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Crowdsourcing systems, in which numerous tasks are electronically distributed to numerous “information pieceworkers,”
have emerged as an effective paradigm for human-powered solving of large-scale problems in domains such as image
classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers
can be unreliable, nearly all such systems must devise schemes to increase confidence in their answers, typically by
assigning each task multiple times and combining the answers in an appropriate manner, e.g., majority voting.

In this paper, we consider a general model of such crowdsourcing tasks and pose the problem of minimizing the total
price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm
for deciding which tasks to assign to which workers and for inferring correct answers from the workers’ answers. We show
that our algorithm, inspired by belief propagation and low-rank matrix approximation, significantly outperforms majority
voting and, in fact, is optimal through comparison to an oracle that knows the reliability of every worker. Further, we
compare our approach with a more general class of algorithms that can dynamically assign tasks. By adaptively deciding
which questions to ask to the next set of arriving workers, one might hope to reduce uncertainty more efficiently. We show
that, perhaps surprisingly, the minimum price necessary to achieve a target reliability scales in the same manner under
both adaptive and nonadaptive scenarios. Hence, our nonadaptive approach is order optimal under both scenarios. This
strongly relies on the fact that workers are fleeting and cannot be exploited. Therefore, architecturally, our results suggest
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that building a reliable worker-reputation system is essential to fully harnessing the potential of adaptive designs.
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Area of review: Games, Information, and Networks.
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1. Introduction

Background. Crowdsourcing systems have emerged
as an effective paradigm for human-powered problem
solving and are now in widespread use for large-scale
data-processing tasks such as image classification, video
annotation, form data entry, optical character recognition,
translation, recommendation, and proofreading. Crowd-
sourcing systems such as Amazon Mechanical Turk,! estab-
lish a market where a “taskmaster” can submit batches of
small tasks to be completed for a small fee by any worker
choosing to pick them up. For example a worker may be
able to earn a few cents by indicating which images from
a set of 30 are suitable for children (one of the benefits of
crowdsourcing is its applicability to such highly subjective
questions).
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Because these crowdsourced tasks are tedious and the pay
is low, errors are common even among workers who make
an effort. At the extreme, some workers are “spammers,”
submitting arbitrary answers independent of the question
in order to collect their fee. Thus, all crowdsourcers need
strategies to ensure the reliability of their answers. When
the system allows the crowdsourcers to identify and reuse
particular workers, a common approach is to manage a
pool of reliable workers in an explore/exploit fashion. How-
ever in many crowdsourcing platforms such as Amazon
Mechanical Turk, the worker crowd is large, anonymous,
and transient, and it is generally difficult to build up a trust
relationship with a particular set of workers.? It is also diffi-
cult to condition payment on correct answers, as the correct
answer may never truly be known and delaying payment
can annoy workers and make it harder to recruit them to
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your task next time. Instead, most crowdsourcers resort to
redundancy, giving each task to multiple workers, paying
them all irrespective of their answers, and aggregating the
results by some method such as majority voting.

For such systems there is a natural core optimization
problem to be solved. Assuming the taskmaster wishes to
achieve a certain reliability in her answers, how can she do
so at minimum cost (which is equivalent to asking how can
she do so while asking the fewest possible questions)?

Several characteristics of crowdsourcing systems make
this problem interesting. Workers are neither persistent nor
identifiable; each batch of tasks will be solved by a worker
who may be completely new and whom you may never
see again. Thus one cannot identify and reuse particularly
reliable workers. Nonetheless, by comparing one worker’s
answer to others’ on the same question, it is possible to
draw conclusions about a worker’s reliability, which can
be used to weight their answers to other questions in their
batch. However, batches must be of manageable size, obey-
ing limits on the number of tasks that can be given to a
single worker.

Another interesting aspect of this problem is the choice
of task assignments. Unlike many inference tasks that
makes inferences based on a fixed set of signals, our algo-
rithm can choose which signals to measure by deciding
which questions to include in which batches. In addition,
there are several plausible options: for example, we might
choose to ask a few “pilot questions” to each worker (just
like a qualifying exam) to decide on the reliability of the
worker. Another possibility is to first ask few questions and
based on the answers decide to ask more questions or not.
We would like to understand the role of all such varia-
tions in the overall optimization of budget for reliable task
processing.

In the remainder of this section, we will define a formal
probabilistic model that captures these aspects of the prob-
lem. We consider both a nonadaptive scenario, in which all
questions are asked simultaneously and all the responses
are collected simultaneously, and an adaptive scenario, in
which one may adaptively choose which tasks to assign to
the next arriving worker based on all the previous answers
collected thus far. We provide a nonadaptive task alloca-
tion scheme and an inference algorithm based on low-rank
matrix approximations and belief propagation. We will then
show that our algorithm is order optimal: for a given target
error rate, it spends only a constant factor times the mini-
mum necessary to achieve that error rate. The optimality is
established through comparisons to the best possible non-
adaptive task allocation scheme and an oracle estimator that
can make optimal decisions based on extra information pro-
vided by an oracle. In particular, we derive a parameter g
that characterizes the “collective” reliability of the crowd,
and show that to achieve target reliability &, it is both neces-
sary and sufficient to replicate each task @((1/g)log(1/¢))
times. This leads to the next question of interest: by using
adaptive task assignment, can we ask fewer questions and
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still achieve the same error rate? We, somewhat surpris-
ingly, show that the optimal costs under this adaptive sce-
nario scale in the same manner as the nonadaptive scenario;
asking questions adaptively does not help!

Setup. We consider the following probabilistic model
for crowdsourcing. There is a set of m binary tasks
that is associated with unobserved “correct” solutions:
{t:}icpm) € {1} Here and after, we use [N] to denote the
set of first N integers. In the image categorization exam-
ple stated earlier, a set of tasks corresponds to labeling m
images as suitable for children (41) or not (—1). We will
be interested in finding the true solutions by querying noisy
workers who arrive one at a time in an online fashion.

An algorithmic solution to crowdsourcing consists of
two components: a task allocation scheme and an infer-
ence algorithm. In task allocation phase queries are made
sequentially according to the following rule. At the jth
step, the task assignment scheme chooses a subset T; C [m]
of tasks to be assigned to the next arriving noisy worker.
The only constraint on the choice of the batch is that the
size |T;| must obey some limit on the number of tasks that
can be given to a single worker. Let r denote such a limit
on the number of tasks that can be assigned to a single
worker, such that all batches must satisfy |7;| < r. Then, a
worker j arrives, whose latent reliability is parametrized by
p; €0, 1]. For each assigned task, i.e., i € T;, this worker
gives a noisy answer A;; such that

A ="
—t; otherwise,

with probability p;,

and A; =0 if i ¢ T;. (Throughout this paper, we use
boldface characters to denote random variables and ran-
dom matrices unless it is clear from the context.) The
next assignment 7}, can be chosen adaptively, taking into
account all of the previous assignments and the answers
collected thus far. This process is repeated until the task
assignment scheme decides to stop, typically when the total
number of queries meet a certain budget constraint. Then,
in the subsequent inference phase, an inference algorithm
makes a final estimation of the true answers.

We say a task allocation scheme is adaptive if the choice
of T, depends on the answers collected on previous steps,
and it is nonadaptive if it does not depend on the answers.
In practice, one might prefer using a nonadaptive scheme,
since assigning all the batches simultaneously and hav-
ing all the batches of tasks processed in parallel reduces
latency. However, by switching to an adaptive task alloca-
tion, one might be able to reduce uncertainty more effi-
ciently. We investigate this possibility in §2.4, and show
that the gain from adaptation is limited.

Note here that at the time of assigning tasks 7; for a
next arriving worker j, the algorithm is not aware of the
latent reliability of the worker. This is consistent with how
real-world crowdsourcing works, since taskmasters typi-
cally have no choice over which worker is going to pick
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up which batch of tasks. Further, we make the pessimistic
assumption that workers are neither persistent nor identi-
fiable; each batch of tasks 7; will be solved by a worker
who may be completely new and whom you may never
see again. Thus one cannot identify and reuse particularly
reliable workers. This is a different setting from adaptive
games (Littlestone and Warmuth 1989), where you have
a sequence of trials and a set of predictions is made at
each step by a pool of experts. In adaptive games, you can
identify reliable experts from their past performance using
techniques like multiplicative weights, whereas in crowd-
sourcing you cannot hope to exploit any particular worker.

The latent variable p; captures how some workers are
more diligent or have more expertise than others, while
some other workers might be trying to cheat. The random
variable A;; is independent of any other event given p;. The
underlying assumption here is that the error probability of
a worker does not depend on the particular task and all
the tasks share an equal level of difficulty. Hence, each
worker’s performance is consistent across different tasks.
We discuss a possible generalization of this model in §2.7.

