FAST UPDATING ALGORITHMS
FOR TCAMS

ONE POPULAR HARDWARE DEVICE FOR PERFORMING FAST ROUTING LOOKUPS

Devavrat Shah
Pankaj Gupta
Stanford University

AND PACKET CLASSIFICATION IS A TERNARY CONTENT-ADDRESSABLE MEMORY

(TCAM). WE PROPOSE TWO ALGORITHMS TO MANAGE THE TCAM SUCH THAT

INCREMENTAL UPDATE TIMES REMAIN SMALL IN THE WORST CASE.

e e e e oo Internet routers look up the desti-
nation address of an incoming packet in its
forwarding table to determine the packet’s
next hop on its way to the final destination.
This routing lookup operation takes place on
each arriving packet by every router in the
path that the packet takes from its source to
the destination.

The adoption of classless interdomain rout-
ing (CIDR)' in 1993 required a routing
lookup to perform a longest prefix match oper-
ation. A router maintains a set of destination
address prefixes in a forwarding table. Given a
packet, the operation finds the longest prefix
in the forwarding table that matches the first
few bits of the packet’s destination address.

To provide enhanced services such as pack-
et filtering, traffic shaping, policy-based rout-
ing, and so on, routers also must be able to
recognize flows. A flow is a set of packets that
obey some rule, also called a policy, on the
packet’s header fields. These fields include
source and destination Internet protocol
addresses, source and destination port num-
bers, protocol, and others. For instance, all
packets with a specified destination IP address
and specified source IP address may be defined
by a rule to form a single flow.

A collection of rules is called a policy data-
base or a classifier. Identification of the flow of
an incoming packet is called packet classifica-
tion and is a generalization of the routing
lookup operation. Packet classification

requires the router to find the best-matching
rule among the set of rules in a given classifi-
er that match an incoming packet. A rule may
specify a prefix, range, or a simple regular
expression for each of several packet header
fields. An arriving packet’s header may satisfy
the conditions of more than one rule—in
which case the rule with the highest priority
determines the flow of the arriving packet.

At the time of this writing, improvements
in optical communication technologies such
as dense wavelength-division multiplexing
(DWDM) have resulted in continually
increasing link speeds up to 40 Gbps per
installed fiber. However, routers have been
largely unable to keep up at the same pace; a
maximum of 10 Gbps (OC192) ports are
available now. One main reason for this is the
relatively complex packet processing required
at each router.

As a result, the problems of routing lookup
and packet classification have recently received
considerable attention, both in academia and
the industry. See, for example, the literature for
solutions to the routing lookup problem?” and
for solutions to the packet classification prob-
lem.*!*> Many of these reports have indicated
the difficulty of the general multidimensional
packet classification problem in the worst case.

Hardware realizations of algorithmically
simpler solutions such as linear or fully asso-
ciative searches have found favor in some com-
mercial deployments. A popular device is a

0272-1732/01/$10.00 [0 2001 IEEE

special type of fully associative memory: a
ternary content-addressable memory
(TCAM). Each cell in a TCAM can take three
logic states: 0, 1, or don’t-care X. A CAM
allows a fully parallel search of the forwarding
table or a classifier database. The ternary capa-
bility lets the TCAM store wild cards and vari-
able-length prefixes by storing don’t-cares.
Lookups are performed in a TCAM by stor-
ing forwarding table entries in order of decreas-
ing prefix lengths and choosing the first entry
among all the entries that match the incom-
ing packet’s destination address. Packet classi-
fication is carried out similarly by storing
classifier rules in order of decreasing priority.

The need to maintain a sorted list makes
incremental updates slow in a TCAM. If Nis
the total number of prefixes to be stored in a
TCAM having M entries, naive addition of a
new entry can result in the need to move O(V)
TCAM entries to create the space required to
add the entry at a particular place in the
TCAM to maintain the sorted order. Alter-
natively, some TCAM entries can be inten-
tionally left unused in anticipation of future
additions. However, this leads to wasted space
and underutilization of the TCAM. Besides,
the worst case still remains O(2V).

We were motivated by the desire to simul-
taneously achieve fast incremental updates as
well as full use of the TCAM. With this
objective, we describe worst-case algorithms
(one specific for route lookups, and the other
suitable for both lookups and classification)
that achieve the optimal number of a
TCAM’s operations (such as move/write/
read) required for an incremental update. The
algorithms are online in the sense that they
perform operations on memory as update
requests arrive, instead of batching several
update requests.

