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Abstract We consider a switched network (i.e. a queueing network in which there
are constraints on which queues may be served simultaneously), in a state of over-
load. We analyse the behaviour of two scheduling algorithms for multihop switched
networks: a generalized version of max-weight, and the α-fair policy. We show that
queue sizes grow linearly with time, under either algorithm, and we characterize the
growth rates. We use this characterization to demonstrate examples of congestion
collapse, i.e. cases in which throughput drops as the switched network becomes more
overloaded. We further show that the loss of throughput can be made arbitrarily small
by the max-weight algorithm with weight function f (q) = qα as α → 0.
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1 Introduction

By switched network we mean a collection of queues with restrictions on which
queues may be served simultaneously. For example, consider a collection of four
queues 1, 2, 3 and 4, operating in slotted time, and suppose that in each timeslot it
is required that the offered service be either “Serve 1 unit of work each from queues
1 and 2” or “Serve 1 unit of work each from queues 2, 3 and 4”. Switched networks
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have been used to model input-queued switches in Internet routers [5], multihop wire-
less networks [16], and bandwidth-sharing by the Internet’s congestion control mech-
anism [1], and they can be used to model processing of jobs in data centres. Our gen-
eral model is specified in Sect. 2, and some of these applications are described further
in Sect. 4.

In this paper we analyse the behaviour of a switched network in overload, that is,
when new work arrives at such a rate that queue sizes cannot be prevented from grow-
ing over time. A networked system has a certain capacity, and it is subject to varying
load, and it may sometimes become overloaded—either because it is too expensive
to build so much capacity that overload never occurs, or because it is too hard to pre-
dict at design time what future load will look like. For example, a web data centre
may be underloaded most days, and show very good performance, but sometimes it
may face a surge in demand which overloads the system. We would like ‘graceful
failure’ under overload. For example, a classic M/M/1 queue fails gracefully, in the
sense that throughput is always as high as it can be (namely, the minimum of the ar-
rival rate and the service rate), regardless of the arrival rate. Engineers are, however,
aware of many systems which exhibit ‘congestion collapse’, meaning that when ar-
rival rates increase beyond a certain threshold, throughput actually drops.1 In Sect. 4
we illustrate congestion collapse for some of the applications mentioned above.

The policy for deciding which queues get service, in a switched network, is called
the scheduling policy. A natural question is ‘Are there scheduling policies that avoid
the problem of congestion collapse?’ Our analysis in this paper is of two scheduling
policies: a generalization of the max-weight policy of Tassiulas and Ephremides [16]
(also known as the backpressure policy), and the α-fair policy described by Mo and
Walrand [13] with α ≥ 1, in both single-hop and multihop switched networks. The
α-fair policy has previously only been described for single-hop networks; our exten-
sion to multihop is novel. These policies are specified in Sect. 2. We show in Sect. 4.4
that the max-weight policy can nearly prevent congestion collapse, in the sense that
it achieves throughput that is arbitrarily close to optimal, regardless of load. This is
achieved by weighting the queues using the weight function f (q) = qα for α suffi-
ciently close to 0. It is remarkable that a single policy is near-optimal for all switched
networks of the general type considered in this paper (though the choice of α does
depend on the number of queues).

Formally, our analysis is within the framework of fluid modelling. In this frame-
work, one starts with a stochastic queueing model, and obtains limiting dynamics
under a fluid scaling. The ‘fluid model’ describes these limiting dynamics. One then
proves properties of the fluid model. Finally, results about the fluid model can be
straightforwardly translated back into statements about rate-level behaviour of the
original stochastic system. The focus of this paper is exclusively on analysis of the
fluid model. The relationship between the stochastic model and the fluid model has al-
ready been established by Kelly and Williams [11] and Gromoll and Williams [8] for

1By ‘congestion collapse’ we mean some loss of throughput—this is how the term is used for example
in [12]. We do not necessarily mean a near-complete loss of throughput, as in the Internet’s 1986 congestion
collapse [10].
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the bandwidth-sharing model of Internet congestion control running α-fair schedul-
ing, and by Dai and Prabhakar [5] and others [3, 4, 15] for queueing networks run-
ning max-weight. We will briefly describe some stochastic models in Sect. 4, and
their fluid limits, but for all the rest of the paper we will work exclusively with fluid
models.

The main technical result of this paper is the following. If q(t) is the vector of
queue sizes at time t , under a fluid model, then q(t)/t → q̂ as t → ∞ for a particular
vector q̂; if the queues start empty then q(t)/t = q̂ for all t > 0. We identify q̂ as
the solution to a certain optimization problem. Technically this result holds for all
arrival rates, not just overload, but q̂ is only non-zero in overload; if the system is
underloaded the result implies weak stability, cf. [5]. We state this main result in
Sect. 3, and the proofs are given in Sects. 5 and 6 for the max-weight and α-fair
policies, respectively. A distinctive feature of our presentation is that we work with
a single unified model for both policies, and the proof of the main theorem is the
same for both policies. However, the proof is based on Lyapunov techniques, and the
Lyapunov functions are different for the two policies, which is why we divide the
proofs into two sections.

1.1 Related work

Much of the theoretical work on switched networks, starting with [16], has studied
stability. The stability region for a switched network is the set of arrival rates for
which an omniscient scheduler can keep the network stable. An algorithm which is
stable for all arrival rates in the interior of the stability region is said to have 100%
throughput. The focus of much theoretical work has been on finding scheduling al-
gorithms with 100% throughput.

Recently there have been attempts to understand the behaviour of overloaded sys-
tems, i.e. systems where the arrival rates lie outside the stability region.

Harrison and Zeevi [9] studied staffing levels in call centers in the presence of
varying demand. In their model, the arrival rate of calls each day is random, and the
manager has to decide on staffing levels before that day’s arrival rate is revealed.
Then the day’s actual arrival rate is revealed, and the manager finds out if the call
center is overloaded or underloaded; he/she then solves a linear programming prob-
lem, in which the objective is to maximize revenue, the input data concern the day’s
arrival rate, and the optimization variables are the fraction of effort each staff member
devotes to each type of call. This optimization is called the ‘static planning problem’.

Georgiadis and Tassiulas [7] investigated overload in a sensor network, modelled
as a single-commodity flow problem. They take the arrival rate as fixed and given.
They pose a static planning problem with the objective of maximizing throughput,
and another static planning problem with the objective of maximizing the time until
one of the queues fills its buffer, or equivalently of finding the most balanced set of
queue growth rates. They show that for their specific network model, the two objec-
tives can be met simultaneously. They also describe an iterative distributed algorithm,
inspired by max-weight, for computing the solution to the static planning problem.

Egorova et al. [6] studied overload in a model for bandwidth sharing in the In-
ternet. In this model, the scheduling decisions are made ‘myopically’ (by the α-fair
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scheduling algorithm) without any knowledge of the arrival rates—unlike the static
planning problem, in which the arrival rates are treated as known input variables. The
appeal of myopic algorithms is that (one hopes) they respond well to fluctuations in
arrival rates over a range of timescales. The authors show that q(t) = t q̂ is a feasible
fluid model solution, where q̂ is the solution to a certain optimization problem. Fur-
ther description of their model and results, and how it relates to our work, is given
in Sect. 4.5. What is fascinating about this result is that the scheduling algorithm can
be thought of as ‘implying’ a certain optimization problem, in contrast to the earlier
work which took the static planning problem as its starting point.