We further assume that the reliabilities of workers {p;}
are independent and identically distributed random vari-
ables with a given distribution on [0, 1]. As one exam-
ple we define the spammer-hammer model, where each
worker is either a “hammer” with probability ¢ or is a
“spammer” with probability 1 — ¢g. A hammer answers all
questions correctly, meaning p; = 1, and a spammer gives
random answers, meaning p; = 1/2. It should be noted
that the meaning of a spammer might be different from
its use in other literature. In this model, a spammer is a
worker who gives uniformly random labels independent of
the true label. In other literature in crowdsourcing, the word
spammer has been used, for instance, to refer to a worker
who always gives “+” labels (e.g., Raykar and Yu 2012).
Another example is the beta distribution with some param-
eters @ >0 and B > 0 (f(p) = p* (1 — p)#!/B(a, B)
for a proper normalization of B(«, 8)) (e.g., Holmes 2011,
Raykar et al. 2010). A distribution of p; characterizes a
crowd, and the following parameter plays an important role
in capturing the “collective quality” of this crowd, as will
be clear from our main results:

q=E[(2p; - 1)’].

A value of g close to one indicates that a large pro-
portion of the workers are diligent, whereas ¢ close to
zero indicates that there are many spammers in the crowd.
The definition of g is consistent with the use of ¢ in
the spammer-hammer model, since E[(2p;, —1)*]=1-¢+
0-(1 —¢g)=gq. In the case of beta distribution, g =
1—(4aB/(a+B))(a+B+1). We will see later that our
bound on the achievable error rate depends on the distribu-
tion only through this parameter q.

When the crowd population is large enough such that we
do not need to distinguish whether the workers are “sam-
pled” with or without replacement, then it is quite realistic
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to assume the existence of a prior distribution for p;. In par-
ticular, it is met if we simply randomize the order in which
we upload our task batches, since this will have the effect of
randomizing which workers perform which batches, yield-
ing a distribution that meets our requirements. The model
is therefore quite general. On the other hand, it is not real-
istic to assume that we know what the prior is. To execute
our inference algorithm for a given number of iterations,
we do not require any knowledge of the distribution of the
reliability. However, g is necessary in order to determine
how many times a task should be replicated and how many
iterations we need to run to achieve a certain target relia-
bility. We discuss a simple way to overcome this limitation
in §2.2.

The only assumption we make about the distribution
is that there is a bias toward the right answer, i.e.,
E[p;] > 1/2. Without this assumption, we can have a
“perfect” crowd with g = 1, but everyone is adversarial,
p; = 0. Then, there is no way we can correct for this.
Another way to justify this assumption is to define the
“ground truth” of the tasks as what the majority of the
crowd agrees on. We want to learn this consensus effi-
ciently without having to query everyone in the crowd for
every task. If we use this definition of the ground truth,
then it naturally follows that the workers are on average
more likely to be correct.

Throughout this paper, we are going to assume that there
is a fixed cost you need to pay for each response you get
regardless of the quality of the response, such that the total
cost is proportional to the total number of queries. When
we have a given target accuracy we want to achieve, and
under the probabilistic crowdsourcing model described in
this section, we want to design a task allocation scheme and
an inference algorithm that can achieve this target accuracy
with minimal cost.

Variations of Our Model. Some of the main assump-
tions we make on how crowdsourcing systems work are
(a) workers are neither identifiable nor reusable, (b) every
worker is paid the same amount regardless of their perfor-
mance, and (c) each worker completes only one batch and
she completes all the tasks in that batch. In this section, we
discuss common strategies used in real crowdsourcing that
might deviate from these assumptions.

First, there has been growing interest recently in develop-
ing algorithms to efficiently identify good workers assum-
ing that worker identities are known and workers are
reusable. Imagine a crowdsourcing platform where there
are a fixed pool of identifiable workers and we can assign
the tasks to whichever worker we choose to. In this set-
ting, adaptive schemes can be used to significantly improve
the accuracy while minimizing the total number of queries.
It is natural to expect that by first exploring to find better
workers and then exploiting them in the following rounds,
one might be able to improve performance significantly.
Donmez et al. (2009) proposed IEThresh, which simulta-
neously estimates worker accuracy and actively selects a
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subset of workers with high accuracy. Zheng et al. (2010)
proposed a two-phase approach to identify good work-
ers in the first phase and utilize the best subset of work-
ers in the second phase. Ertekin et al. (2011) proposed
using a weighted majority voting to better estimate the
true labels in CrowdSense, which is then used to identify
good workers.

The power of such exploration/exploitation approaches
were demonstrated on numerical experiments, however
none of these approaches are tested on real-world crowd-
sourcing. All the experiments are done using precollected
data sets. Given these data sets they simulate a labor market
where they can track and reuse any workers they choose
to. The reason that the experiments are done on such sim-
ulated labor markets, instead of on popular crowdsourcing
platforms such as Amazon Mechanical Turk, is that on real-
world crowdsourcing platforms it is almost impossible to
track workers. Many of the popular crowdsourcing plat-
forms are completely open labor markets where the worker
crowd is large and transient. Further, oftentimes it is the
workers who choose which tasks they want to work on,
hence the taskmaster cannot reuse particular workers. For
these reasons, we assume in this paper that the workers
are fleeting and provide an algorithmic solution that works
even when workers are not reusable. We show that any
taskmaster who wishes to outperform our algorithm must
adopt complex worker-tracking techniques. Furthermore,
no worker-tracking technique has been developed that has
been proven to be foolproof. In particular, it is impossible
to prevent a worker from starting over with a new account.
Many tracking algorithms are susceptible to this attack.

Another important and closely related question that has
not been formally addressed in crowdsourcing literature
is how to differentiate the payment based on the inferred
accuracy in order to incentivize good workers. Regardless
of whether the workers are identifiable or not, when all
the tasks are completed we get an estimate of the qual-
ity of the workers. It would be desirable to pay the good
workers more in order to incentivize them to work for us
in the future tasks. For example, bonuses are built into
Amazon Mechanical Turk to be granted at the taskmaster’s
discretion, but it has not been studied how to use bonuses
optimally. This could be an interesting direction for future
research.

It has been observed that increasing the cost on crowd-
sourcing platforms does not directly lead to higher quality
of the responses (Mason and Watts 2010). Instead, increas-
ing the cost only leads to faster responses. Mason and
Watts (2010) attributes this counterintuitive findings to an
“anchoring” effect. When the (expected) payment is higher,
workers perceive the value of their work to be greater
as well. Hence, they are no more motivated than workers
who are paid less. However, these studies were done in
isolated experiments, and the long-term effect of taskmas-
ters’ keeping a good reputation still needs to be understood.
Workers of Mechanical Turk can manage reputation of
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the taskmasters using for instance Turkopticon,® a Firefox
extension that allows you to rate taskmasters and view rat-
ings from other workers. Another example is Turkernation,*
an online forum where workers and taskmasters can discuss
Mechanical Turk and leave feedback.

Finally, in Mechanical Turk, it is typically the workers
who choose which tasks they want to work on and when
they want to stop. Without any regulations, they might
respond to multiple batches of your tasks or stop in the
middle of a batch. It is possible to systematically prevent
the same worker from coming back and repeating more
than one batch of your tasks. For example, on Amazon’s
Mechanical Turk, a worker cannot repeat the same task
more than once. However, it is difficult to guarantee that
a worker completes all the tasks in a batch she started on.
In practice, there are simple ways to ensure this by, for
instance, conditioning the payment on completing all the
tasks in a batch.

A problem with restricting the number of tasks assigned
to each worker (as we propose in §2.1) is that it might
take a long time to have all the batches completed. Letting
the workers choose how many tasks they want to com-
plete allows a few eager workers to complete an enormous
amount of tasks. However, if we restrict the number of
tasks assigned to each worker, we might need to recruit
more workers to complete all the tasks. This problem of
tasks taking a long time to finish is not just restricted to
our model, but is a very common problem in open crowd-
sourcing platforms. Ipeirotis (2010) studied the comple-
tion time of tasks on Mechanical Turk and observed that
it follows a heavy tail distribution according to a power
law. Hence, for some tasks it takes a significant amount
of time to finish. A number of strategies have been pro-
posed to complete tasks on time. This includes optimizing
pricing policy (Faradani et al. 2011), continuously posting
tasks to stay on the first page (Bigham et al. 2010, Chilton
et al. 2010), and having a large amount of tasks avail-
able (Chilton et al. 2010). These strategies are effective in
attracting more workers fast. However, in our model, we
assume there is no restrictions on the latency and we can
wait until all the batches are completed, and if we have
good strategies to reduce worker response time, such strate-
gies could be incorporated into our system design.

Prior Work. Previous crowdsourcing system designs
have focused on developing inference algorithms assum-
ing that the task assignments are fixed and the workers’
responses are already given. None of the prior work on
crowdsourcing provides any systematic treatment of task
assignment under the crowdsourcing model considered in
this paper. To the best of our knowledge, we are the first
to study both aspects of crowdsourcing together and, more
importantly, establish optimality.

A naive approach to solve the inference problem, which
is widely used in practice, is majority voting. Majority vot-
ing simply follows what the majority of workers agree on.
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When we have many spammers in the crowd, majority vot-
ing is error prone since it gives the same weight to all
the responses, regardless of whether they are from a spam-
mer or diligent workers. We will show in §2.3 that major-
ity voting is provably suboptimal and can be significantly
improved upon.