In particular, we show that, if Z is the width
of the destination address field (Z equals 32 in
IPv4, and 128 in IPv6), no more than /2
memory operations are required. This algo-
rithm is proved to be optimal; that is, it per-
forms no worse than any other algorithm in
the worst case that keeps the list of forwarding
table entries in order of decreasing prefix
lengths. This compares favorably with the L
memory operations in the memory manage-
ment schemes recommended by some TCAM
vendors (see Sibercore Technologies,

www.sibercore.com/scan01_cidr_p03.pdf cur-
rent Feb. 2000). See also our later discussion.

It turns out that it isn't necessary to keep all
the forwarding table entries in the order of
decreasing prefix lengths; instead, only over-
lapping prefixes need to be in this order. Two
prefixes overlap if one is a prefix of the other;
for example, 01* overlaps with 0101*, but not
with 001*. This observation is used in the sec-
ond algorithm. Although not proved, this algo-
rithm seems to be optimal in the number of
worst-case memory operations required to
handle a forwarding table update. We also
describe how this algorithm and the results for
routing lookups extend to packet classification.

To the best of our knowledge, there’s no
previous work that attempts to (algorithmi-
cally) optimize updates on a TCAM. Most
TCAM vendors live with an O(/V) worst-case
update time solution. Some attempt to pro-
vide a hardware maximum function that com-
putes the maximum of the prefix lengths (or
priorities) of all matching entries, hence elim-
inating the requirement of keeping the table
entries sorted. However, computing the max-
imum of O(M)/log, M-bit numbers is expen-
sive in current technology in terms of logic
area and speed. (M is around 16K to 64K
presently). This is likely to worsen in the
future as TCAMs scale to greater densities.
One recent patper14 uses circuit-level opti-
mizations for fast updates at the cost of slow-
er search time and lower memory density.

Note that while the algorithms we discuss
have been mentioned in the context of a par-
allel-search TCAM, they are equally applica-
ble to other algorithms that keep a sorted list
of forwarding table entries or classifier rules,
such as hardware realizations of a linear search
algorithm.

Longest prefix matching using TCAMs

IP addresses are written in the dashed quad
notation, for instance, 103.23.3.1, represent-
ing the four bytes of an IPv4 destination
address separated by dots. An entry in a
router’s forwarding table is a pair: <route-pre-
Jix,nextHop>. A route-prefix, or simply a pre-
fix, is represented like an IP address but may
have some trailing bits treated as wild cards;
this denotes the aggregation of several 32-bit
destination IP addresses. For example, the
aggregation of 256 addresses 103.23.3.0

JANUARY—FEBRUARY 2001

TERNARY CAMS

Memory
location Prefix Next hop
0 | P1 | 103.23.3/24 171.3.2.22 -
1 | P2 | 103.23/16 171.3.2.4 -
2 | P3| 101.1/16 120.33.32.98 >
103.23.3.7=4"1"ps | 101.2013 320.3.3.1 »| Priority
4 | P5 | 100/9 10.0.0.111 »-| ENCOder
5 >
6
7 -

Figure 1. Longest prefix matching using a TCAM.

[EEE MICRO

32-bit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

M-1

Figure 2. General configuration of a TCAM
used for longest prefix matching. No prefixes
of a length less than 8 bits are shown
because they are typically not found in for-
warding tables.

through 103.23.3.255 is represented by the
prefix 103.23.3/24, where 24 is the length of
the prefix, and the last 8 bits are wild cards.
Other examples of prefixes are 101/8,
54.128/10, 38.23.32/21, and 200.3.41.1/32.
nextHop is the IP address of a router or end
host that is a neighbor of this router.

Given an incoming packet’s destination
address, a routing lookup operation finds the
entry with the longest—that is, the most spe-
cific—of all the prefixes matching the first few
bits of the incoming packet’s destination

address. It then forwards the
incoming packet to this
entry’s next-hop address.
This longest prefix match-
ing operation is performed in
a TCAM by storing entries in
decreasing order of prefix
lengths. The TCAM searches