Subsequent to our work, Chan et al. [2] have studied overload in a single-hop
switched network running max-weight with weight function f (q) = q and a constant
vector of queue weights. They prove a special case of our main result, but they use di-
rect techniques whereas we use Lyapunov functions. They investigate how the queue
weights may be chosen, in order to achieve a balanced set of queue growth rates.

1.2 Notation

Let Z = {0,1, . . . , }, let R be the set of real numbers, let R+ = {x ∈ R : x ≥ 0}, and
let R>0 = {x ∈ R : x > 0}. Let N be the number of queues; we will reserve bold
letters for vectors in R

N , for example x = [xn]1≤n≤N . Let |x| = maxn |xn|. Let 0 be
the vector of all 0s and 1 the vector of all 1s. For vectors u and v let

u·v =
N∑

n=1

unvn, uv = [unvn]1≤n≤N

and let matrix multiplication take precedence over dot product so that

u·Av =
N∑

n=1

un

(
N∑

m=1

Anmvm

)
.

Let AT be the transpose of matrix A. If f is a function R → R then interpret f (x)

componentwise. Thus, for example,

max
(
Awqα,0

)·π =
∑

n

max

(∑

m

Anmwmqα
m,0

)
πn.

Inequalities between vectors are interpreted componentwise. For S ⊂ R
N , let 〈S〉 be

the convex hull of S . Let 1{·} be the indicator function, 1true = 1 and 1false = 0. Let
A C denote the space of absolutely continuous functions R+ → R.

2 Model

We now define the general queueing dynamics for a multihop switched network, and
the dynamics for the two scheduling policies that we analyse in this paper. We specify
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the dynamics in terms of fluid models; the relationship to certain stochastic queueing
networks is described in Sect. 4.

Consider a collection of N queues, and a finite set S ⊂ R
N+ of service actions, also

called schedules. Assume that every queue is serviceable, i.e. for every n there exists
some π ∈ S such that πn > 0.

For a multihop network let R ∈ {0,1}N×N be the routing matrix, Rmn = 1 if work
served from queue m is sent to queue n, and Rmn = 0 otherwise; if Rmn = 0 for all
n then work served from queue m departs the system. (Note that R = 0 corresponds
to a single-hop network, i.e. all work leaves the system as soon as it is served.) We
will assume throughout that there is no routing choice, i.e. that

∑
n Rmn ∈ {0,1} for

each m. We will also assume throughout that routing is acyclic, i.e. that work served
from some queue n never returns to queue n. This implies that the inverse 
R = (I −
RT)−1 exists; by considering the expansion 
R = I + RT + (RT)2 + · · · it is clear that

Rmn ∈ {0,1} for all m and n, and that 
Rmn = 1 if the route for work injected at queue
n passes through m, and 0 otherwise. For multihop networks we will additionally
assume that the scheduler always has the option of not sending work downstream at
every individual queue. Formally, we assume that S satisfies the following: if π ∈ S
is an allowed schedule, and ρ ∈ R

N+ is some other vector, then

if ρn ∈ {0,πn} for all n then ρ ∈ S. (1)

Definition 1 (Queueing dynamics) Let λ ∈ R
N+ . Let A CK denote the space of abso-

lutely continuous functions R+ → R
K , for K ∈ N. Say that the triple q(·) ∈ A CN ,

z(·) ∈ A CN , s(·) ∈ A C|S| is a fluid model solution for the queueing dynamics with
arrival rate vector λ if s(0) = 0, z(0) = 0, and the following equations are satisfied
for all t :

q(t) = q(0) + λt − (
I − RT)∑

π

sπ (t)π + z(t) (2)

∑

π∈S
sπ (t) = t (3)

each sπ (·) and zn(·) is increasing (not necessarily strictly increasing) (4)

for all n and almost all t , żn(t) = 0 if qn(t) > 0 (5)

z(t) ≤ ∑
π sπ (t)π (6)

Here q(t) represents the vector of queue sizes at time t , z(t) represents the cu-
mulative idleness up to time t , and sπ (t) represents the total amount of time spent
on schedule π up to time t . The definition calls for these quantities to be absolutely
continuous, which implies they are differentiable at almost all t . Instants at which
they are all differentiable are called regular timepoints.

We next define fluid model solutions for two scheduling policies. It is most con-
venient to write these policies in terms of σ (t) = ∑

π ṡπ (t)π , the vector of instanta-
neous service rates at time t . Whenever we write σ (t), we assume that t is a regular
timepoint. We will refer simply to a “fluid model solution” when the context makes
it clear whether we are referring to the queueing dynamics or to one or other of the



126 Queueing Syst (2011) 69:121–143

two scheduling policies. With a small abuse of notation, say that q(·) is a fluid model
solution if there exist z(·) ∈ A CN and s(·) ∈ A C|S| such that (q, z, s) is a fluid model
solution.

Definition 2 (Max-weight policy) Let w ∈ R
N
>0, and let f : R+ → R+ be a differen-

tiable and strictly increasing function for which

f (0) = 0 (7)

and for any q ∈ R
N+ and π ∈ S , with M(q) = maxρ∈S (I − R)wf (q) · ρ,

(I − R)wf (q) · π = M(q) =⇒ (I − R)wf (κq) · π = M(κq)

for all κ ∈ R+. (8)

Say that (q, z, s) is a fluid model solution for the max-weight scheduling policy with
weight function f and weights w if (q, z, s) is a fluid model solution for the queueing
dynamics and in addition for all regular timepoints t

σ (t) ∈ argmax
π∈〈S〉

wf (q) · (I − RT)
π . (9)

Note that the maximum is attained at some extreme point π ∈ S , since the quantity
to be maximized is linear in π . Note also that the quantity to be maximized can be
rewritten as (I − R)wf (q) · π , i.e.

∑

n

{[
wnf (qn(t)) − wmf (qm(t))

]
πn if m is immediately downstream of n,

wnf (qn(t))πn if work served from n leaves the system.

The term wnf (qn(t)) may be thought of as the pressure to serve queue n, and the
term −wmf (qm(t)) as the pressure not to add work to the downstream queue by
serving queue n, which is why the max-weight policy is also known as backpressure.

Equation (8) says that the optimal choice of schedule is invariant when the queue
sizes are rescaled. An example of a suitable weight function is f (x) = xα for some
α > 0, since this is guaranteed to satisfy (8) for any S . An example of an unsuitable
weight function is f (x) = log(1 + x); it is not hard to find sets S such that (8) is not
true with this f .

Definition 3 (α-fair policy) Let α > 0, and let w ∈ R
N
>0. Say that (q, z, s) is a fluid

model solution for the α-fair policy with weights w if (q, z, s) is a fluid model solu-
tion for the queueing dynamics and in addition for all t

σ (t) ∈ argmax
ρ∈〈S〉 :

(I−RT)ρ≥0

wqα · gα

((
I − RT)

ρ
)

(10)

where

gα(η) =
{

η1−α

1−α
if α �= 1,

log(η) if α = 1
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with the added convention that qα
n gα(0) is equal to 0 if qn = 0 or if α < 1, and equal

to −∞ if qn > 0 and α ≥ 1.