If we know how reliable each worker is, then it is
straightforward to find the maximum likelihood estimates:
compute the weighted sum of the responses weighted by
the log likelihood. Although, in reality, we do not have this
information, it is possible to learn about a worker’s relia-
bility by comparing one worker’s answer to others’. This
idea was first proposed by Dawid and Skene, who intro-
duced an iterative algorithm based on expectation maxi-
mization (EM) (Dawid and Skene 1979). They considered
the problem of classifying patients based on labels obtained
from multiple clinicians. They introduce a simple proba-
bilistic model describing the clinicians’ responses and gave
an algorithmic solution based on EM. This model, which
is described in §2.7, is commonly used in modern crowd-
sourcing settings to explain how workers make mistakes in
classification tasks (Sheng et al. 2008).

This heuristic algorithm iterates the following two steps.
In the M-step, the algorithm estimates the error probabil-
ities of the workers that maximizes the likelihood using
the current estimates of the answers. In the E-step, the
algorithm estimates the likelihood of the answers using the
current estimates of the error probabilities. More recently,
a number of algorithms followed this EM approach based
on a variety of probabilistic models (Smyth et al. 1995,
Whitehill et al. 2009, Raykar et al. 2010). The crowdsourc-
ing model we consider in this paper is a special case of
these models, and we discuss their relationship in §2.7. The
EM approach has also been widely applied in classification
problems, where a set of labels from low-cost noisy work-
ers is used to find a good classifier (Jin and Ghahramani
2002, Raykar et al. 2010). Given a fixed budget, there is
a trade-off between acquiring a larger training data set or
acquiring a smaller data set but with more labels per data
point. Sheng et al. (2008) show that getting repeated label-
ing can give a considerable advantage.

Despite the popularity of the EM algorithms, the perfor-
mance of these approaches is only empirically evaluated
and there is no analysis that gives performance guarantees.
In particular, EM algorithms are highly sensitive to the
initialization used, making it difficult to predict the qual-
ity of the resulting estimate. Further, the role of the task
assignment is not at all understood with the EM algorithm
(or for that matter any other algorithm). We want to address
both questions of task allocation and inference together, and
devise an algorithmic solution that can achieve minimum
error from a fixed budget on the total number of queries.
When we have a given target accuracy, such an algorithm
will achieve this target accuracy with minimum cost. Fur-
ther, we want to provide a strong performance guarantee
for this approach and show that it is close to a fundamental
limit on what the best algorithm can achieve.
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Contributions. In this work, we provide the first rigor-
ous treatment of both aspects of designing a reliable crowd-
sourcing system: task allocation and inference. We provide
both an order-optimal task allocation scheme (based on ran-
dom graphs) and an order-optimal algorithm for inference
(based on low-rank approximation and belief propagation)
on that task assignment. We show that our algorithm, which
is nonadaptive, performs as well (for the worst-case worker
distribution) as the optimal oracle estimator, which can use
any adaptive task allocation scheme.

Concretely, given a target probability of error & and a
crowd with collective quality g, we show that spending
a budget that scales as O((1/q)log(1/¢g)) is sufficient to
achieve probability of error less than & using our approach.
We give a task allocation scheme and an inference algo-
rithm with runtime that is linear in the total number of
queries (up to a logarithmic factor). Conversely, we also
show that using the best adaptive task allocation scheme
together with the best inference algorithm, and under the
worst-case worker distribution, this scaling of the budget in
terms of ¢ and ¢ is unavoidable. No algorithm can achieve
error less than & with number of queries smaller than
(C/q)log(1/e) with some positive universal constant C.
This establishes that our algorithm is worst-case optimal up
to a constant factor in the required budget.

Our main results show that our nonadaptive algorithm is
worst-case optimal and there is no significant gain in using
an adaptive strategy. We attribute this limit of adaptation
to the fact that, in existing platforms such as Amazon’s
Mechanical Turk, the workers are fleeting and the system
does not allow for exploiting good workers. Therefore, a
positive message of this result is that a good rating system
for workers is essential to truly benefit from crowdsourcing
platforms using adaptivity.

Another novel contribution of our work is the analy-
sis technique. The iterative inference algorithm we intro-
duce operates on real-valued messages whose distribution
is a priori difficult to analyze. To overcome this challenge,
we develop a novel technique of establishing that these
messages are sub-Gaussian and compute the parameters
recursively in a closed form. This allows us to prove the
sharp result on the error rate. This technique could be of
independent interest in analyzing a more general class of
message-passing algorithms.

2. Main Result

To achieve a certain reliability in our answers with a min-
imum number of queries, we propose using random regu-
lar graphs for task allocation and introduce a novel itera-
tive algorithm to infer the correct answers. Although our
approach is nonadaptive, we show that it is sufficient to
achieve an order-optimal performance when compared to
the best possible approach using adaptive task allocations.
Precisely, we prove an upper bound on the resulting error
when using our approach and a matching lower bound on
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the minimax error rate achieved by the best possible adap-
tive task allocation together with an optimal inference algo-
rithm. This shows that our approach is minimax optimal
up to a constant factor: it requires only a constant fac-
tor times the minimum necessary budget to achieve a tar-
get error rate under the worst-case worker distribution. We
then present the intuitions behind our inference algorithm
through connections to low-rank matrix approximations and
belief propagation. Simulation results on synthetic data as
well as experiments on real data from Amazon Mechanical
Turk confirm superiority of our algorithm.

2.1. Algorithm

Task Allocation. We use a nonadaptive scheme that
makes all the task assignments before any worker arrives.
This amounts to designing a bipartite graph with one type
of node corresponding to each of the tasks and another set
of nodes corresponding to each of the batches. An edge
(i, j) indicates that task i is included in batch 7;. Once all
T;’s are determined according to the graph, these batches
are submitted simultaneously to the crowdsourcing plat-
form. Each arriving worker will pick up one of the batches
and complete all the tasks in that batch. We denote by j
the worker working on jth batch T;.

To design such a task allocation graph with task nodes
and worker nodes, we propose using a simple random
construction known as the configuration model in random
graph literature (Richardson and Urbanke 2008, Bollobas
2001). Let m denote the total number of tasks to be com-
pleted, which is equivalent to the number of task nodes.
The taskmaster first makes a choice of how many workers
to assign to each task and how many tasks to assign to
each worker. The task degree ¢ is typically determined by
how much resources (e.g., money, time, etc.) one can spend
on the tasks. The worker degree r is typically determined
by how many tasks are manageable for a worker depend-
ing on the application. The total number of workers that
we need is automatically determined as n = m{/r, since
the total number of edges has to be consistent. The total
cost, assuming we pay every worker, is directly propor-
tional to the total number of edges in this graph: mf = nr.
Once the degrees £ and r are determined, the configuration
model generates a random graph as follows. We start with
[m] x [£] half-edges for task nodes and [n] x [r] half-edges
for the worker nodes, and pair all the half-edges according
to a random permutation of [m£]. The resulting graph might
have multiedges where two nodes are connected by more
than one edge. However, they are very few in thus gener-
ated random graph as long as ¢ < n, whence we also have
r < m. Precisely, the number of double edges in the graph
converges in distribution to Poisson distribution with mean
(£—1)(r—1)/2 (Bollobas 2001, p. 59, exercise 2.12). The
only property that we need for the main result to hold is that
the resulting random graph converges locally to a random
tree in probability in the large system limit. This enables
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us to analyze the performance of our inference algorithm
and provide sharp bounds on the probability of error.

Random graphs provide a simple construction of good
expanders with large spectral gaps. Random constructions
have been successfully applied to inference tasks such as
low-density parity check (LDPC) codes that achieve opti-
mal performance (Oswald and Shokrollahi 2002) or aggre-
gating consensus on graphs (Hatano and Mesbahi 2005).
In the problem of crowdsourcing, we use the (approxi-
mate) top singular vector of a weighted adjacency matrix
of the random graph to find the correct labels. Since, sparse
random graphs are excellent expanders with large spectral
gaps, this enables us to reliably separate the low-rank struc-
ture from the data matrix that is perturbed by random noise.

We will show that with such a random regular graph, it is
possible to achieve probability of error that is quite close to
a lower bound on what any inference algorithm can achieve
with any task assignment. In particular, this includes all
possible graphs that might have irregular degrees or have
very large worker degrees (and small number of workers)
conditioned on the total number of edges being the same.
This suggests that, among other things, there is no signifi-
cant gain in using an irregular graph.

We assume that the total cost that must be paid is pro-
portional to the total number of edges and not the number
of workers. If we have more budget then we can increase £.
It is then natural to expect the probability of error to
decrease, since we are collecting more responses. We will
show that the error rate decreases exponentially in £ as £
grows. However, increasing r does not incur increase in
the cost and it is not immediately clear how it affects the
performance. We will show that with larger r we can learn
more about the workers and the error rate decreases as r
increases. However, how much we can gain by increasing
the worker degree is limited.

Inference Algorithm. We are given a task allocation
graph G([m] U [n], E) where we connect an edge (i, j) if
a task i is assigned to a worker j. In the following, we will
use indices i for a ith task node and j for a jth worker
node. We use di to denote the neighborhood of node i.
Each edge (i, j) on the graph G has a corresponding worker
response A;;.