the destination address of an

P1
171.3.2.22

incoming packet with all the
prefixes in parallel. Several
prefixes (up to L = 32 in the
case of IPv4 lookups) may
match the destination address.
A priority encoder logic then
selects the first matching entry—the entry with
the matching prefix at the lowest physical
memory address. Figure 1 shows an example.
Figure 2 shows the general configuration
for storing N prefixes in a TCAM with M
memory locations. We refer to the set of all
prefixes of length jas P. We also assume a
memory manager software that arranges pre-
fixes in the desired order and sends appropri-
ate instructions to the TCAM hardware.
Forwarding tables in routers are dynamic;
prefixes can be added or deleted as links go up
or down due to changes in network topology.
These changes can occur at the rate of approx-
imately 100 to 1,000 prefixes per second."
While this is slow in comparison to the pack-
et lookup rate (which is on the order of mil-
lions of packets per second), it’s desirable to
obtain quick TCAM updates. Slow updates
may cause incoming packets to be buffered
while an update operation is being carried out.
This is undesirable for many applications
because it may cause head-of-line blocking and
require a large buffer space separate from the
main packet buffer memory in the router.
Indeed, some TCAM vendors (see Netlogic
Microsystems at www.netlogicmicro.com) use
a single-cycle update time for a big competitive
advantage. Hence, it’s desirable to keep the
incremental update time as small as possible.
Forwarding table updates complicate keep-
ing the list of prefixes in the TCAM in sorted
order. This issue is best explained with the exam-
ple in Figure 1. Assume that a new prefix
103.23.128/18 is to be added to the forwarding
table. It must be stored between prefixes
103.23.3/24 (P1) and 103.23/16 (P2), cur-

rently at memory locations 0 and 1 to maintain

32-bit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

Empty space

M-1

Figure 3. This naive solution keeps the free
space pool at the bottom of memory.

the sorted order. However, there’s a problem
since there’s no empty space at that location.
There can be several ways to handle this issue.

The TCAM manager can keep the free space
pool (containing all unused TCAM entries) at
one end of the TCAM, say at the bottom, as
shown in Figure 3. A naive solution would shift
prefixes P2 to P5 downward in memory by one
location each, thus creating an empty space
between P1 and P2 to store the new prefix. This
has worst-case time complexity O(/NV), where
Nis the number of prefixes in the TCAM of
size M, and is clearly expensive. For instance, if
N = 64,000, it will take 1.2 milliseconds
(assuming one memory write operation can be
performed in a 20-ns clock cycle) to complete
one update operation. This is too slow for a
lookup engine that completes one lookup in
20 ns because a large packet buffer would be
required to store incoming packets while an
update is being completed.

In anticipation of additions and deletions
of prefixes, the TCAM may keep a few empty

memory locations at all X nonempty memo-

32-hit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

Empty space

M-1

Figure 4. This solution improves the average
case update time by keeping empty spaces
interspersed with prefixes in the TCAM.

ry locations, as shown in Figure 4. The aver-
age case update time improves to O(X) but
degenerates to O(/V) if the intermediate empty
spaces are filled up. This solution also wastes
precious CAM space.

The following solution is based on the
observation that two prefixes of the same
length don’t need to be in any specific order.
This means that if ; is larger than £, all pre-
fixes in the set 2, must appear before those in
the set P, but prefixes within set P, may
appear in any order. Hence, there’s only a par-
tial ordering constraint between all prefixes
(as opposed to a complete ordering constraint
in the naive solution). We call this constraint
the prefix-length ordering constraint.

This observation leads to an algorithm,
referred to here as the Z-algorithm, that can
create an empty space in a TCAM in no more
than Z memory shifts (recall that L=32), as
shown in Figure 5 (next page). The average
case can be improved again by keeping some
empty spaces that are not all at the bottom of
the TCAM. A later section proposes an opti-
mal algorithm, PLO_OPT, that brings down

the worst-case number of memory operations

JANUARY—FEBRUARY 2001 Hg

[EEE MICRO

TERNARY CAMS

32-bit prefixes

31-bit prefixes

30-bit prefixes

9-bit prefixes

8-bit prefixes

Empty space

M-1

Figure 5. The prefix-length ordering con-
straint enables an empty memory location to
be found in most L = 32 memory shifts.

per update to /2.

The prefix-length ordering constraint is also
more restrictive than that required for a cor-
rect longest prefix matching operation using
a TCAM. In Figure 1, while prefix
103.23.3/24 (P1) needs to be at a lower mem-
ory address than prefix 103.23/16 (P2) at all
times, it can be stored anywhere in the TCAM
with respect to prefixes P3, P4, and P5. This
is because P1 doesn’t overlap with prefix P3
or P4 or P5. That is, no incoming destination
address can match both P1 and P3, or P1 and
P4, or P1 and P5. Hence, the constraint on
the ordering of the prefixes in a TCAM can
now be relaxed to only overlapping prefixes.
Since two prefixes overlap if one is fully con-
tained inside the other, there’s an ordering
constraint between two prefixes p;and p;if and
only if one is a prefix of the other.