It is shown in Sect. 6, Lemma 4, that the maximum is attained. Unlike the max-
weight case, however, the maximum is not generally attained at an extreme point
of 〈S〉.

The optimization problem can be written more verbosely as follows: Given
ρ ∈ 〈S〉 let ρup = RTρ; then ρ

up
n is the sum of ρm over the queues m directly up-

stream of n. Among all ρ ∈ 〈S〉 such that ρn ≥ ρ
up
n for all n, select one to maximize

∑

n

wnq
α
n gα

(
ρn − ρ

up
n

)
.

The constraint ρn ≥ ρ
up
n means that scheduler is not permitted to accumulate work in

the middle of the network.

3 Main result

The main result of this paper is that queue sizes grow roughly like q(t) ≈ t q̂ where
q̂ is the solution to a certain optimization problem, a different problem for each of
the two scheduling policies we study. In this section we state the two optimization
problems, and then the main result.

Definition 4 (Max-weight growth rates) Consider a switched network with arrival
rate λ ∈ R

N+ running the max-weight policy, with weight function f and weights w ∈
R

N
>0. Let q̂ be the unique solution to the following optimization problem, which we

call ALGP. (Lemma 1 in Sect. 5 shows that q̂ is unique.) The optimization problem
is

minimize L(r) =
∑

n

wn

∫ rn

0
f (x)dx over r ∈ FEAS,

where

FEAS = {
r ∈ R

N+ : r ≥ λ − (
I − RT)

ρ for some ρ ∈ 〈S〉}.

Definition 5 (α-fair growth rates) Consider a switched network with arrival rates λ ∈
R

N+ , running the α-fair policy, with α > 0 and weights w ∈ R
N
>0. Let q̂ be the unique

solution to the following optimization problem, which we call DEP. (Lemma 4 in
Sect. 6 shows that it is unique.) The optimization problem is

minimize H(q) =
∑

n

wn

∫ qn

0

(
λn

x
− 1

)−α

dx over q ∈ FEAS
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with the convention that the objective is ∞ if there is some n with qn > λn, and terms
with λn = qn = 0 contribute 0 to the sum. The feasible set is2

FEAS = {
r ∈ R

N+ : r ≥ λ − (
I − RT)

ρ for some ρ ∈ 〈S〉,
and rn = 0 for all queues n where λn = 0

}
.

We now state the main result. There are two versions, one for max-weight and one
for α-fair.

Theorem 1 (Max-weight version) Consider a switched network running the max-
weight policy. Let q(t) be any fluid model solution, and let q̂ be as in Definition 4.
Then q(t)/t → q̂ as t → ∞. Furthermore, for any c > 0 the convergence is uniform
over the set of fluid model solutions for which |q(0)| ≤ c. Furthermore, if q(0) = 0
then q(t) = t q̂.

Theorem 2 (α-fair version) Consider a switched network running the α-fair policy.
Let q(t) be any fluid model solution satisfying

qn(0) = 0 if λn = 0, (11)

and let q̂ be as in Definition 5. Then q(t)/t → q̂ as t → ∞. Furthermore, for any
c > 0 the convergence is uniform over the set of fluid model solutions satisfying (11)
for which |q(0)| ≤ c. Furthermore, if q(0) = 0 then q(t) = t q̂.

4 Applications

In this section we give several applications of our main result. We start in Sect. 4.1
with a stylized toy model of a web data center, to illustrate congestion collapse and
to show how revenue can be maximized by using max-weight scheduling with ap-
propriate weights. In Sect. 4.2 we summarize the model of an input-queued switch
introduced by Dai and Prabhakar [5], and in Sect. 4.3 give explicit calculations for
congestion collapse in a 2 × 2 switch running max-weight. In Sect. 4.4 we general-
ize these two examples, and show that max-weight gets arbitrarily close to optimal
throughput for any switched network, by choosing an appropriate weight function.
Finally in Sect. 4.5 we describe the model for α-fair sharing of bandwidth in the
Internet.

2We have deliberately reused the name FEAS, even though it is defined differently for max-weight and for
α-fair. We will also reuse the name ALGP for an optimization problem used in the proofs for the α-fair
policy, similar to ALGP in Definition 4. We are reusing names like this since there are substantial parts
of the proofs which are nearly identical for max-weight and for α-fair, differing only in which version of
FEAS and ALGP they refer to.
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Fig. 1 Nodes A, B and C have
lots of spare capacity, but nodes
D and E can only serve at rate
10 jobs per second. The arrival
rates are λ = (2η,3η,η). When
the system becomes overloaded,
at η ≥ 2, the
revenue-maximizing action is to
discard some of the jobs worth
£5 in favour of jobs worth £4 at
node E

Fig. 2 Two examples of congestion collapse. Figure (a) shows revenue as a function of load, for the data
center example in Sect. 4.1, when running the max-weight algorithm with weight function f (q) = qα .
Figure (b) shows throughput as a function of load, for the 2 × 2 input-queued switch in Sect. 4.3, when
running either α-fair scheduling or max-weight scheduling with weight function f (q) = qα

4.1 Congestion collapse in a data center

A data center consists of a network of machines, some of them running web server
software, some running database software. A page request from an outside user is first
directed to a web server machine, which may then trigger internal requests to several
database machines, each of which may itself trigger further internal requests. In order
to provide a complete response to the page request, all of these internal requests need
to be served.

Figure 1 depicts a toy example of a data center which handles three types of page
request, each of which needs to be processed at a web server (A, B or C) and also at
database machines (D and E). It is easy to see how congestion collapse might occur:
if both database machines are overloaded, then machine E could expend service on
£5 jobs only for them to be dropped when they reach machine D. That service would
have been better spent on £4 jobs. A real example of a distributed database exhibiting
congestion collapse is given in [12].

In a data center, some requests may be more valuable than others, and so maximiz-
ing revenue may be a more natural goal than maximizing throughput. Suppose in this
example that the data center earns £6 when it completely serves a request labelled £6,
i.e. when the request has been served by both A and D, and similarly for the other
request classes. Instead of congestion collapse, the concern is now revenue collapse.
What scheduling algorithms at D and E can avoid this?

To be concrete, suppose A, B and C forward requests immediately, and let there
be four queues, one for each request class at each database machine, call them qD5,
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qD6, qE4 and qE5. Revenue earned by time t is equal to the total potential revenue
brought by arriving requests, minus revenue not earned because requests have not yet
left the system. Therefore, in order to maximize revenue, we want to

minimize 6qD6 + 5(qE5 + qD5) + 4qE4. (12)

Suppose we run max-weight with weight function f (q) = qα , α > 0, and let the
weight of each queue be the revenue associated with requests in that queue. Under
this policy, machine E, for example, when it is ready to serve a new request, will
serve qE5 if 5qα

E5 − 5qα
D5 > 4qα

E4, it will serve qE4 if the inequality is reversed, and
its choice is arbitrary if the two are equal. Theorem 1 says that when the system is
overloaded, the queue sizes grow like q(t) = t q̂, where q̂ solves the optimization
problem

minimize
1

1 + α

(
6r1+α

D6 + 5
(
r1+α
E5 + r1+α

D5

) + 4r1+α
E4

)

over all feasible growth rates r.

