar (t) −
∑

π

sr
π (t)ξ · π . (96)

From (95), (96), fact that ξ · π ≤ 1 for all π ∈ S , we have

ξ · qr (t) − ξ · qr (0) ≥ (
ξ · λr − 1

)
t − Nε(r)ξ · 1. (97)

Recall that λr = λ − Γ/r . Since ξ ∈ S ∗(λ), or equivalently ξ · λ = 1,

ξ · λr ≥ 1 − 1

r
ξ · Γ. (98)

Since S ∗(λ) ⊂ R
N+ is a finite set and ε(r) = Θ(

√
1
r

log r), it follows that for some
constant K1 (dependent on S ∗(λ),N ),

ξ · qr (t) − ξ · qr (0) ≥ −K1

√
log r

r
. (99)

Next, we shall establish that for any ξ ∈ S ∗(λ), |φr | = O(log r). This along with (99)
will suffice to conclude that δ3(r) ≥ −o(1). For each ξ ∈ S ∗(λ), there must exist n

such that ξn > 0, or else ξ = 0 which is of no interest (we will not have such a ξ in
consideration from the beginning). By (76), we have

LOGr
n

(
rq̂r

n(0)
) =

∑

ξ∈S ∗(λ)

φr
ξ ξn. (100)

Now q̂r (0) is bounded (in terms of N,q(0) = q), it follows that the LHS of (100) is
O(log r). Since S ∗(λ) is finite, we conclude that φr

ξ = O(log r). Since this is true for
any ξ ∈ S ∗(λ), we conclude that |φr | = O(log r). From this and (99), it follows that
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δ3(r) =
∑

ξ∈S ∗(λ)

φr
ξ

(
qr (t) · ξ − qr (0) · ξ)

≥ −K2

√
log3 r

r
, (101)

for some constant K2 (dependent on q,N ). That is, δ3(r) ≥ −o(1) as desired. This
completes the proof of all three claims and that of Lemma 4. �

Proof of Lemma 5 Given φr and qr (0), define function M : R
N+ → R as

M(Y) = Lar
(
Y,φr ; rqr (0)

)
. (102)

By second-order Taylor’s expansion, it follows that for any X,Y ∈ R
N+ ,

M(Y) = M(X) + ∇M(X)(Y − X) + 1

2
(Y − X)T∇2M(Z)(Y − X), (103)

where Z = αX+(1−α)Y for some α ∈ [0,1]. Our interest is in choice of X = rq̂r (0)

and Y = rqr (t). From (76),

∇M
(
rq̂r (0)

) = 0. (104)

And from the form of Lar , it follows that ∇2M(Z) is an N ×N diagonal matrix with
nth entry of diagonal as

∇2M(Z)nn = w2
n

wnZn + Gr

. (105)

From (104) and (105), it follows that for some rz = αq̂r (0)+ (1−α)qr (t), α ∈ [0,1],

M
(
rqr (t)

) = M
(
rq̂r (0)

) + 1

2

∑

n

r(qr
n(t) − q̂r

n(0))2w2
n

wnzn + Gr

r

≥ M
(
rq̂r (0)

) + K3r
∥∥qr (t) − q̂r (0)

∥∥2
2, (106)

where K3 is a constant that depends on q(0),N and time interval length T . That is,

∥∥qr (t) − q̂r (0)
∥∥2

2 ≤ |M(rqr (t)) − M(rq̂r (0))|
K3r

. (107)

This completes the proof of Lemma 5. �

4.6.2 q is a fixed point ⇒ q solves opt(q)

Here, we wish to establish the other side of Theorem 3: if q be such that starting
with q(0) = q, we have q(t) = q for all t ∈ [0, T ], then q must solve opt(q). As
before, we have ‖qr (·) − q(·)‖ → 0. That is qr (t) → q for all t ∈ [0, T ] as r → ∞
since q(t) = q for all t ∈ [0, T ]. To establish q solves opt(q), we shall execute the
following three steps:

1. For any finite t , under event Er ,
∣∣Lr

(
rqr (t)

) − Lr
(
rqr (0)

)∣∣ = o(r).
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2. For any t > 0,

∣
∣∣∣

rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
∣
∣∣∣ = o(r),

where LOGr (X) = ∑
n LOGr

n(Xn).
3. Use 1 and 2 to establish that q solves opt(q).

Proof of Step 1 By assumption in the statement of Theorem 3 that cw ∈ S ∗(λ) for
some c > 0 and (99), it follows that

qr (t) · w ≥ qr (0) · w − K6

√
log r

r
, (108)

for some constant K6. Therefore, using Proposition 2, (108), and fact that
entr(qr (t)) − entr(qr (0)) = o(1) since qr (t),qr (0) = q(0) + o(1), and hence qr (·) is
in a bounded set, it follows that

Lr
(
rqr (t)

) − Lr
(
rqr (0)

) = r log

(
r

eGr

)(
qr (t) − qr (0)

) · w

+ r
(
entr

(
qr (t)

) − entr
(
qr (0)

)) + O
(
log2 r

)

≥ −O
(√

r log3 r
)

+ o(r)

≥ −o(r). (109)

Then from (94) along with (109), Step 1 follows.