If all prefixes were to be visualized as being
stored in a trie data structure, only prefixes that
lie on the same chain (the path from the root
to a leaf node) of the trie need to be ordered.

Q1

Q2

3
Q Q4

Figure 6. lllustration of the chain-ancestor
ordering constraint. There are two maximal
chains in this trie: one comprises Q1, Q2, and
Q3; the other comprises Q1 and Q4.

For example, as shown in Figure 6, prefixes
Q3, Q2, and Q1 must appear in order since
they lie on the same chain. Prefix Q4 can be
stored anywhere with respect to Q2 and Q3,
but it must be stored at a lower memory loca-
tion than Q1. W refer to this constraint as the
chain-ancestor ordering constraint. A later sec-
tion proposes an algorithm, CAO_OPT, that
exploits this relaxed constraint to decrease the
worst-case number of memory operations per
update to D/2. Here, D is the maximum
length of any chain in the trie. D is usually
small (at most 5) for even large backbone for-
warding tables, hence, this algorithm achieves
worst-case updates in a few clock cycles.

Prefix-length ordering constraint algorithm
The basic idea of the PLO_OPT algorithm
is to keep all the unused entries in the center
of the TCAM. The arrangement (shown in
Figure 7) is such that the set of prefixes of
length L, L— 1, ..., L/2 are always above the
free space pool, and the set of L/2 = 1, L/2 —
2, ..., | prefixes are always below the free space
pool. Addition of a new prefix would have to
swap at most L/2 memory entries to obtain an
unused memory entry. Deletion of a prefix is
exactly the reverse of addition, moving the
newly created space back to the center of the
TCAM. To support the update operations, the
algorithm uses a trie data structure to keep
track of the prefixes stored in the TCAM.
The average case update time can again be
improved to better than Z/2 by keeping some
unused entries near each set P, as was done in
Figure 4. The worst-case number of memory
operations is now at least Z/2 and can become

32-bit prefixes

31-bit prefixes

L] L]
L] L]
L] L]

17-bit prefixes

Empty space

16-bit prefixes
L] L]
L] L]
L] L]

N-1
3-bit prefixes
2-bit prefixes
M-1 1-bit prefixes

Figure 7 The PLO_OPT algorithm keeps all
the unused TCAM entries in the center of the
TCAM such that all prefixes longer than 16
bits are above the empty space, and all pre-
fixes shorter than 16 bits are below the
empty space at all times.

even higher. The distribution of the number of
unused entries to be kept around P, depends
on the distribution of updates and is therefore
difficult to determine a priori. Possible heuris-
tics for placement of an empty space include a
uniform distribution and a distribution learned
from recently observed update requests.

The PLO_OPT algorithm can be proved
to be an optimal online algorithm under the
prefix-length ordering constraint. In other
words, no algorithm that is unaware of future
update requests can perform better than the
PLO_OPT algorithm under the prefix-length

ordering constraint.
Algorithm for chain-ancestor ordering constraint
Before we describe the CAO_OPT algo-

rithm, we need to clarify some terminology.

+ LC(p) is the longest chain comprising

0
e q3
y
.
|
.
.
'.
[Yoy
;
\
\
‘\
\
\
\
\
\\
\
\
\
\
\
:
\
‘\
\
" Q4 @
g
v ,
-
-
y
)
,
,
& 01
M-1

Figure 8. Memory assignment of prefixes in
Figure 6 under the chain-ancestor ordering
constraint. Also shown is the logical inverted
trie.

prefix p.

o len(LC(p)) is length of (number of pre-
fixes in LC(p)).

* rootpath(p) is the path from the trie root
node to node p.

* ancestor of p is any node in rootpath(p).

o prefix-child of p is a child node of p that
has a prefix.

o hcld(p) is highest prefix-child of p; that
is, among the children of p, the node that
has the highest memory location in the
TCAM.

« HCN(p) is the chain comprising ances-
tors of p, prefix p itself, hcld(p),
held(held(p)), and so on; that is, a descen-
dant node of p is in HCN(p) if it’s the
highest prefix-child of its ancestor.