To find the correct labels from the given responses of
the workers, we introduce a novel iterative algorithm. This
algorithm is inspired by the celebrated belief propagation
algorithm and low-rank matrix approximations. The con-
nections are explained in detail in §§2.5 and 2.6, along with
mathematical justifications.

The algorithm operates on real-valued task messages
{xi-;} (i, jyer and worker messages {y;_,;}, jep- A task mes-
sage x,;_,; represents the log-likelihood of task i being a
positive task, and a worker message y;_,; represents how
reliable worker j is. We start with the worker messages
initialized as independent Gaussian random variables with
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mean one and variance one, i.e., yj(i)i ~ N(1,1). How-
ever, the algorithm is not sensitive to a specific initializa-
tion as long as it has a strictly positive mean. We could
also initialize all the messages to one, but then we need to
add extra steps in the analysis to ensure that this is not a
degenerate case. At kth iteration, the messages are updated
according to

K= 3 A%, forall i, j)eE, and (1)
J'€di\j
k ..
yj(llz > A” lﬂ, for all (i, j) € E, )
i’edj\i

where di is the neighborhood of the task node i and dj
is the neighborhood of the worker node j. At task update,
we are giving more weight to the answers that came from
more trustworthy workers. At worker update, we increase
our confidence in that worker if the answers she gave on
another task, A, g has the same sign as what we believe,

Xy, ;- Intuitively, a worker message represents our belief on
how “reliable” the worker is. Hence, our final estimate is
a weighted sum of the answers weighted by each worker’s
reliability:

F = mgn(Z Aljy]ill))

Jjedi

Iterative Algorithm
Il’lpllt E {Az/}(z /)GE’ kmax
Output: Estimate 7 € {£1}"
1: For all (i, j) € E do
Initialize y}‘ﬁ, with random Z; ~ V'(1, 1);
2: For k=1,...,k,,, do
Forall (i,/)) eEdo x, < Y, Ay'2);
Forall (i, ) €E do y, < > Ayt
3: Forallic[m]do x; < Y. Ayyim;

4: Output estimate vector /¥ = {sign(x;)}.

Although our algorithm is inspired by the standard
belief propagation (BP) algorithm for approximating max-
marginals (Pearl 1988, Yedidia et al. 2003), our algorithm
is original and overcomes a few limitations of the stan-
dard BP for this inference problem under the crowdsourc-
ing model. First, the iterative algorithm does not require
any knowledge of the prior distribution of p;, whereas the
standard BP relies on it as explained in detail in §2.6. Sec-
ond, the iterative algorithm is provably order optimal for
this crowdsourcing problem. We use a standard technique,
known as density evolution, to analyze the performance
of our message-passing algorithm. Although we can write
down the density evolution equations for the standard BP
for crowdsourcing, it is not trivial to describe or compute
the densities, analytically or numerically. It is also very
simple to derive the density evolution equations for our
message-passing algorithm ((1) and (2)), but it is not a pri-
ori clear how one can analyze the densities in this case
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either. We develop a novel technique to analyze the densi-
ties for our iterative algorithm and prove optimality. This
technique could be of independent interest to analyzing a
broader class of message-passing algorithms.

2.2. Performance Guarantee and
Experimental Results

We provide an upper bound on the probability of error
achieved by the iterative inference algorithm and task allo-
cation according to the configuration model. The bound
decays as e % with a universal constant C. Further,
an algorithm-independent lower bound that we establish
suggests that such a dependence of the error on £q is
unavoidable.

Bound on the Average Error Probability. To simplify
the notation, let {=f¢—landFf=r— 1, and recall that g =
E[(2p; — 1)°]. Using these notations, we define o7; to be the
effective variance in the sub-Gaussian tail of our estimates
after k iterations of our inference algorithm:

2 1\ 1—1/(g*7)<!
ol=—1 4 (3 + —A>—/(q rA)A :
pi(g*er) ! ar/ 1-1/(¢*¢7)
With this, we can prove the following upper bound on the
probability of error when we run k iterations of our infer-
ence algorithm with (¢, r)-regular assignments on m tasks

using a crowd with collective quality g. We refer to §3.1 for
the proof.

THEOREM 1. For fixed £ > 1 and r > 1, assume that m tasks
are assigned to n = ml/r workers according to a random
(£, r)-regular graph drawn from the configuration model.
If the distribution of the worker reliability satisfies p =
E[2p,—1] > 0and ¢* > 1/(£F), then for any t € {£1}", the
estimate after k iterations of the iterative algorithm achieves

3¢
_ Zp(t ?é l(k)) < eféq/(Ztr ) r(ﬁA)Zk 2 (3)

The second term, which is the probability that the result-
ing graph is not locally tree-like, can be made small for
large m. Hence, the dominant term in the error bound is the
first term. Further, when q22f > 1 as per our assumption
and when we run our algorithm for large enough numbers
of iterations, o converges linearly to a finite limit 02 =
lim,_, ., o7 such that

2 A
<3 L L 1 ) q*er
Plr—1
Since o} converges exponentially to its limiting value with
respect to k, we only need a small number of iterations to
achieve o, close to this limit. It follows that for large enough
m and k, we can prove an upper bound that does not depend

on the problem size or the number of iterations, which is
stated in the following corollary.
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COROLLARY 1. Under the hypotheses of Theorem 1,
there exists m, = 30reta/4 o (07)20=D and ky, = 1 +
(log(q/p?)/log(£7q*)) such that

1z o
— Y P #1) <2e7 0, (4)

i=1
for k =k and for all m > m,,.

PrOOF. For #7g> > 1, as per our assumption, k = [1+
log(g/u?)/log(£7¢*)] iterations suffice to ensure that o2 <
(2q/p))(@Pq") ' + ql(3q7 + 1/(g*0F — 1) < 202,
Also, m = 3re'4*=(7)2*=) guffices to ensure that
(07)*(3er)/m < exp{—Lq/(402)}.

The required number of iterations k,, for (4) to hold, is
small (only logarithmic in ¢, r, g, and u) and does not
depend on the problem size m. On the other hand, the given
number of tasks m, in our main theorem is quite large. How-
ever, numerical simulations suggest that the actual perfor-
mance of our approach is not very sensitive to the number
of tasks and the bound still holds for tasks of small size
as well. For example, in Figure 2 (left), we ran numerical
experiments with m = 1,000, ¢ = 0.3, and k = 20, and the
resulting error exhibits exponential decay as predicted by
our theorem even for large ¢ = r = 30. In this case, theoret-
ical requirements on the number of tasks m,, is much larger
than what we used in the experiment.

Consider a set of worker distributions

{FIEs[(2p—1)’] =g}

that have the same collective quality g. These distributions
that have the same value of g can give different values for
w ranging from g to ¢'/2. Our main result on the error rate
suggests that the error does not depend on the value of u.
Hence, the effective second moment ¢ is the right mea-
sure of the collective quality of the crowd, and the effec-
tive first moment u only affects how fast the algorithm
converges, since we need to run our inference algorithm
k = Q(141log(q/u?)/log(£7¢?)) iterations to guarantee the
error bound.

The iterative algorithm is efficient with run time compa-
rable to that of majority voting that requires O(m¥) oper-
ations. Each iteration of the iterative algorithm requires
O(mf) operations, and we need O(1 + log(q/u?)/
log(g20#)) iterations to ensure an error bound in (4). By
definition, we have g < u < ,/q. The run time is the worst
when p = g, which happens under the spammer-hammer
model, and it is the smallest when u = /g, which hap-
pens if p;, = (1 + ,/¢)/2 deterministically. In any case, we
only need an extra logarithmic factor that does not increase
with m. Notice that as we increase the number of itera-
tions, the messages converge to an eigenvector of a particu-
lar sparse matrix of dimensions mf x m{. This suggests that
we can alternatively compute the messages using other algo-
rithms for computing the top singular vector of large sparse
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matrices that are known to converge faster (e.g., Lanczos
1950).

Next, we make a few remarks on the performance
guarantee.

First, the assumption that u > 0 is necessary. If there
is no assumption on u, then we cannot distinguish if
the responses came from tasks with {#,};.,,, and workers
with {p;};c, or tasks with {—7},(,; and workers with
{1 = p;}epn)- Statistically, both of them give the same out-
put. The hypothesis on w allows us to distinguish which of
the two is the correct solution. In the case when we know
that u < 0, we can use the same algorithm changing the sign
of the final output and get the same performance guarantee.

Second, our algorithm does not require any informa-
tion on the distribution of p; However, in order to gen-
erate a graph that achieves an optimal performance, we
need the knowledge of ¢ for selecting the degree ¢ =
O((1/q)log(1/€)). Here is a simple way to overcome this
limitation at the loss of only an additional constant factor,
i.e., scaling of cost per task still remains @((1/g)log(1/¢)).
To that end, consider an incremental design in which at
step a the system is designed assuming g =27 for a > 1.
At step a, we design two replicas of the task allocation for
g =27 Now compare the estimates obtained by these two
replicas for all m tasks. If they agree among m(1 —2¢) tasks,
then we stop and declare that as the final answer. Otherwise,
we increase a to a+ 1 and repeat. Note that by our optimal-
ity result, it follows that if 27 is less than the actual g then
the iteration must stop with high probability. Therefore, the
total cost paid is O((1/g)log(1/¢)) with high probability.
Thus, even lack of knowledge of ¢ does not affect the order
optimality of our algorithm.