Figure 2(a) shows revenue rate as a function of η, for three different values of α,
obtained by numerically solving this optimization. The highest possible revenue rate
is £100, achievable for η ≥ 10.

If we choose α ≈ 0, then the objective function that defines q̂ is very close to the
equation for lost revenue, (12), so the max-weight policy is very close to revenue-
maximizing. (This is made precise in Sect. 4.4.) In effect, information about down-
stream congestion is propagated upstream by means of queue sizes, telling upstream
nodes to hold back work which will not be able to be served downstream. The max-
weight policy does not need to estimate arrival rates in order to achieve this: its actions
are based purely on queue size.

4.2 Fluid model for an input-queued switch

Dai and Prabhakar [5] introduced a fluid model for input-queued switches running
max-weight. A switch is the core of an Internet router, and the input-queued architec-
ture is commercially popular. We will now describe the stochastic model, and their
fluid model, and explain how it relates to ours, and how to interpret our main result
in the original stochastic system.

Consider a collection of N = M2 queues operating in slotted time; in this appli-
cation it is most natural to consider the queue lengths to be a matrix in R

M×M+ rather
than a vector in R

N+ . At the beginning of each timeslot, a (random) integer number of
packets arrive, and there may be arrivals to any queue. Then a service action π is cho-
sen from the set S ⊂ {0,1}M×M consisting of all M! permutation matrices. During
the timeslot, π is the offered service to each queue, and served work leaves the system
at the end of the timeslot. The natural questions are what scheduling policy should
be used, and what the resulting performance of the system is. Dai and Prabhakar [5]
analyse the stability of two different policies, one of which is the max-weight policy
with weights w = 1 and weight function f (q) = q , which is our focus here.
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Let Q(t) be the matrix of queue sizes at timeslot t ∈ N, let Sπ (t) be the total
number of timeslots up to and including t in which action π has been chosen, and let
D(t) be the number of departures from each queue by the end of timeslot t . Extend
these to be continuous functions of t ∈ R+ by polygonalization, and define fluid-
scaled versions qr (t) = Q(rt)/r etc. Any weak limit as r → ∞ of these processes is
called a fluid limit. It is shown in [5] that every fluid limit satisfies the following fluid
model:

q(t) = q(0) + λt − d(t) ≥ 0,

ḋij (t) =
∑

π∈S
πij ṡπ (t), if qij (t) > 0,

sπ (·) is non-decreasing, and
∑

π∈S
sπ (t) = t,

ṡπ (t) = 0 if π ·q(t) < max
ρ∈S

ρ ·q(t).

By rewriting these equations in terms of the cumulative idleness process z(t) rather
than the cumulative departure process d(t) = ∑

π sπ (t)π − z(t), and adding the nat-
ural constraint ḋ(t) ≥ 0, we obtain our fluid model equations (2)–(6) and (9), with
routing matrix R = 0. The general fluid equations, including multihop and arbitrary
weight functions, but restricted to weights w = 1, are described by e.g. [15].

Theorem 1 says that, if q(0) = 0, then the unique solution to the fluid model equa-
tions is q(t) = t q̂. Therefore every fluid limit point of the sequence Q(r)/r is equal
to q̂, hence Q(r)/r → q̂ almost surely.

To our knowledge, no one has studied input-queued switches running the α-fair
algorithm. We conjecture that the α-fair fluid dynamics are obtained as the fluid limit
of the following algorithm: (1) each timeslot t , compute σ (t) ∈ 〈S〉 to solve (10),
then (2) write σ (t) as a convex combination of elements of S , σ (t) = ∑

π xππ , then
(3) pick some service action at random, with the probability of choosing π equal to
xπ . The service actions at each timeslot must be chosen independently, conditional
on the queue sizes.

4.3 Congestion collapse in a 2 × 2 input-queued switch

Here is a worked example demonstrating congestion collapse in an input-queued
switch. We have already seen congestion collapse in the multihop data center exam-
ple, but this example shows that congestion collapse can also happen in a single-hop
network. In essence, the scheduler is ‘tricked’ into choosing a bad combination of
queues to serve.

Let the queue sizes of the four queues in a 2 × 2 input-queued switch be q11,
q12, q21, q22. The two possible service actions are “serve queues (11) and (22)” and
“serve queues (12) and (21)”. The max-weight policy is to serve queues (11) and
(22) if q11 + q22 > q12 + q21, to serve queues (12) and (21) if q11 + q22 < q12 + q21,
and to choose randomly if there is equality. Let the arrival rate vector be

λ =
(

0.7 0.3
0.3 λ22

)
.
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Theorem 1 says that queue sizes grow linearly, q(t) = t q̂ where q̂ is specified in Def-
inition 4. Therefore the cumulative departure process is d(t) = λt − q(t) = (λ − q̂)t

and so the throughput, i.e. the instantaneous net departure rate, is

throughput = ḋ(t)·1 = (λ − q̂)·1.

After calculating q̂ as specified in Definition 4, we find

throughput =

⎧
⎪⎨

⎪⎩

1.3 + λ22 if λ22 ≤ 0.7,

2 − (λ22 − 0.7)/3 if 0.7 ≤ λ22 ≤ 1.6,

1.7 if λ22 ≥ 1.6.

This shows that an increase in offered load beyond λ22 > 0.7 can lead to a loss in
throughput. Suppose instead we use the generalized max-weight policy with weight
function f (q) = qα , α > 0. In other words, we use the policy “serve queues (11)

and (22) if qα
11 + qα

22 > qα
12 + qα

21, and serve queues (12) and (21) if qα
11 + qα

22 <

qα
12 + qα

21”. Now the throughput is

throughput =

⎧
⎪⎨

⎪⎩

1.3 + λ22 if λ22 ≤ 0.7,

2 − (λ22 − 0.7)/(1 + 21/α) if 0.7 ≤ λ22 ≤ 1 + 0.3 × 21/α ,

1.7 if λ22 ≥ 1 + 0.3 × 21/α.

This shows that, for any λ22 > 0.7, the throughput increases to its maximum possible
value, namely 2, as α decreases to 0.

The α-fair policy described in the previous section is to choose the action “serve
queues (11) and (22)” with probability

(qα
11 + qα

22)
1/α

(qα
11 + qα

22)
1/α + (qα

12 + qα
21)

1/α
.

The throughput for this algorithm can be calculated explicitly, with some work. As
with max-weight, throughput increases up to λ22 = 0.7 and thereafter it decreases,
converging to 1.7 as λ22 → ∞. Throughputs for both algorithms, for α ∈ {.4,1,4},
are shown in Fig. 2(b).

4.4 Near-optimality of max-weight policy

In both examples, the data center in Sect. 4.1 and the input-queued switch in Sect. 4.3,
we saw that the max-weight policy with weight function f (q) = qα has useful prop-
erties as α → 0. We now make a general statement about near-optimality of max-
weight for any switched network.