Proof of Step 2 Recall that the Lyapunov function for the r th system, Lr(Q) =∑
n F r

n (Qn) with

F r
n (x) = (wnx + Gr) log(wnx + Gr) − wnx logGr − (wnx + Gr).

And, dF r
n (x)/dx = LOGr

n(x). By convexity of F r
n , it follows that for any x, y ≥ 0,

LOGr
n(y)(x − y) ≤ F r

n (x) − F r
n (y) ≤ LOGr

n(x)(x − y). (110)

Using (110), one obtains for any τ ≥ 0,
∑

n

LOGr
n

(
Qr

n(τ)
)(

Qr
n(τ + 1) − Qr

n(τ)
)

≤ Lr
(
Qr (τ + 1)

) − Lr
(
Qr (τ )

)

≤
∑

n

LOGr
n

(
Qr

n(τ + 1)
)(

Qr
n(τ + 1) − Qr

n(τ)
)

≤
∑

n

LOGr
n

(
Qr

n(τ)
)(

Qr
n(τ + 1) − Qr

n(τ)
) + Nwmax

Gr

. (111)

Therefore, for any t > 0,
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∣
∣∣∣∣

[
rt−1∑

τ=0

Lr
(
Qr (τ + 1)

) − Lr
(
Qr (τ )

)
]

−
[

rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
]∣∣
∣∣∣

= O

(
r

Gr

)
= o(r). (112)

Using Step 1 and (112), it follows that
∣
∣∣∣∣

rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
∣
∣∣∣∣
= o(r). (113)

This completes the proof of Step 2.

4.6.3 Proof of Step 3

Using Step 2, we wish to conclude that q solves opt(q). Suppose, to the contrary that
q does not solve opt(q) and let q′ �= q is its solution. Since cw ∈ S ∗(λ) for some
c > 0 and ξ · q′ ≥ ξ · q for all ξ ∈ S ∗(λ), it must be that q′ · w = q · w. Since q′ �= q,
we must have entr(q′) < entr(q). Therefore, by Proposition 2,

Lr(rq) ≥ Lr
(
rq′) + K7r, (114)

for some constant K7. We shall use (114) to first show that there exists a feasible
solution Q̃r = rq̃r of OPT(rqr (0)) = OPT(Qr (0)) such

Lr
(
Qr (0)

) ≥ Lr
(
Q̃r

) + K8r. (115)

for some constant K8. Next, we shall use (115) and property of OPT(·), to arrive at a
contradiction using Step 2 to conclude that indeed q solves opt(q).

Toward that, we start by establishing (115). Define q̃r = q′ + (qr (0)− q). Clearly,
q̃r = q′ + o(1) since q′ ∈ R

N+ and qr (0) = q(0) + o(1) = q + o(1). We claim that for
r large enough q̃r ∈ R

N+ . To see this, observe that the function x logx has derivative
−∞ at x = 0. Therefore, the minimum of entr(x) = ∑

n xn logxn, over subset of
R

N+ with a feasible point that has all strictly positive component, must have all of its
components strictly positive. Indeed, q′ is solution to such an optimization problem
for any q �= 0. That is, q′ > 0 component-wise, and hence the nonnegativity of q̃r

follows since q̃r = q′ + o(1).
Now for all ξ ∈ S ∗(λ),

q̃r · ξ = (
q′ − q

) · ξ + qr (0) · ξ ≥ qr (0) · ξ ,

since q′ is feasible for opt(q). Thus, it follows that rq̃r is feasible for OPTr (rqr (0)) =
OPTr (Qr (0)). Next, we compare Lr(Q̃r ) and Lr(Qr (0)) where Q̃r = rq̃r and
Qr (0) = rqr (0).

As noted earlier, q′ · w = q · w = q(0) · w. Therefore,

q̃r · w = (
q′ − q(0)

) · w + qr (0) · w = qr (0) · w.
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Clearly, q̃r = q′ + o(1),qr (0) = q(0) + o(1). Further, we have entr(q′) < entr(q) =
entr(q(0)). Therefore, by uniform continuity of entr(·) over a compact set it follows
that entr(̃qr ) < entr(qr (0)) for all r large enough. Therefore, from Proposition 2

Lr
(
rqr (0)

) − Lr
(
rq̃r

) = r log r
((

qr (0) − q̃r
) · w

) + r
(
entr

(
qr (0)

) − entr
(
q̃r

))

+ O
(
log2 r

)

≥ K9r, (116)

for some constant K9. Thus, Q̃r = rq̃r is a feasible solution of OPT(Qr (0)) with
property (116). Next, we use this to obtain contradiction with Step 2. Now using
Proposition 3, it follows that there exists finite U and σ ∈ Σ such that

q̃r = qr (0) + U(λ − σ ) ⇔ Q̃r = Qr (0) + rU(λ − σ ). (117)

Using convexity of Lr , we obtain

Lr
(
Q̃r

) − Lr
(
Qr (0)

) ≥ ∇Lr
(
Qr (0)

) · (Q̃r − Qr (0)
)

= rU
(
LOGr

(
Qr (0)

) · (λ − σ )
)
.