Further, unlike previous approaches based on expectation
maximization, the iterative algorithm is not sensitive to ini-
tialization and converges to a unique solution from a random
initialization with high probability. This follows from the
fact that the algorithm is essentially computing a leading
eigenvector of a particular linear operator.

Next, the error bound holds for m exponentially large in
the number of iterations k. However, experimental results
suggest that the error probability is not sensitive to the num-
ber of tasks m. Figure 1 shows the comparisons between
probability of error achieved by our iterative algorithm
as a function of task degree ¢ for different values of m.
We fix ¢ =0.3 and r = ¢, and simulate workers from the
spammer-hammer model. Each data point is averaged over
500 random instances of random graphs, random workers,
and random responses. The number of iterations is fixed at
k = 28. The error is almost indistinguishable for a broad
range of problem size m.

To extend our analysis to moderate size m, we need
to characterize how much the distribution of the messages
deviate from the asymptotic distribution. There has been sig-
nificant efforts from coding theory community to generalize
the density evolution technique, that is crucial in our analy-
sis, to moderate size problems (Ezri et al. 2008a, b). These
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Figure 1. The error probability of the iterative algorithm

is not sensitive to the problem size m.
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techniques are developed for binary erasure channels, where
each transmitted bit is erased with some fixed probability.
The analysis heavily relies on the fact that the belief prop-
agation algorithm for this channel has discrete messages,
and the algorithm is monotone, in the sense that the esti-
mates after £+ 1 iterations is strictly better than the estimates
after ¢ iterations. The techniques are not directly applicable
without these assumptions, as is the case with our crowd-
sourcing problem as well as other more interesting classes
of channels in coding theory.

Finally, we observe a phase transition at éfqz = 1. Above
this phase transition, when ffqz > 1, we will show that
our algorithm is order optimal and the probability of error
is significantly smaller than majority voting. However, per-
haps surprisingly, when we are below the threshold, when
ffqz < 1, we empirically observe that our algorithm exhibits
a fundamentally different behavior (cf. Figure 2). The error
we get after k iterations of our algorithm increases with k.
In this regime, we are better off stopping the algorithm after
one iteration, in which case the estimate we get is essentially
the same as the simple majority voting, and we cannot do
better than majority voting. This phase transition is univer-
sal since we observe similar behavior with other inference
algorithms including EM approaches. We provide more dis-
cussions on the choice of £ and the limitations of having
small r in the following section.

Minimax Optimality of Our Approach. For a task
master, the natural core optimization problem of her con-
cern is how to achieve a certain reliability in the answers
with minimum cost. Throughout this paper, we assume that
the cost is proportional to the total number of queries. In
this section, we show that if a taskmaster wants to achieve a
target error rate of &, she can do so using our approach with
budget per task scaling as O((1/q)log(1/¢)) for a broad
range of worker degree r. Compared to the necessary con-
dition, which we provide in §2.3, this is within a constant
factor from what is necessary using the best nonadaptive
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task assignment and the best inference algorithm. Further,
we show in §2.4 that this scaling in the budget is still nec-
essary if we allow using the best adaptive task assignment
together with the best inference algorithm. This proves that
our approach is minimax optimal up to a constant factor in
the budget.

Assuming for now that there are no restrictions on the
worker degree r and we can assign as many tasks to each
worker as we want, we can get the following simplified
upper bound on the error that holds for all r > 1+ 1/q.
To simplify the resulting bound, let us assume for now that
£Fg > 2. Then, we get that 02 < 2(3 + 1/7g). Then from
(4), we get the following bound:

1 o
— Y Pt # i) <2e7,
m

ie[m]

for large enough m > m,. In terms of the budget or the
number of queries necessary to achieve a target accuracy,
we get the following sufficient condition as a corollary.

COROLLARY 2. Using the nonadaptive task assignment
scheme with r 2 1 + 1/q and the iterative inference
algorithm introduced in §2.1, it is sufficient to query
(32/q9)log(2/¢) times per task to guarantee that the prob-
ability of error is at most € for any € < 1/2 and for all
m = m,.

We provide a matching minimax necessary condition up
to a constant factor for nonadaptive algorithms in §2.3.
When nature can choose the worst-case worker distribu-
tions, no nonadaptive algorithm can achieve error less than
& with budget per task smaller than (C’/q)log(1/2¢) with
some universal positive constant C’. This establishes that
under the nonadaptive scenario, our approach is minimax
optimal up to a constant factor for large enough m. With
our approach you only need to ask (and pay for) a constant
factor more than what is necessary using the best nonadap-
tive task assignment scheme together with the best inference
algorithm under the worst-case worker distribution.

Perhaps surprisingly, we will show in §2.4 that the
necessary condition does not change even if we allow
adaptive task assignments. No algorithm, adaptive or non-
adaptive, can achieve error less than & without asking
(C"/q)log /(1/(2¢€)) queries per task with some univer-
sal positive constant C”. Hence, our nonadaptive approach
achieves minimax optimal performance that can be achieved
by the best adaptive scheme.

In practice, we might not be allowed to have large r
depending on the application. For different regimes of the
restrictions on the allowed worker degree r, we need dif-
ferent choices of £. When we have a target accuracy &, the
following corollary establishes that we can achieve proba-
bility of error & with £ > C(1 + 1/7q)(1/q)log(1/e) for
any value of r.

COROLLARY 3. Using the nonadaptive task assignment
scheme with any r and the iterative inference algorithm
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Figure 2.
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The iterative algorithm improves over majority voting and EM algorithm.
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Note. Using the top singular vector for inference has similar performance as our iterative approach.

introduced in §2.1, it is sufficient to query (24+8/7q) -
(1/q)1og(2/€) times per task to guarantee that the prob-
ability of error is at most € for any € < 1/2 and for all
m = m,.

PrOOF. We will show that for £ > max{l + 2/(7¢?),
83+ 1/7q)(1/q)log(1/€)}, the probability of error is
at most €. Since, 1 +2/(F¢*) <8B3+ 1/7q)(1/q)1log(1/¢)
for £ < 1/2, this proves the corollary. Since quz =2
from the first condition, we get that o2 < 2(3+ 1/7q).
Then, the probability of error is upper bounded by
2exp{—2q/(24+8/Fq)}. This implies that for £ >
(24+8/7q)(1/q)log(2/e) the probability of error is
at most &.

For r > C’/q, this implies that our approach requires
0O((1/q)log(1/€)) queries and it is minimax optimal. How-
ever, for r = O(1), our approach requires O((1/¢?) -
log(1/g)) queries. This is due to the fact that when r is
small, we cannot efficiently learn the quality of the workers
and need significantly more questions to achieve the accu-
racy we desire. Hence, in practice, we want to be able to
assign more tasks to each worker when we have low-quality
workers.

Experimental Results. Figure 2 shows the compar-
isons between probabilities of error achieved by different
inference algorithms, but on the same task assignment using
regular bipartite random graphs. We ran 20 iterations of EM
and our iterative algorithm, and also the spectral approach
of using a leading left singular vector of A for estimation.

Figure 3.

151 59 123 87 141 69 126 84 109 101

The spectral approach, which we call singular vector in
the graph, is explained in detail in §2.5. The error rates
are compared with those of majority voting and the oracle
estimator. The oracle estimator performance sets a lower
bound on what any inference algorithm can achieve, since
it knows all the values of p;’s. For the numerical simulation
on the left-hand side, we set m = 1,000, £ = r and used the
spammer hammer model for the distribution of the workers
with ¢ = 0.3. According to our theorem, we expect a phase
transition at £ = 1 4+ 1/0.3 = 4.3333. From the figure, we
observe that the iterative inference algorithm starts to per-
form better than majority voting at £ = 5. For the figure on
the right-hand side, we set £ = 25. For fair comparisons with
the EM approach, we used an implementation of the EM
approach in Java by Sheng et al. (2008), which is publicly
available.

We also ran two experiments with real crowds using
Amazon Mechanical Turk. In our experiments, we created
tasks for comparing colors; we showed three colors on each
task, one on the top and two on the bottom. We asked the
crowd to indicate “if the color on the top is more similar to
the color on the left or on the right.”

The first experiment confirms that the ground truth for
these color comparisons tasks are what is expected from
pair-wise distances in the Lab color space. The distances in
the Lab color space between a pair of colors are known to
be a good measure of the perceived distance between the
pair (Wyszecki and Stiles 1967). To check the validity of
this Lab distance we collected 210 responses on each of the
10 color comparison tasks. As shown in Figure 3, for all

Experimental results on color comparison using real data from Amazon’s Mechanical Turk.

121 &9 141 69 149 69 149 61 159 51

Notes. The color on the left is closer to the one on the top in Lab distance for each triplet. The votes from 210 workers are shown below each triplet.
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Figure 4. The average probability of error on color
comparisons using real data from Amazon’s
Mechanical Turk.
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10 tasks, the majority of the 210 responses were consistent
with the Lab distance based ground truth.