Theorem 3 Consider a switched network with N queues, and let v ∈ R
N+ be some

vector of weights. Let the queues start empty. Pick α > 0, and let q(t) be the fluid
model solution for the max-weight algorithm with weight function f (q) = qα and
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weight vector w = v1+α . Also, let r(t) be a fluid model solution for the queueing
dynamics, for any scheduling algorithm. Then

v·q(t) ≤ Nα/(1+α)v·r(t).

The constant factor Nα/(1+α) can be made arbitrarily close to 1 by choosing α suf-
ficiently small. In Sect. 4.1, maximum revenue is achieved by a scheduling policy that
minimizes v·r(t), where vn is the revenue earned when a job in queue n eventually
leaves the network. In Sect. 4.3, maximum throughput is achieved by a scheduling
policy that minimizes 1·r(t). Thus, in both these examples, max-weight scheduling
(with the above choice of weights, and with α sufficiently small) is near-optimal.

Proof First we argue that r(t)/t ∈ FEAS, where FEAS is given in Definition 4. From
(2), and using the fact that z(·) starts at 0 and is increasing by (4), r(t) ≥ λt − (I −
RT)

∑
π πsπ (t). Dividing by t , r(t)/t ≥ λt − (I − RT)ρ where ρ = ∑

π πsπ (t)/t ,
and ρ ∈ 〈S〉 by (3). Hence r(t)/t ∈ FEAS.

Now, by Theorem 1, q(t) = t q̂ where q̂ solves the optimization problem

minimize w·r1+α over r ∈ FEAS.

Since r(t)/t ∈ FEAS, we deduce

w·(q(t)/t
)1+α ≤ w·(r(t)/t

)1+α
. (13)

It is a standard result about norms, from Hölder’s inequality and Jensen’s inequality,
that for any x ∈ R

N+ and β > 1,

1

N1−1/β
x·1 ≤ (

xβ ·1)1/β ≤ x·1.

Multipling each side of (13) by t1+α and applying the standard result about norms
with β = 1 + α, first with xn = w

1/(1+α)
n qn(t) then with xn = w

1/(1+α)
n rn(t),

1

Nα/(1+α)
w1/(1+α) ·q(t) ≤ (

w·q(t)1+α
)1/(1+α)

≤ (
w·r(t)1+α

)1/(1+α) ≤ w1/(1+α) ·r(t).

Rewriting in terms of v = w1/(1+α) we obtain the result. �

4.5 Fluid model and congestion collapse for bandwidth sharing

Roberts and Massoulie [14] introduced a model for bandwidth sharing in the Internet.
They took there to be a finite set J of links, and for each link j an associated capacity
Cj ≥ 0, and a finite set R = {r1, . . . , rN } of routes where each route rn is a subset of
J . At every instant in time t , there is a certain number xn(t) of active flows on link
n. These flows receive service at a certain rate, which depends only on the number of
active flows: let σ ∗

n (x)/xn be the service rate for each flow on route n when x gives
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the number of active flows on each link. We can think of the Internet’s congestion
control policy (TCP) as selecting a particular service rate vector σ ∗(x) that satisfies
the capacity constraint Aσ ∗(x) ≤ C where Ajn = 1j∈rn . Let S be the set of extreme
points of {ρ ∈ R

N+ : Aρ ≤ C}, of which there are finitely many; then the constraint
can be written σ ∗(x) ∈ 〈S〉.

Kelly and Williams [11] introduced fluid model equations for this system for the
case that flow sizes have an exponential distribution, say with mean 1/μn on route
n, new flows arrive on route rn as a Poisson process λnμn, and where the service
rate vector is chosen to be α-fair. If we rewrite their equations in terms of qn(t) =
xn(t)/μn, we obtain (2)–(6) and (10). The bandwidth-sharing model corresponds to
a single-hop switched network, i.e. R = 0. The fluid model has been generalized to
allow for general distributions for flow size [8], but this is a level of generality which
we do not address in this paper.

Egorova et al. [6] have studied overload in the bandwidth-sharing model, under
the α-fair policy. They allow general flow size distributions. They formulate an op-
timization problem, ‘Problem Q’, upon which we based our optimization problem
DEP in Definition 5. They prove that this optimization problem has a unique solution
q̂, and that q(t) = q̂t is a feasible solution to the fluid model dynamics, and that it is
the unique fluid model solution with linear trajectories (but they do not prove that it
is the unique fluid model solution, whereas we do).

We have investigated various examples numerically and seen congestion collapse,
as well as convergence to optimal throughput as α → 0. However, we do not have
any general results along the lines of Theorem 3.

5 Proofs for the max-weight policy

The proof consists of Lemma 1 showing that q̂ is unique, Lemma 2 showing that
q(t)/t ∈ FEAS for any fluid model solution q(·), Lemma 3 showing that the function
L(·) appearing in ALGP is a Lyapunov function, and finally a proof of the main
theorem.

Lemma 1 For the network specified in Definition 4, ALGP has a unique solution.

Proof The set FEAS is certainly non-empty; pick any r∗ ∈ FEAS. The solution to
ALGP must be at least as good as r∗, so we may as well restrict the optimization
to be over D = {r ∈ FEAS : L(r) ≤ L(r∗)}. Since f is ≥ 0 and strictly increasing,
L(r∗) ≤ N |r∗|f (|r∗|) < ∞ and L(r) → ∞ as |r| → ∞; therefore D is bounded. It
is easy to check that D is also closed and convex. The objective function is strictly
convex, since f is ≥ 0 and strictly increasing and w > 0 componentwise. Since the
optimization is of a strictly convex function over a closed, convex, bounded domain,
there is a unique optimum. �

Lemma 2 For any fluid model solution of the queue dynamics with arrival rate λ,
q(t)/t ∈ FEAS for all t > 0.
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Proof Let q(·) be any fluid model solution. From (2), and using the fact that z(·) is
increasing by (4) and starts at 0, q(t) ≥ λt − (I − RT)

∑
π πsπ (t). Dividing by t ,

q(t)/t ≥ λt − (I − RT)ρ where ρ = ∑
π πsπ (t)/t , and ρ ∈ 〈S〉 by (3). �

Lemma 3 For the network specified in Definition 4,

t
d

dt
L

(
q(t)

t

)
≤ L(q̂) − L

(
q(t)

t

)
≤ 0.

Proof For the first inequality, the drift we want to bound is

t
d

dt
L

(
q(t)

t

)
= wf

(
q(t)

t

)
·
(

dq(t)

dt
− q(t)

t

)
.

For each queue n, either qn(t) > 0 in which case q̇n(t) = λn − [(I − RT)σ (t)]n by
(2) and (5), or qn(t) = 0 in which case f (qn(t)/t) = 0 by (7), hence

t
d

dt
L

(
q(t)

t

)
= wf

(
q(t)

t

)
·
(

λ − (
I − RT)

σ (t) − q(t)

t

)
. (14)

By the max-weight property (9) and the scale-invariance property (8),

wf

(
q(t)

t

)
· (I − RT)

σ (t) = max
π∈S

wf

(
q(t)

t

)
· (I − RT)

π .