The CAO_OPT algorithm also keeps the
free space pool in the center of the TCAM
while maintaining the chain-ancestor ordering
among the entries in the TCAM. Hence, alog-
ical inverted trie can be superimposed on the
prefixes stored in the TCAM. For example, the
prefixes in Figure 6 may be stored as shown in
Figure 8, with the logical inverted trie shown in
dashed lines. The basic idea is to arrange the

JANUARY—FEBRUARY 2001 4]

[EEE MICRO

TERNARY CAMS

0
(L J
| (|
p+1 h
- & o
pi “ ,’I ,"
e ! ;
B . hcld(hcld /
| ™ (held(p)) ;
: , Free space pool |
L1 L/ /
& roid(p)
®)
L J
M-1

Figure 9. The distribution of chains in the
TCAM under the chain-ancestor ordering
constraint. Every prefix pis at a distance less
than or equal to [D/200prefixes for the free
space pool, where D equals len(LC(p)).

Insert __| - !
g here i

g —| P -

M1 i
.+ Free space pool
M2 —
b
®
L
M-1

Figure 10. The way an insertion proceeds in
the CAO_OPT algorithm when the prefix to
be inserted is above the free space pool.

chains in such a way so as to maintain the fol-
lowing invariant. Assume that D = len(LC(p))
for a prefix p. Every prefix pis stored in a mem-

0
[
® e
-
M1 .
' 1 Free space pool
M2 T :
Lc@) — | :
HCN(g) | '
Insert |
g here
M-1

Figure 11. The way an insertion proceeds in
the CAO_OPT algorithm when the prefix to
be inserted is below the free space pool.

ory location such that there are at most (D/20J
prefixes between pand a free space entry in the

TCAM. Basically, the algorithm distributes the

maximal trie chains around the free space pool

as equally as possible (see Figure 9).

Insertion

Insertion of a new prefix ¢ proceeds in the
following manner. First, L((g) is identified
using an auxiliary data structure that’s
described later. It must be determined whether
g needs to be inserted above or below the free
space pool (to maintain the balance of L({(g)).
The two cases are handled separately.

Case I (Figure 10). Assume that ¢ is to be
inserted above the free space pool between
prefixes p, and p;+ 1 on LC(g). One empty
unused entry can be created at that location by
moving prefixes on L((g) downward one by
one, starting from p; to the unused entry at
either the top (memory location labeled 721
in Figure 10 or the bottom (72) of the free
space pool. The total number of movements
is clearly less than D/2, where Dis len(LU(g)).
The movements don’t violate the chain-ances-
tor ordering constraint since a prefix is moved
downward after its ancestor has moved.
Hence, the constraint is always satisfied.

Case II (Figure 11). Assume that 4 is to be

M1] :
' Free space pool

D

Delete q

M-1

Figure 12. Deletion of a prefix in the
CAO_OPT algorithm.

inserted below the free space pool. Creating an
empty entry in the TCAM now requires mov-
ing the prefixes upward toward the free space
pool. Hence, the chain we consider in this case
is HCM(g), which may or may not be identi-
cal to L((g). Movement of prefixes one by one
upward doesn’t violate the chain-ancestor
ordering constraint since a prefix is moved to
the location previously occupied by the child
that occupied the highest memory location
among all the children. Again, the total num-
ber of movements is clearly less than D/2.

Deletion
Deletion is similar to insertion, with the fol-
lowing exceptions:

1. Tt works in reverse, moving the newly cre-
ated empty space to the free space pool.

2. Tt works on the chain that has prefix p
adjacent to the free space pool; that is,
prefix p is at memory locations 721 — 1 or
m2 + 1.

Figure 12 shows the deletion of a prefix.
The new unused entry created by the deletion
of prefix ¢ is rippled up by moving prefixes
downward on this chain. The total number
of movements is less than D/2, where D is

now either the length of LC(p) if g is deleted

from below the free space pool, or the length
of HCN(p) if g is deleted from above the free

space pool.

Auxiliary trie data structure

The CAO_OPT algorithm maintains an
auxiliary trie data structure similar to
PLO_OPT to support update operations.
However, to determine LC(p) and HCN(p)
quickly, we need to keep more information in
trie node p. This takes no more than O(L)
time by maintaining the following addition-
al fields in every trie node: w#p), wr_ptr(p),
and hcld_ptr(p). wH(p) equals

Q if pisaleaf

E{nax (wt(lehild (p), rchild (p)))

O if pisnot aleaf’ and not a prefix
q+ max(wt(lc/aild(). rebild p)){

E otherwise

Here, lchild(p) and rchild(p) are the immedi-
ate left and right children nodes of p. wt_ptr(p)
keeps a pointer to the prefix child, which has
the highest weight, and hcld_ptr(p) keeps a
pointer to the prefix child, which appears at
the highest memory location in the TCAM.