Next, to test our approach, we created 50 of such simi-
larity tasks and recruited 28 workers to answer all the ques-
tions. Once we have this data, we can subsample the data to
simulate what would have happened if we collected smaller
numbers of responses per task. The resulting average prob-
ability of error is illustrated in Figure 4. For this crowd
from Amazon Mechanical Turk, we can estimate the collec-
tive quality from the data, which is about ¢ >~ 0.175. The-
oretically, this indicates that phase transition should hap-
pen when (£ — 1)((50/28)¢ — 1)g*> = 1, since we set r =
(50/28)¢. With this, we expect phase transition to happen
around £ >~ 5. In Figure 4, we see that our iterative algorithm
starts to perform better than majority voting around £ = 8.

2.3. Fundamental Limit Under the
Nonadaptive Scenario

Under the nonadaptive scenario, we are allowed to use only
nonadaptive task assignment schemes that assign all the
tasks a priori and collect all the responses simultaneously.
In this section, we investigate the fundamental limit on how
small an error can be achieved using the best possible non-
adaptive task assignment scheme together with the best pos-
sible inference algorithm. In particular, we are interested in
the minimax optimality: What is the minimum error that can
be achieved under the worst-case worker distribution? To
this end, we analyze the performance of an oracle estimator
when the workers’ latent qualities are drawn from a specific
distribution and provide a lower bound on the minimax rate
on the probability of error. Compared to our main result,
this establishes that our approach is minimax optimal up to
a constant factor.

In terms of the budget, the natural core optimization prob-
lem of our concern is how to achieve a certain reliability in
our answers with minimum cost. Let us assume that the cost
is proportional to the total number of queries. We show that
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for a given target error rate g, the total budget sufficient to
achieve this target error rate using our algorithm is within a
constant factor from what is necessary using the best non-
adaptive task assignment and the best inference algorithm.

Fundamental Limit. Consider a crowd characterized
by worker distribution F such that p; ~ 7. Let ¥ be a set
of all distributions on [0, 1], such that the collective quality
is parametrized by g:

7, =7 5,12~ 17] =q).

We want to prove a lower bound on the minimax rate on the
probability of error, which only depends on ¢ and £. Define
the minimax rate as

1
min max —
€T fte{xl)" . FeF, m ;

> P #1),

€[m]

where 7 ranges over all estimators that are measurable func-
tions over the responses, and T ranges over the set 7, of all
task assignment schemes that are nonadaptive and ask m¢
queries in total. Here the probability is taken over all real-
izations of p;’s, A;;’s, and the randomness introduced in the
task assignment and the inference.

Consider any nonadaptive scheme that assigns ¢, work-
ers to the ith task. The only constraint is that the average
number of queries is bounded by (1/m) 3¢,y ¢; < €. To get
a lower bound on the minimum achievable error, we con-
sider an oracle estimator that has access to all the p;’s, and
hence can make an optimal estimation. Further, since we are
proving minimax optimality and not instance optimality, the
worst-case error rate will always be lower bounded by the
error rate for any choice of worker distribution. In partic-
ular, we prove a lower bound using the spammer-hammer
model. Concretely, we assume the p j’s are drawn from the
spammer-hammer model with perfect hammers:

1/2  with probability 1 — g,
T otherwise.

Notice that the use of ¢ is consistent with E[(2p j—l)z] =q.
Under the spammer-hammer model, the oracle estimator
only makes a mistake on task i if it is only assigned to
spammers, in which case we flip a fair coin to achieve error
probability of half. Formally,

P@f; #1,)=5(1— )"

By convexity and using Jensen’s inequality, the average
probability of error is lower bounded by

1 n 1
— Y Pt #1)> 5(1 —q)".
i€[m]

Since we are interested in how many more queries are nec-
essary as the quality of the crowd deteriorates, we are going
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to assume ¢ < 2/3, in which case (1 — ¢q) > e+ Ag
long as total mf queries are used, this lower bound holds
regardless of how the actual tasks are assigned. And since
this lower bound holds for a particular choice of 7, it holds
for the worst-case 7 as well. Hence, for the best task assign-
ment scheme and the best inference algorithm, we have

1 R 1 )
min max  — P(t, #£1) > —e @t
minmax 2P #L) >

i€[m]

This lower bound on the minimax rate holds for any posi-
tive integer m, and regardless of the number of workers or
the number of queries, r, assigned to each worker. In terms
of the average number of queries necessary to achieve a
target accuracy of g, this implies the following necessary
condition.

LEMMA 1. Assuming q < 2/3 and the nonadaptive sce-
nario, if the average number of queries per task is less than
(1/(29))log(1/(2¢)), then no algorithm can achieve aver-
age probability of error less than € for any m under the
worst-case worker distribution.

To prove this worst-cased bound, we analyzed a specific
distribution of the spammer-hammer model. However, the
result (up to a constant factor) seems to be quite general and
can also be proved using different distributions, e.g., when
all workers have the same quality. The assumption on g can
be relaxed as much as we want, by increasing the constant in
the necessary budget. Compared to the sufficient condition
in Corollary 2 this establishes that our approach is minimax
optimal up to a constant factor. With our approach you only
need to ask (and pay for) a constant factor more than what
is necessary for any algorithm.

Majority Voting. As a comparison, we can do similar
analysis for the simple majority voting and show that the
performance is significantly worse than our approach. The
next lemma provides a bound on the minimax rate of major-
ity voting. A proof of this lemma is provided in §3.4.

LEMMA 2. For any C < 1, there exists a positive constant
C’ such that when q < C, the error achieved by majority
voting is at least

: 1 A —C'(t?+1)
M 2 P )2 e

In terms of the number of queries necessary to achieve
a target accuracy & using majority voting, this implies that
we need to ask at least (c/q?)log(c’/e) queries per task
for some universal constants ¢ and ¢’. Hence, majority
voting is significantly more costly than our approach in
terms of budget. Our algorithm is more efficient in terms
of computational complexity as well. Simple majority vot-
ing requires O((m/q*)log(1/€)) operations to achieve tar-
get error rate ¢ in the worst case. From Corollary 1, together
with £ = O((1/g)log(1/€)) and £rq* = Q(1), we get that
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our approach requires O((m/q)log(1/q)log(1/€)) opera-
tions in the worst case. The reason we improve in the
required budget is due to the gain in sample complexity. Our
approach has a better accuracy-budget trade-off. Instead,
one might be interested in comparing the computational
complexity fixing the sample size. Each iteration of our
algorithm requires a number of operations comparable to
the majority voting, and Corollary 1 suggests that our algo-
rithm requires only O(1 + log(1/g)) iterations. Therefore,
the total computational complexity is larger than majority
voting only by a logarithmic factor.

2.4. Fundamental Limit Under
the Adaptive Scenario

In terms of the scaling of the budget necessary to achieve a
target accuracy, we established that using a nonadaptive task
assignment, no algorithm can do better than our approach.
One might prefer a nonadaptive scheme in practice because
having all the batches of tasks processed in parallel reduces
the latency. This is crucial in many applications, especially
in real-time applications such as searching, visual informa-
tion processing, and document processing (Bigham et al.
2010, Bernstein et al. 2010, Yan et al. 2010, Bernstein et al.
2011). However, by switching to an adaptive task assign-
ment, one might hope to be more efficient and still obtain a
desired accuracy from fewer questions. On one hand, adap-
tation can help improve performance. But on the other hand,
it can significantly complicate system design because of
careful synchronization requirements. In this section, we
want to prove an algorithm-independent upper bound on
how much one can gain by using an adaptive task allocation.

When the identities of the workers are known, one might
be tempted to first identify which workers are more reli-
able and then assign all the tasks to those workers in an
explore/exploit manner. However, in typical crowdsourcing
platforms such as Amazon Mechanical Turk, it is unrealis-
tic to assume that we can identify and reuse any particu-
lar worker, since typical workers are neither persistent nor
identifiable and batches are distributed through an open call.
Hence, exploiting a reliable worker is not possible. How-
ever, we can adaptively resubmit batches of tasks; we can
dynamically choose which subset of tasks to assign to the
next arriving worker. In particular, we can allocate tasks to
the next batch based on all the information we have on all
the tasks from the responses collected thus far. For exam-
ple, one might hope to reduce uncertainty more efficiently
by adaptively collecting more responses on those tasks that
she is less certain about.

Fundamental Limit. In this section, we show that, per-
haps surprisingly, there is no significant gain in switching
from our nonadaptive approach to an adaptive strategy when
the workers are fleeting. We first prove a lower bound on
the minimax error rate: the error that is achieved by the best
inference algorithm 7 using the best adaptive task alloca-
tion scheme 7 under a worst-case worker distribution F and
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the worst-case true answers ¢. Let g[ be the set of all task
assignment schemes that use at most m{ queries in total.
Then, we can show the following lower bound on the mini-
max rate on the probability of error. A proof of this theorem
is provided in §3.5.

THEOREM 2. When g < C for any constant C < 1, there
exists a positive constant C' such that

1
min max —
red,, i te{E})".FeF, m

X Pl #R) > 50, ©)

i€[m]

for all m where the task assignment scheme T ranges over
all adaptive schemes that use at most mé queries and f
ranges over all estimators that are measurable functions
over the responses.