Now, the optimum in ALGP is attained at q̂ ∈ FEAS, hence for some ρ̂ ∈ 〈S〉
q̂ ≥ λ − (

I − RT)
ρ̂. (15)

This ρ̂ is a feasible choice for the scheduling policy, while σ (t) is the optimal choice,
so

wf

(
q(t)

t

)
· (I − RT)

σ (t) ≥ wf

(
q(t)

t

)
· (I − RT)

ρ̂.

Substituting this into (14), and using (15),

t
d

dt
L

(
q(t)

t

)
≤ wf

(
q(t)

t

)
·
(

λ− (
I −RT)

ρ̂ − q(t)

t

)
≤ wf

(
q(t)

t

)
·
(

q̂ − q(t)

t

)
.

Finally, by convexity of L(·),

L(q̂) ≥ L

(
q(t)

t

)
+ ∇L

(
q(t)

t

)
·
(

q̂ − q(t)

t

)

= L

(
q(t)

t

)
+ wf

(
q(t)

t

)
·
(

q̂ − q(t)

t

)

and rearranging this gives the desired result.
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The second inequality in the statement of the theorem is straightforward, from the
observation that q(t)/t ∈ FEAS by Lemma 2 and q̂ is optimal for ALGP. �

We can now prove the main result.

Proof of Theorem 1, first two claims The first claim of the theorem, that q(t)/t → q̂,
follows trivially from the second claim, that convergence is uniform: simply set c =
|q(0)|. For the second claim, pick c > 0 and ε > 0, and define

qmax = 1
(
c + |λ| + max

π∈S

∣∣RTπ
∣∣
)
,

Dc = {
r ∈ R

N+ : L(r) ≤ L
(
qmax) and r ∈ FEAS

}
,

Iε = {
r ∈ R

N+ : |r − q̂| < ε
}
,

Kε,c = inf
{
L(r) − L(q̂) : r ∈ Dc \ Iε

}
,

Kε,c = {
r ∈ R

N+ : L(r) − L(q̂) < Kε,c

}
,

Hε,c = exp
(
L

(
qmax)/Kε,c

)
.

Let q(·) be any fluid model solution with |q(0)| < c. We will show in a moment
that q(t)/t enters Kε,c within time Hε,c . By Lemma 3, L(q(t)/t) is non-increasing,
therefore q(t)/t ∈ Kε,c for all times t ≥ Hε,c . By construction of Kε,c , if r ∈ Kε,c

then either r ∈ Iε or r �∈ Dc (or both). We will show in a moment that q(t)/t ∈ Dc

for all t ≥ 1. Thus q(t)/t ∈ Iε for all t ≥ max(Hε,c,1). Since Hε,c does not depend
on q(·), we have established uniform convergence. We have two things left to show:

Proof that q(t)/t ∈ Dc for t ≥ 1 From (2) and (6), q(1) ≤ q(0)+λ+RT ∑
π sπ (1)π

and this is ≤ qmax. Since L is increasing componentwise, L(q(1)/1) = L(q(1)) ≤
L(qmax). By Lemma 3, L(q(t)/t) is non-increasing hence L(q(t)/t) ≤ L(qmax) for
all t ≥ 1. Finally, Lemma 2 shows that q(t)/t ∈ FEAS for all t > 0. Hence the
claimed result.

Proof that q(t)/t enters Kε,c within time Hε,c Observe that (i) L(qmax) is finite;
(ii) Dc is bounded because L is convex and increasing in each component, and it is
closed because L is continuous and the feasibility constraint in FEAS is continuous,
hence Dc is compact; (iii) the infimum in Kε,c is of a continuous function over a
compact set, hence it is attained say at some r̂, (iv) L(r̂) > L(q̂) because r̂ is feasible
for ALGP and q̂ is the unique optimum, hence Kε,c > 0.

Now, consider �(u) = L(q(eu)/eu) for u ≥ 0. Using Lemma 3 and the chain rule,

d

du
�(u) ≤ −

{
L

(
q(eu)

eu

)
− L(q̂)

}
≤ 0.

So �(·) is non-increasing, and d�(u)/du ≤ −Kε,c for all the time that q(eu)/eu �∈
Kε,c . We know from the previous claim that �(0) = L(q(1)) ≤ L(qmax), and it is
clear by definition that g(u) ≥ 0 for all u. Hence q(eu)/eu must enter Kε,c within the
interval u ∈ [0,L(qmax)/Kε,c]; hence the claimed result.
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Proof of Theorem 1, third claim By Theorem 1, given ε > 0 there is some time Hε

such that |q(t)/t − q̂| < ε for all t ≥ Hε and all fluid model solutions q(·) with
q(0) = 0.

Now let q(·) be any such fluid model solution, and suppose q(t) �= t q̂ for some
t > 0, say |q(t0)/t0 − q̂| = ε > 0. Consider the rescaled sample path q̃(t) = q(tκ)/κ

where κ = t0/Hε: this is chosen so that
∣∣∣∣
q̃(Hε)

Hε

− q̂

∣∣∣∣ = ε. (16)

Let z(·) and s(·) be idleness and service processes associated with the fluid model
solution q(·), and consider rescaled versions of these: z̃(t) = z(κt)/κ and s̃(t) =
s(κt)/t . These all satisfy the fluid model equations, hence q̃ is a fluid model solution.
Furthermore q̃(0) = q(0) = 0, so by choice of Hε it must be that |q̃(t)/t − q̂| < ε for
all t ≥ Hε . This contradicts (16), hence the supposition that q(t0)/t0 �= q̂ is false. �

6 Proofs for the α-fair policy

We begin with a basic lemma which shows that the two optimization problems we
have defined for α-fair scheduling, namely the optimization problem which specifies
σ (t) and the optimization problem which specifies q̂, make sense.

Lemma 4

(i) The problem DEP in Definition 5 has a unique solution, call it q̂. Furthermore,
q̂ ≤ λ, and q̂n < λn if λn > 0.

(ii) In the definition of the α-fair policy, the maximum in (10) is attained.

Proof of (i) We will first argue that there exists ρ∗ ∈ 〈S〉 such that (I − RT)ρ∗ > 0
componentwise. We have two arguments, one for single-hop networks and one for
multihop.

First the case of a single-hop network. We assumed that every queue is serviceable,
so for each queue n we can pick πn ∈ S such that πn

n > 0. Let ρ∗ = N−1 ∑
n πn; then

ρ∗ = (I − RT)ρ∗ > 0 componentwise since each πn is ≥ 0 and R = 0.
In the case of a multihop network, define πn instead by πn

k = ε1n=k . We assumed
that every queue is serviceable, and that S is monotone, hence there exists some ε > 0
such that πn ∈ 〈S〉 for every n. Now, for each n let ρn be the average of πm over all
m such that 
Rmn = 1, i.e. over all queues at or downstream of n; then ρn ∈ 〈S〉 by
convexity of 〈S〉. Furthermore, we find after a little algebra that [(I − RT)ρn]k =
ε1k=n/(dn + 1) where dn is the number of queues downstream of n. Finally let ρ∗ =
N−1 ∑

n ρn; this is in 〈S〉 by convexity, and [(I −RT)ρ∗]k = εN−1/(dk + 1) > 0 for
all k.