Although we haven't proved it, we conjec-
ture that the CAO_OPT algorithm is an opti-
mal online algorithm under the chain-ancestor
ordering constraint.

Simulation results

In our simulation we used two publicly
available routing-table snapshots (at MAE-
EAST and MAE-WEST network access
points) and three-hour BGP-update traces on
these snapshots taken from Merit
(www.merit.edu/ipma/routing_table). Table

1 lists the statistics of the routing tables and
BGP updates.

Table 1. Statistics of routing tables
and update traces used
in simulations.

Type MAE-EAST MAE-WEST
Prefixes 43344 35217
Inserts 34204 34114
Deletes 9140 1103

JANUARY—FEBRUARY 2001

TERNARY CAMS

I TR

TMAE-WEST

xMAE-EAST |~

B B [g
&
£

E 20 VT T <SSO OO SO SO OO SO SO SO S
3
£

E‘ ,,,,,,,
o
£
[

SN Y SO NS WU NS SN N N S S S—
G

g ,,,,,,
€
=]

DN £ S OO OO NSO SOOI SOV SOV SO SO

s S PO SR S S S SO S

0 ; ; ; ; ; ; ; ;
50 100 150 200 250 300 350 400 450

Number of updates (x100)

Figure 13. The running average of the number of memory movements required by the

L-algorithm to support updates on MAE-WEST and MAE-EAST routing tables.

4.6 ! :
; + MAE-WEST
4.4 ;g% ‘ x MAE-EAST |~
; N
. &
5 : W&W&
E 40 44444444444444444444444444444 R R
g
[e]
€ 3.8 ;x
> +
S +§
g 36 IX \N‘
X
£ +x \ -~
G 3.4 +X o
—_ . X
2 +x
E 32}
zZ +x
X
3.0 [%
974
K+
2.8 T
X+
2.6
0 50 100 150 200 250 300 350 400

Number of updates (x100)

Figure 14. The running average of the number of memory movements required by the
PLO_OPT algorithm to support updates on MAE-WEST and MAE-EAST routing tables.

[EEE MICRO

Figure 13 shows a running average of the

450

a function of the number of
updates. The figure shows that
the average settles down to
around eight memory move-
ments per update operation.
This is expected since most of
the updates happen to prefix-
es that are between 8 bits and
24 bits long, because there are
very few (less than 0.1%) pre-
fixes that are longer than 24
bits. Hence, if we assume that
updates are uniformly distrib-
uted between these lengths,
the running average should
settle at (24 — 8)/2 = 8. As
shown in Figure 14, the aver-
age drops to approximately
four memory movements for
the PLO_OPT algorithm.
This is again expected since
theoretical analysis showed an
improvement over the Z-algo-
rithm by a factor of 2.

The motivation for a less
(the

chain-ancestor ordering con-

stringent constraint
straint) is clear from Figure
15, which plots the maximal
chain length distribution of
the two routing tables. The
figure shows exponentially
decreasing distributions; for
example, 97% of the MAE-
EAST chains have a length
less than or equal to two, and
all chains have a length less
than six.

Figure 16 plots the running
average of the number of
memory movements required
as a function of the number
of updates using the
CAO_OPT algorithm. This
figure shows that the average
quickly drops down to 1.02
to 1.06 for both routing
tables.

Table 2 and Table 3 (on
page 46) list performance

summary statistics of both algorithms on the

number of memory movements (memory two routing tables. Note that the standard

writes or shifts) required in the Z-algorithm as

deviation of the CAO_OPT algorithm is

100,000 :
—— MAE-WEST
- % - MAE-EAST
10,000 ‘ B : \\
\\\%\\ \
0 Tl
£ 1,000 : S
< \‘~
(8] S
- .
E 100 . . BRI
10 . . . O .
1 :
1.5 2 2.5 3 35 4 4.5 5

Maximal chain length

Figure 15. The chain length distribution on the two routing tables. Note the logarithmic scale

on the y-axis.