We cannot avoid the factor of half in the lower bound,
since we can always achieve error probability of half with-
out asking any queries (with £ = 0). In terms of the bud-
get required to achieve a target accuracy, the above lower
bound proves that no algorithm, adaptive or nonadaptive,
can achieve an error rate less than £ with number of queries
per task less than (C’/g)log(2/¢) in the worst case of
worker distribution.

COROLLARY 4. Assuming q < C for any constant C < 1
and the iterative scenario, there exists a positive constant
C’ such that if the average number of queries is less than
(C'/q)log(1/2¢), then no algorithm can achieve average
probability of error less than € for any m under the worst-
case worker distribution.

Compared to Corollary 2, we see that the sufficient and
necessary conditions are matching up to a constant factor.
This proves that there is no significant gain in using an adap-
tive scheme, and our approach achieves minimax optimality
up to a constant factor with a nonadaptive scheme. This
limitation of adaptation strongly relies on the fact that work-
ers are fleeting in existing platforms and cannot be reused.
Therefore, architecturally our results suggest that building a
reliable reputation system for workers would be essential to
harnessing the potential of adaptive designs.

The following toy example illustrates why there is no
gain in adaptivity in the scaling of the budget. Consider
an estimation problem where we have a binary task with
the ground-truth . We want to estimate this task based on
responses from a pool of workers whose reliability is p; =
3/4 for all workers. Using a nonadaptive scheme, we col-
lect a fixed number of ¢ responses and use majority voting,
since when the worker quality is uniform majority voting is
optimal. The resulting error probability is upper bounded by
e~ ¢'* with some positive constant C’ using similar analysis
as in Lemma 2. The required budget to achieve e probability
of error then scales as O(log(1/€)).

Now consider an adaptive algorithm that adaptively
chooses how many responses to collect based on the
responses. Let L denote the random number of responses
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this algorithm has collected. Then, for a fixed L, the
probability of error is smallest when all L responses
agree: P(f # 1t | L) > P(f # t | L, all L responses agree).
And this is again lower bounded by (1/4)L/((3/4)f +
(1/HY) = (1/2)(1/4)L. Applying Jensen’s inequality,
we get P(i#1) = E,[P(F#1|L)] > (1/2)E,[(1/4)1] >
(1/2)(1/4)EH], Therefore, even for adaptive schemes, the
required budget to achieve e error probability scales as
O(log(1/e)).

This example illustrates why there is no significant gain
in adaptivity. This is different from a related problem of
active learning, where adaptivity gain can be exponential.
Active learning deals with the problem of estimating a
high-dimensional classifier from labeled training data. For
a broad range of supervised learning problems, it is known
that a nonadaptive algorithm requires O(1/€) training data
to achieve misclassification rate of €, whereas an adaptive
(also called active) algorithm requires only O(log(1/¢€))
(Freund et al. 1997, Kaéridginen 2006). In our crowdsourc-
ing model, there is no feature vector associated with each
task. We do not have a fine control over which data point to
get more labels on. We only get to choose how many labels
to get on each task, and there is only so much we can gain
from this limited adaptivity.

A Counterexample for Instance Optimality. The
above corollary establishes minimax optimality: for the
worst-case worker distribution, no algorithm can improve
over our approach other than improving the constant
factor in the necessary budget. However, this does not
imply instance optimality. In fact, there exists a family of
worker distributions where all nonadaptive algorithms fail to
achieve order-optimal performance whereas a trivial adap-
tive algorithm succeeds. Hence, for particular instances of
worker distributions, there exists a gap between what can be
achieved using nonadaptive algorithms and adaptive ones.

We will prove this in the case of the spammer-hammer
model where each new worker is a hammer (p; = 1) with
probability g or a spammer (p; = 1/2) otherwise. We
showed in §2.3 that no nonadaptive algorithm can achieve
an error less than (1/2)e=C" for any value of m. In par-
ticular, this does not vanish even if we increase m. We will
introduce a simple adaptive algorithm and show that this
algorithm achieves an error probability that goes to zero as
M grows.

The algorithm first groups all the tasks into /m disjoint
sets of size \/m each. Starting with the first group, the algo-
rithm assigns all /m tasks to new arriving workers until it
sees two workers who agreed on all /m tasks. It declares
those responses as its estimate for this group and moves on
to the next group. This process is repeated until it reaches
the allowed number of queries. This estimator makes a mis-
take on a group if (a) there were two spammers who agreed
on all /m tasks or (b) we run out of allowed number of
queries before we finish the last group. Formally, we can
prove the following upper bound on the probability of error.
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LEmMMA 3. Under the spammer-hammer model, when the
allowed number of queries per task £ is larger than 2/q,
there is an adaptive task allocation scheme and an inference

algorithm that achieves average probability of error at most
M2~ 4 o= (2/0(tg=0> .

Proor. Recall that we are only allowed ¢m queries. Since
we are allocating ./m queries per worker, we can only ask
at most £./m workers. First, the probability that there is
at least one pair of spammers (among all possible pairs from
£./m workers) who agreed on all \/m responses is at most
mf?2=v™ Next, given that no pairs of spammers agreed on
all their responses, the probability that we run out of all
m{ allowed queries is the probability that the number of
hammers in £,/m workers is strictly less than 2,/m (which
is the number of hammers we need in order to terminate
the algorithm, conditioned on that no spammers agree with
one another). By standard concentration results, this hap-
pens with probability at most ¢~ */0(ta=2*vm,

This proves the existence of an adaptive algorithm that
achieves vanishing error probability as m grows for a broad
range of task degree £. Comparing the above upper bound
with the known lower bound for nonadaptive schemes, this
proves that nonadaptive algorithms cannot be instance opti-
mal: there is a family of distributions where adaptation can
significantly improve performance. This is generally true
when there is a strictly positive probability that a worker is
a hammer (p; = 1).

One might be tempted to apply the above algorithm
in more general settings other than the spammer-hammer
model. However, this algorithm fails when there are no per-
fect workers in the crowd. If we apply this algorithm in such
a general setting, then it produces useless answers: the prob-
ability of error approaches half as m grows for any finite £.

2.5. Connections to Low-Rank
Matrix Approximation

In this section, we first explain why the top singular vector
of the data matrix A reveals the true answers of the tasks,
where A is the m x n matrix of the responses and we fill
in zeros wherever we have no responses collected. This nat-
urally defines a spectral algorithm for inference, which we
present next. It was proven in Karger et al. (2011) that the
error achieved by this spectral algorithm is upper bounded
by C/(£q) with some constant C. But numerical experi-
ments (cf. Figure 2) suggest that the error decays much
faster, and that the gap is due to the weakness of the anal-
ysis used in Karger et al. (2011). Inspired by this spectral
approach, we introduced a novel inference algorithm that
performs as well as the spectral algorithm (cf. Figure 2)
and proved a much tighter upper bound on the resulting
error, which scales as ¢~ €% with some constant C’. Our
inference algorithm is based on power iteration, which is a
well-known algorithm for computing the top singular vec-
tor of a matrix, and Figure 2 suggests that both algorithms
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are equally effective and the resulting errors are almost
identical.

The data matrix A can be viewed as a rank-1 matrix
that is perturbed by random noise. Since, E[A;; | #;,p;] =
(r/m)t;(2p; — 1), the conditional expectation of this
matrix is

E1A |10 = (£ )12p- 10"

where 1 is the all ones vector, the vector of correct solu-
tions is 7 = {t,}(,,), and the vector of worker reliability is
P = {P,} - Notice that the rank of this conditional expec-
tation matrix is one and this matrix reveals the correct solu-
tions exactly. We can decompose A into a low-rank expec-
tation plus a random perturbation:

A= <%>t(2p— 1) +2,

where Z = A — E[A | £, p] is the random perturbation with
zero mean. When the spectral radius of the noise matrix Z
is much smaller than the spectral radius of the signal, we
can correctly extract most of 7 using the leading left singular
vector of A.

Under the crowdsourcing model considered in this paper,
an inference algorithm using the top left singular vector of
A was introduced and analyzed by Karger et al. (2011).
Let u be the top left singular vector of A. They proposed
estimating 7, = sign(u,) and proved an upper bound on the
probability of error that scales as O(1/£q). The main tech-
nique behind this result is in analyzing the spectral gap of
A. It is not difficult to see that the spectral radius of the con-
ditional expectation matrix is (r/m)||t(2p — 1) ||, = V/Zrq,
where the operator norm of a matrix is denoted by || X||, =
max,{||Xal|//||a|}. Karger et al. (2011) proved that the spec-
tral radius of the perturbation ||Z||, is in the order of (£r)"/*.
Hence, when £rg” > 1, we expect a separation between the
conditional expectation and the noise.