In each case, both single-hop and multihop, we have found some ρ∗ ∈ 〈S〉 such
that (I − RT)ρ∗ > 0 componentwise. Now let r∗ = max(λ − (I − RT)ρ∗,0); clearly
r∗ ∈ FEAS, and by construction either r∗

n < λn or λn = 0, hence H(r∗) < ∞. The
solution to DEP must be at least as good as r∗, so we may as well restrict the domain
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of DEP to r ∈ FEAS such that H(r) ≤ H(r∗), which implies in particular that r ≤ λ.
Since H is convex, this gives us a closed bounded convex set. And H is strictly
convex and finite on it. Hence DEP has a unique solution, call it q̂, and q̂ ≤ λ.

In order to prove that q̂n < λn on every queue with λn > 0, i.e. that every queue
with arrivals is being served a little, we will first construct an alternative q = q̂ − εξ

such that q ∈ FEAS and qn < λn on every queue with λn > 0. Since q̂ ∈ FEAS, we
can write q̂ = λ− (I −RT)ρ̂ + ẑ for some ρ̂ ∈ 〈S〉 and ẑ ∈ R

N+ . Now pick some small
ε > 0, let ρ = (1 − ε)ρ̂ + ερ∗, and consider

q = λ − (
I − RT)

ρ + (1 − ε)ẑ + εz = q̂ − ε
(
ẑ − (

I − RT)
ρ̂ + (

I − RT)
ρ∗ − z

)
,

where

zn =
{

[(ẑ − (I − RT)ρ̂ + (I − RT)ρ∗)+]n if q̂n = 0,

0 otherwise.

Is q ∈ FEAS? It is clear that q ≥ λ − (I − RT)ρ and ρ ∈ 〈S〉. Also, the z term and a
sufficiently small choice of ε guarantee q ≥ 0. Also, if λn = 0 then q̂n = 0 because
q̂ ∈ FEAS, hence [(I − RT)ρ̂]n = ẑn, thus qn = −ε([(I − RT)ρ∗]n − zn); using the
definition of zn and the fact that (I −RT)ρ∗ > 0 componentwise, we get qn = 0. Thus
q ∈ FEAS. Furthermore, a similar argument shows that if q̂n = λn > 0 then qn < λn,
i.e. ξn > 0.

Now consider how the objective function for DEP changes as we move along the
trajectory from q̂ in direction −ξ :

dH(q̂ − εξ)

dε
= −

∑

n:λn>0

wnξn

(
λn

q̂n − εηn

− 1

)−α

.

Suppose the optimal solution to DEP, q̂, has some queues with q̂n = λn > 0. Since
ξn > 0 for all these queues, dH/dε = −∞ at ε = 0. But we chose ξ so that q̂ − εξ ∈
FEAS for sufficiently small ε, thus we obtain a contradiction to the optimality of q̂.
We conclude that q̂n < λn on all queues with λn > 0.

Proof of (ii) Write the objective function for the optimization in (10) as
G((I − RT)ρ) where

G(η) = wqα · gα(η).

We found above a ρ∗ ∈ 〈S〉 such that (I − RT)ρ∗ > 0 componentwise, hence
G((I − RT)ρ∗) is finite. The solution to the optimization must be at least as good
as ρ∗, so we might as well restrict the domain to

{
ρ ∈ 〈S〉 : (I − RT)

ρ ≥ 0 and G(ρ) ≥ G(ρ∗)
};

on this domain the objective is finite. Furthermore the domain is bounded, and it is
convex since G is concave. Since we are maximizing a finite concave function over a
convex bounded domain, the maximum is attained. �
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We now give three lemmas which mirror those used for the max-weight proof.
Lemma 5 defines an optimization problem ALGP which is very similar to ALGP
for max-weight, and shows that q̂ is its unique solution (cf. Lemma 1). Unlike the
max-weight case, this version of ALGP has q̂ appearing in the objective function, so
it is not helpful for defining q̂, which is why we used DEP instead. Lemma 6 shows
that q(t)/t ∈ FEAS for any fluid model solution q(·) (cf. Lemma 2). Lemma 7 shows
that the function L(·) appearing in ALGP is a Lyapunov function (cf. Lemma 3).
This function L is closely related to the Lyapunov function introduced by Bonald
and Massoulie [1] to prove stability of the bandwidth-sharing model. The difference
is that we have added an extra term involving q̂n to accommodate overload.

Finally, the proof of the main theorem for α-fair, Theorem 2, is identical to the
proof of the main theorem for max-weight given in Sect. 5. The only difference is
that appeals to Lemmas 1, 2 and 3 should be replaced by appeals to Lemmas 5, 6
and 7, respectively. Note that the terms FEAS, ALGP, L and q̂, which appear in the
proof of the main theorem, now have different definitions.

It remains to state and prove the three lemmas about α-fair.

Lemma 5 Given q̂ from Definition 5, define ALGP to be the following optimization
problem:

minimize L(r) = 1

1 + α

∑

n:λn>0

wnr
1+α
n (λn − q̂n)

−α over r ∈ (FEAS). (17)

(By Lemma 4(i), q̂n < λn for all queues n where λn > 0, so the objective function
makes sense.) Then ALGP has a unique solution, which is q̂.

Proof First, observe that that ALGP has a unique minimum. This is because the
feasible set is convex and closed; and L(r) → ∞ as |r| → ∞, so we may as well
restrict the optimization to a bounded subset of FEAS; and L is strictly convex.

The feasible set FEAS is defined by a finite number of linear constraints: that
r ≥ 0, that rn = 0 for queues n where λn = 0, and that r ≥ q for some q in the
convex polytope {λ− (I −RT)ρ : ρ ∈ 〈S〉}; this last polytope has finitely many faces
because S is finite. Now consider the Lagrangian for the optimization problem DEP.
At the optimum, there exist dual variables η̂ such that the complementary slackness
conditions are satisfied: for all queues n where λn > 0,

wn

(
λn

q̂n

− 1

)−α

=
∑

i

Ani η̂i ,

where i is an index for the constraints of FEAS, and the matrix A indicates which
constraints involve which of the qn. We know that q̂n < λn, hence the ηi are all finite.
Now consider the Lagrangian for the optimization problem ALGP. The complemen-
tary slackness conditions are: for all queues n where λn > 0,

wn

(
rn

λn − q̂n

)α

=
∑

i

Aniηi .
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The feasible set is the same for ALGP as for DEP, so the constraint matrix A is the
same. These conditions are satisfied by setting rn = q̂n and ηi = η̂i . Hence q̂ solves
ALGP. �

Lemma 6 For any fluid model solution q(·) of the α-fair policy such that qn(0) = 0
for all queues n where λn = 0, q(t)/t ∈ FEAS for all t > 0.