1.18 : : R : : e

x H H H H H H B
+MAE-WEST
L RS S S xMAE-EAST |
X

B B
a
c
£
S 112 [b s
>
o
=
P B B B O S S
o
§
£ 108 [Mt o
©
D 1.06 fir B B
€ .
5 o

1,04 J i g s s b

a—
1 B B B B B : B H
0 50 100 150 200 250 300 350 400 450

Number of updates (x100)

Figure 16. The running average of the number of memory movements required by the
CAQO_OPT algorithm to support updates on MAE-WEST and MAE-EAST routing tables.

quite small (and much less than that of the to the exponentially decreasing chain length
PLO_OPT algorithm). This is probably due distribution. This should make the

JANUARY—FEBRUARY 2001 45

TERNARY CAMS

Table 2. Summary of performance numbers on

MAE-WEST routing table.

Algorithm Maximum Average Standard deviation
L-algorithm 22.0 7.76 3.93
PLO_OPT 13.0 3.66 1.93
CAO_OPT 3.0 1.05 0.02

Algorithm

Table 3. Summary of performance numbers on

Maximum Average Standard deviation

MAE-EAST routing table.

L-algorithm
PLO_OPT
CAO_OPT

21.0 7.27 4.09
12.0 4.1 2.03
3.0 1.02 0.01

[EEE MICRO

CAO_OPT algorithm even more attractive
in practice.

Packet classification

So far, we've discussed updates in the con-
text of routing lookups. Both the PLO_OPT
and CAO_OPT algorithms also extend to
packet classification.

The prefix-length ordering constraint is
equivalent to keeping the list of rules in a clas-
sifier ordered by priority. The PLO_OPT
algorithm then degenerates to the naive algo-
rithm that requires O(V) memory movements
per update in the worst case. Analyzing for the
set of overlapping rules and generating a con-
straint tree could bring this down. Two rules
overlap if a packet exists that matches both
rules, and only overlapping rules need to be
kept in the order of their priority in the
TCAM. The constraint tree captures these
constraints in a tree form.

Using the constraint tree to determine rule
ordering instead of the prefix trie lets us use
the CAO_OPT algorithm with little modifi-
cation. Of course, the benefit of using the
chain-ancestor ordering constraint depends
on the chain length distribution in the con-
straint tree, and can only be determined by
doing an analysis of real-life classifiers. This
task is made difficult by the absence of large
publicly available classifiers.

andling incremental updates in routing
lookups can be a slow process—even in
simple data structures such as that maintained

in a ternary CAM. Both of our proposed algo-
rithms for high-speed updates in TCAMs
operate under two separate constraints. Nei-
ther requires additional circuitry on the
TCAM chip, and one can be proved optimal.
In particular, the proposed PLO_OPT algo-
rithm for the stricter (and more well-known)
prefix-length ordering constraint improves
update speed by a factor of two over the best-
known solution.

The CAO_OPT algorithm for the less strin-
gent chain-ancestor ordering constraint guar-
antees correctness at all times, and completes
one prefix update in slightly greater than one
(1.02 to 1.06 observed using simulations on
real-life routing tables and update traces) mem-
ory movement per update operation. Algo-
rithm CAO_OPT is also useful for fast updates
when a TCAM is used for packet classification.

The algorithms described here assume that
the maximum number of entries is almost the
same as the TCAM size. However, we are now
interested in whether we can provide better
bounds if we're guaranteed that the TCAM
won't be occupied more than (1/4)th fraction
of its size. If we can provide better bounds,
can we prove optimality? We could simply
extend our two algorithms to a case in which
the bounds are reduced from 4/2 to d/2k.
Then, we can provide optimality under cer-
tain assumptions, but not for the general case.
Moreover, itll be interesting to see if we can
achieve an optimal average case algorithm
under certain updating distribution. HICRD

Acknowledgments

We gratefully acknowledge Spencer Greene,
now at Juniper Networks, for mentioning the
possibility of a better algorithm with a less
stringent constraint than the prefix-length
ordering constraint.

1. Y.RekhterandT. Li, “An Architecture for IP
Address Allocation with CIDR,” RFC 1518,
1993; http://rfc.net/rfc1518.html.

2. M. Waldvogel et al., “Scalable High-Speed
IP Routing Lookups,” Proc. ACM Sigcomm,
ACM, N.Y., 1997, pp. 25-36.

3. A.Brodnik et al., “Small Forwarding Tables
for Fast Routing Lookups,” Proc. ACM Sig-
comm, ACM, N.Y., 1997, pp. 3-13.

4. P. Gupta, S. Lin, and N. McKeown, “Rout-

ing Lookups in Hardware at Memory Access
Speeds,” Proc. INFOCOM, IEEE Press, Pis-
cataway, N.J., 1998, pp. 1240-1247.