Using this and (116), we obtain that

LOGr
(
Qr (0)

) · (λ − σ ) ≤ −K10, (118)

for some constant K10 > 0. Let σ r (0) be schedule chosen by the MWL policy at
timeslot 0 for the r th system. Since σ r (0) is suppose to be the maximum weight
schedule, we have that

LOGr
(
Qr (0)

) · (λ − σ r (0)
) ≤ −K10 < 0. (119)

The basic premise has been that q is a fixed point. That is, q(t) = q if q(0) =
q. That is, qr (t) = q(t) + o(1) = q + o(1) for any t (with error term o(1) being
uniformly applicable to all t in a given bounded time interval). Therefore, exactly the
same argument as that used to obtain (119) will lead to the following: for given t > 0,
for any 0 ≤ τ ≤ rt with τ ∈ Z+, we have that

LOGr
(
Qr (τ )

) · (λ − σ r (τ )
) ≤ −K10 < 0. (120)

The uniform choice of K10 is possible since choice of U , as per Proposition 3, in
(117) can be bounded uniformly given that q′ always comes from a bounded set
(depending on initial q, T ,N ) and uniform convergence of qr (·) → q(·) (over a given
bounded time interval). From this, λr = λ − Γ/r and LOGr (Qr (·)) = O(log r), it
follows that

rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (λ − σ r (τ )
) ≤ −K10tr. (121)

Now conclusion (121) is derived under event Er , which holds with probability 1 −
1/r2. The term on the left in the above equation is at most O(r log r) due to Lipschitz
property of queue-size of [0, rt]. Therefore, it follows that

E

[
rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (λ − σ r (τ )
)
]

≤ −K11r, (122)

for some constant K11 > 0.



Queueing Syst (2012) 71:97–136 135

Next, we shall use Step 2 to argue that (122) can not hold. This will be the contra-
diction to our assumption that q does not solve opt(q). Toward that, using arguments
similar to those used in derivation of (18) from (17), we obtain that

E

[
rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
]

= E

[
rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (λr − σ r (τ )
)
]

. (123)

Now Step 2 suggests that under event Er ,
∣∣∣∣∣

rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
∣∣∣∣∣
= o(r).

Since event Er holds with probability at least 1 − 1/r2 and since the term on the left
in the above equation is at most O(r log r) due to Lipschitz property of queue-size of
[0, rt], it follows that

∣∣
∣∣∣
E

[
rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (Qr (τ + 1) − Qr (τ )
)
]∣∣
∣∣∣
= o(r). (124)

From (123) and (124), it follows that
∣∣∣
∣∣
E

[
rt−1∑

τ=0

LOGr
(
Qr (τ )

) · (λr − σ r (τ )
)
]∣∣∣
∣∣
= o(r). (125)

Indeed, (122) and (125) contradict our assumption that q does not solve opt(q). This
concludes the proof of the Theorem 3.

5 Discussion

In this paper we introduced and studied the MWL policy, a variant of the well-studied
maximum weight policy of Tassiulas and Ephremides. The MWL policy utilizes log-
arithm of queue-sizes as weight to select a maximum weight schedule. The primary
motivation to study this policy is the authors’ belief that it exhibits work-conservation
property under the heavy traffic approximation. While this paper stops short of estab-
lishing this property, the work-conservation property is established for its fluid model.
As a step toward establishing heavy traffic approximation, we have identified the in-
variant manifold of the critical fluid model (under additional restrictions). The invari-
ant manifold corresponds to solution space of a two-stage optimization problem. The
form of this optimization problem hints toward the work-conservation property being
true, at least with certain restrictions, under heavy traffic approximation.

The MWL policy, due to lack of scale invariance of logarithm weight function,
presents a serious challenge to the existing approaches for identifying a meaningful
fluid model and subsequently in establishing a heavy traffic approximation. Results of
this paper overcome this challenge for the specific problem at hand. Going forward,
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it would be worth developing a general method to deal with such scenarios. Obtain-
ing the heavy traffic approximation and subsequently establishing work-conservation
property of a switched network operating under the MWL policy remain outstanding
problems.
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