Proof Lemma 2 shows that q(t)/t satisfies the first constraint of FEAS. For the sec-
ond constraint: by differentiating (2), q̇(t) = λ − (I − RT)σ (t) + ż(t). The definition
of the α-fair policy, (10), says that (I −RT)σ (t) ≥ 0. Thus, for any queue n for which
λn = 0, q̇n(t) ≤ żn(t). But whenever qn(t) > 0, (5) tells us that żn(t) = 0. Since
qn(·) is absolutely continuous, and q̇n(t) < 0 if qn(t) > 0, we conclude qn(t) = 0 for
all t . �

Lemma 7 For the network specified in Definition 5, and with L(·) as defined in
Lemma 5,

t
d

dt
L

(
q(t)

t

)
≤ L(q̂) − L

(
q(t)

t

)
≤ 0.

Proof For the first inequality, the drift we want to bound is

t
d

dt
L

(
q(t)

t

)
=

∑

n:λn>0

wn

(
qn(t)/t

λn − q̂n

)α(
dqn(t)

dt
− qn(t)

t

)
.

To simplify the notation, we shall (for this proof only) suppress indices n for which
λn = 0 from the dot product. With this convention, the drift we want to bound is

= w
(

q(t)/t

λ − q̂

)α

·
(

dq(t)

dt
− q(t)

t

)

= w
(

q(t)/t

λ − q̂

)α

·
(

λ − (
I − RT)

σ (t) − q(t)

t

)
(18)

by (2) and (5). We will shortly show that

w
(

q(t)

λ − q̂

)α

· (I − RT)
σ (t) ≥ w

(
q(t)

λ − q̂

)α

· (λ − q̂
)
. (19)

Multiplying each side by t−α and substituting this into (18),

t
d

dt
L

(
q(t)

t

)
≤ w

(
q(t)/t

λ − q̂

)α

·
(

q̂ − q(t)

t

)
.

Finally, by convexity of L(·),
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L(q̂) ≥ L

(
q(t)

t

)
+ ∇L

(
q(t)

t

)
·
(

q̂ − q(t)

t

)

= L

(
q(t)

t

)
+ w

(
q(t)/t

λ − q̂

)α

·
(

q̂ − q(t)

t

)

and rearranging this gives the desired result. It remains to prove (19). We have two
separate arguments, one for single-hop and one for multihop networks.

Proof of (19) for single-hop network Define

G(η) = wq(t)α · gα(η),

where gα was given in the definition of the α-fair policy. The policy chooses σ (t)

to maximize G(ρ) over all ρ ∈ 〈S〉. (Note that our notation in this proof suppresses
those queues with λn = 0, and by Lemma 6 these queues have qn(t) = 0, and the α-
fair policy gives zero weight to empty queues. Thus the special notation in this proof
does not cause any problems.)

Observe that G is concave over η ≥ 0; and σ (t) ≥ 0 and λ− q̂ ≥ 0 by Lemma 4(i);
hence

G
(
σ (t)

) ≤ G(λ − q̂) + ∇G(λ − q̂) · (σ (t) − (λ − q̂)
)
.

Rearranging, and writing out ∇G explicitly,

w
(

q(t)

λ − q̂

)α

· (σ (t) − (λ − q̂)
) ≥ G

(
σ (t)

) − G(λ − q̂).

Since q̂ ∈ FEAS there exists some ρ̂ ∈ 〈S〉 such that q̂ ≥ λ− ρ̂. Since G is increasing
componentwise, and since σ (t) is chosen to maximize G and ρ̂ is a feasible choice,

G
(
σ (t)

) − G(λ − q̂) ≥ G
(
σ (t)

) − G(ρ̂) ≥ 0.

This proves (19) for a single-hop network.

Proof of (19) for multihop network We first argue that q̂ = λ − (I − RT)ρ̂ for some
ρ̂ ∈ 〈S〉. The constraint that q̂ ∈ FEAS requires q̂ ≥ λ− (I −RT)ρ for some ρ ∈ 〈S〉,
and Lemma 4(i) shows that q̂ ≤ λ. Recalling that 
R = (I − RT)−1 is non-negative,
0 ≤ 
R(λ − q̂) ≤ ρ. By monotonicity, 
R(λ − q̂) = ρ̂ for some ρ̂ ∈ 〈S〉, hence q̂ =
λ − (I − RT)ρ̂.

Now, consider the choice made by the α-fair policy at time t : it chooses σ (t) to
maximize G((I − RT)ρ) over all ρ ∈ 〈S〉 such that (I − RT)ρ ≥ 0. Our choice ρ̂

satisfies this constraint. Using concavity of G and optimality of σ (t) as in the single-
hop case, we obtain

w
(

q(t)

(I − RT)ρ̂

)α

· ((I − RT)
σ (t) − (

I − RT)
ρ̂
)

≥ G
((

I − RT)
σ (t)

) − G
((

I − RT)
ρ̂
) ≥ 0.
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Rearranging this inequality yields (19) for a multihop network. This completes the
proof.

Second inequality The second inequality in Lemma 7 is straightforward, just as in
Lemma 3. �

7 Discussion

In this paper we have studied fluid models of a switched network in overload, under
the max-weight and α-fair algorithms. We have shown that queue sizes grow linearly
in time, and characterized the growth rates.

One might ask what the purpose is of studying overload in the way we have.
Any real system has limited buffers, so queues will eventually fill up. So what is the
relevance in proving, as we have in this paper, that queue sizes grow linearly as time
tends to infinity?

One response is to extend the work to incorporate impatient users, who leave the
system after a certain random abandonment time. A heuristic analysis has been pro-
posed [6], for α-fair scheduling in the bandwidth-sharing model, but it has not been
formally proved.

Another response is to try to use our results to help design discard policies. This
might be useful for example in a data center, where queues contain requests and there
is no mechanism for customers to remove requests once they have entered the system.
But the system does not actually need to keep all unfinished requests in its queues:
it could choose to discard requests at rate q̂, where q̂ is the vector of queue growth
rates from Theorem 1, while keeping count of all requests (served plus discarded)
in a virtual queue, and use the max-weight scheduling rule based on virtual queue
sizes rather than real queues. In this way the virtual queues would grow like t q̂, but
the actual queues could be kept small. For this scheme to be useful in practice, one
needs to strike a balance between letting the virtual queues grow (since this is the
learning mechanism by which the network adapts itself to the current arrival rates
and averages out random bursts in arrivals), and making the virtual queues ‘forget’
(in order to adapt quickly when arrival rates change). We are investigating this in an
ongoing work.

Finally, there seem to be deep links between fluid limits in overload, and large
deviations performance analysis in underload. Specifically, Venkataramanan and
Lin [17] have analysed a class of switched networks running the max-weight policy,
and obtained a large deviations principle. Their rate function involves the optimiza-
tion problem from Definition 4. One might expect there to be a link between large
deviations and overload, in essence because large deviations asks the question “What
is the most likely overload arrival rate that will lead to queue sizes exceeding a cer-
tain threshold?” and our analysis asks “Given overload arrival rates, at what rate do
queue sizes grow?” In some sense, if a scheduling algorithm behaves well in overload,
then it will require sustained high arrival rates to cause overflow, so the rate function
should be large, which suggests that average queue sizes should be small in the stable
regime. Much more work is needed before we understand these connections.
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