5. B.Lampson, V. Srinivasan, and G. Varghese,
“1P Lookups Using Multiway and Multicol-
umn Search,” Proc. INFOCOM, 1998, pp.
1248-1256.

6. S. Nilsson and G. Karlsson, “IP-Address
Lookup Using LC-Tries,” IEEE J. Selected
Areas in Communications, vol. 17, no. 6,
1999, pp. 1083-1092.

7. V. Srinivasan and G. Varghese, “Fast
Address Lookups Using Controlled Prefix
Expansion,” ACM Trans. Computer Sys-
tems, vol. 17, no. 1, Oct. 1999, pp. 1-40.

8. T.V.Lakshman and D. Stiliadis, “High-Speed
Policy-Based Packet Forwarding Using Effi-
cient Multidimensional Range Matching,”
Proc. ACM Sigcomm, ACM, N.Y., 1998,
pp. 191-202.

9. V.Srinivasan etal., “Scalable Level 4 Switch-
ing and Fast Firewall Processing,” Proc.
ACM Sigcomm, 1998, pp. 203-214.

10. P. Gupta and N. McKeown, “Classifying
Packets Using Hierarchical Intelligent Cut-
tings,” IEEE Micro, vol. 20, no. 1, Jan. 2000,
pp. 34-41.

11. P. Gupta and N. McKeown, "Packet Classi-
fication on Multiple Fields,” Proc. ACM Sig-
comm, ACM, N.Y., 1999, pp. 147-160.

12. M.M. Buddhikot, S. Suri, and M. Waldvogel,
“Space Decomposition Techniques for Fast
Layer-4 Switching,” Protocols for High
Speed Networks, vol. 66, no. 6, IFIP, Lax-
enburg, Austria/I[EEE Computer Soc., Los
Alamitos, Calif., Aug. 1999, pp. 277-283.

13. V. Srinivasan, G. Varghese, and S. Suri, “Fast
Packet Classification Using Tuple Space
Search,” Proc. ACM Sigcomm, ACM, N.Y.,
1999, pp. 135-46.

14. M. Kobayashi, T. Murase, and A. Kuriyama,
“A Longest Prefix Match Search Engine for
Multigigabit IP Processing,” Proc. Int’l Conf.
on Communications (ICC 2000), IEEE Press,
Piscataway, N.J., 2000, p. 1360.

15. C. Labovitz, G. R. Malan, and F. Jahanian,
“Internet Routing Instability,” IEEE/ACM
Trans. Networking, vol. 6, no. 5, Oct. 1999,
pp. 515-28.

Devavrat Shah is working toward his PhD
degree in the Computer Science Department
at Stanford University. His interests include

algorithms for networks, probabilistic analy-
sis of algorithms and queuing theory. Shah
received a BTech degree in computer science
from IIT-Bombay.

Pankaj Gupta is a PhD candidate in the Com-
puter Science Department, Stanford Univer-
sity. His interests include packet classification
and routing lookup for high-speed networks.
Gupta received a BTech degree from IIT-
Delhi and a PhD degree from Stanford Uni-

versity, both in computer science.

Send questions and comments about this
article to Devavrat Shah, 268 Packard-EE
Bldg., 350 Serra Mall, Stanford University,
Stanford, CA 94305; devavrat@stanford.edu.

Call for
Articles

IEEF Micro seeks general-interest submissions for publication in
upcoming 2001 issues. These works should discuss the design, per-
formance, or application of microcomputer and microprocessor sys-
tems. Of special interest are articles on embedded systems.

Summaries of work in progress and descriptions of recently com-
pleted works are most welcome, as are tutorials.

Send a 150-word abstract to /EEE Micro's Magazine Assistant
at micro-ma@computer.org. Include your full contact informa-
tion (author name(s), postal/e-mail addresses, and phone/fax
numbers). Micro does not accept previously published material.

Check Micro's home page at http://computer.org/micro for
author guidelines and work/figure/reference limits. All submis-
sions pass through a peer-review process consistent with other pro-
fessional-level technical publications, and editing for clarity,
readability, and conciseness.

JANUARY—FEBRUARY 2001

i