One way to compute the leading singular vector is to use
power iteration: for two vectors u € R™ and v € R”, start-
ing with a randomly initialized v, power iteration iteratively
updates u and v by repeating u = Av and v = ATu. It is
known that normalized u (and v) converges linearly to the
leading left (and right) singular vector. Then we can use the
sign of u; to estimate #;. Writing the update rule for each
entry, we get

u; = ZAij”j’ V= ZAij"‘i'

jedi iedj

Notice that this power iteration update rule is almost identi-
cal to those of message passing updates in (1) and (2). The
€ task messages {x;_, ;};c; from task i are close in value to
the entry u; of the power iteration. The r worker messages
{¥j-i}ico; from worker j are close in value to the entry v; of
the power iteration. Numerical simulations in Figure 2 sug-
gest that the quality of the estimates from the two algorithms
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are almost identical. However, the known performance guar-
antee for the spectral approach is weak. We developed novel
analysis techniques to analyze our message passing algo-
rithm, and provide an upper bound on the error that scales as
e~C%_ It might be possible to apply our algorithm, together
with the analysis techniques, to other problems where the
top singular vector of a data matrix is used for inference.

2.6. Connections to Belief Propagation

The crowdsourcing model described in this paper can natu-
rally be described using a graphical model. Let G ([m] x [n],
E, A) denote the weighted bipartite graph, where [m] is the
set of m task nodes, [n] is the set of n worker nodes, E is the
set of edges connecting a task to a worker who is assigned
that task, and A is the set of weights on those edges accord-
ing to the responses. Given such a graph, we want to find
a set of task answers that maximize the following posterior
distribution F(7, p): {£1}" x [0, 1]" — R*:

max [T7() T1 {p=A4,)+1—pIIG A}

ae[n] (i,a)eE

where with a slight abuse of notation we use 7 (- ) to denote
the prior probability density function of p,’s and we use i
and j to denote task nodes and a and b to denote worker
nodes. For such a problem of finding the most probable real-
ization in a graphical model, the celebrated belief propaga-
tion gives a good approximate solution. To be precise, BP is
an approximation for maximizing the marginal distribution
of each variable, and a similar algorithm known as min-
sum algorithm approximates the most probable realization.
However, the two algorithms are closely related, and in this
section we only present standard BP. There is a long line of
literature providing the theoretical and empirical evidences
supporting the use of BP (Pearl 1988, Yedidia et al. 2003).

Under the crowdsourcing graphical model, standard BP
operates on two sets of messages: the task messages
{Xi~a) (i, ayer and the worker messages {J,_,;} 4cr- In our
iterative algorithm the messages were scalar variables with
real values, whereas the messages in BP are probability den-
sity functions. Each task message corresponds to an edge
and each worker message also corresponds to an edge. The
task node i corresponds to random variable 7,, and the task
message from task i to worker a, denoted by x,_m, rep-
resents our belief on the random variable 7,. Then X, ., is
a probability distribution over {£1}. Similarly, a worker
node a corresponds to a random variable p,. The worker
message y,_,,; is a probability distribution of p, over [0, 1].
Following the standard BP framework, we iteratively update
the messages according to the following rule. We start with
randomly initialized x,_, ,’s and at kth iteration,

i—a

590 < F () T1 {Pa+ Pat+ (Pa— DA (+1)

jeda\i

(P + Pu— (Pu = P AT (=D},

~(k+1
FEE o T [ GIL ) ol + Pilla i) b
bedi\a
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for all (i,a) € E and for p = 1 — p. The above update
rule only determines the messages up to a scaling, where o
indicates that the left-hand side is proportional to the right-
hand side. The algorithm produces the same estimates in the
end regardless of the scaling. After a predefined number of
iterations, we make a decision by computing the decision
variable

ii(fi) X 1_[ /(5£Iii(Pb)(Pb”(Aib:f,.) +[_)b|](A,b;éfi))) dpy,

bedi

and estimating 7, = sign(%,(4+) — X,(—)).
In a special case of a Haldane prior, where a worker either
always tells the truth or always gives the wrong answer,
_]O0  with probability 1/2,
Pi= 1 otherwise,
the above BP updates boils down to our iterative infer-
ence algorithm. Let x,_ , = log(¥,_ ,(+)/X,_,,(—)) denote
the log-likelihood of X, ,(-). Under the Haldane prior,
p, 1s also a binary random variable. We can use
Voo =log(¥,_.;(1)/¥,_,(0)) to denote the log-likelihood of

Y...;(+). After some simplifications, the above BP update
boils down to

(k) (k 1 (k) (k)
ya—)zz Z Ajll j—a > l—>a= Z Albyb—>t

jeda\i bedi\a

This is exactly the same update rule as our iterative infer-
ence algorithm (cf. Equations (1) and (2)). This observation
was first suggested in Liu et al. (2012). Thus, our algorithm
is belief propagation for a very specific prior. Despite this,
it is surprising that it performs near optimally (with ran-
dom regular graph for task allocation) for all priors. This
robustness property is due to the models assumed in this
crowdsourcing problem and is not to be expected in general.

2.7. Discussion

In this section, we discuss several implications of our main
results and possible future research directions in generaliz-
ing the model studied in this paper.

Below Phase Transition. We first discuss the perfor-
mance guarantees in the below threshold regime when
ffqz < 1. We conjecture that below threshold, no algorithm
can do better than majority voting. Precisely, we conjecture
that for a fixed éfqz = ¢ < 1 the asymptotic error probabil-
ity achieved by any algorithm, liminf,_(1/m)P(z, # 7,), is
lower bounded by that of majority voting. This is related to
the hardness of the reconstruction problem on broadcasting
trees (Evans et al. 2000). In the case of a simpler recon-
struction problem of broadcasting on a tree, it is shown that
when the degree of the tree is below a threshold, the cor-
relation between the root node and the leaves of the tree at
depth k vanishes as k grows. Further, regardless of whether
we are below or above the threshold, stopping our algorithm
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after one iteration achieves error probability equal to that
of majority voting. When we are below the threshold, our
conjecture suggests that we should stop after one iteration
and numerical experiments confirm that the error increases
as we run the algorithm for a larger number of iterations.

As we will show, the bound in (4) always holds even
when quz < 1. However, we provide a tighter upper bound
on the resulting error when only one iteration of our iterative
inference algorithm is used that depends on the first moment
p = E5[2p; — 1] (which is equivalent as majority voting
algorithm).

Notice that the bound in (4) is only meaningful when it is
less than a half. When éfqz <1 or £g <24log?2, the right-
hand side of inequality (4) is always larger than half. Hence
the upper bound always holds, even without the assumption
that éfqz > 1, and we only have that assumption in the state-
ment of our main theorem to emphasize the phase transition
in how our algorithm behaves.

However, we can also try to get a tighter bound than a
trivial half implied from (4) in the below threshold regime.
Specifically, we empirically observe that the error rate
increases as the number of iterations k increases. Therefore,
it makes sense to use k = 1. In which case, the algorithm
essentially boils down to the majority rule. We can prove
the following error bound, which generally holds for any
regime of ¢, r and the worker distribution . A proof of
this statement is provided in §3.6.

LEMMA 4. For any value of ¢, r, and m, and any distribu-
tion of workers 7, the estimates we get after the first step
of our algorithm achieve

| o
— Y P #i) e (6)
i=1

where u =[E5[2p; —1].

Since w is always between ¢ and g'/?, the scaling of
the above error exponent is always worse than what we
have after running our algorithm for a long time (cf. Theo-
rem 1). This suggests that iterating our inference algorithm
helps when ffqz > 1 and especially when the gap between
p and g is large. Under these conditions, our approach
does significantly better than majority voting (cf. Figure 2).
The gain of using our approach is maximized when there
exist both good workers and bad workers. This is consis-
tent with our intuition that when there is a variety of work-
ers, our algorithm can identify the good ones and get better
estimates.

Golden Standard Units. Next, consider the variation
where we ask questions to workers whose answers are
already known (also known as “gold standard units”). We
can use these to assess the quality of the workers. There
are two ways we can use this information. First, we can
embed “seed gold units” along with the standard tasks, and
use these seed gold units in turn to perform more informed
inference. However, we can show that there is no gain in
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using such seed gold units. The optimal lower bound of
(1/q)log(1/¢€) essentially utilizes the existence of an ora-
cle that can identify the reliability of every worker exactly,
i.e., the oracle has a lot more information than what can
be gained by such embedded golden questions. Therefore,
clearly seed gold units do not help the oracle estimator, and
hence the order optimality of our approach still holds even
if we include all the strategies that can utilize these seed
gold units. However, in practice, it is common to use the
seed gold units, and this can improve the constant factor in
the required budget, but not the scaling.

Alternatively, we can use “pilot gold units” as qualifying
or pilot questions that the workers must complete to qualify
to participate. Typically a taskmaster does not have to pay
for these qualifying questions and this provides an effective
way to increase the quality of the participating workers. Our
approach can benefit from such pilot gold units, which has
the effect of increasing the effective collective quality of
the crowd ¢. Further, if we can “measure” how the distribu-
tion of workers change when using pilot questions, then our
main result fully describes how much we can gain by such
pilot questions. In any case, pilot questions only change the
distribution of participating workers, and the order optimal-
ity of our approach still holds even if we compare all the
schemes that use the same pilot questions.

How to Optimize Over a Multiple Choices of Crowds.
We next consider the scenario where we have a choice
over which crowdsourcing platform to use from a set of
platforms with different crowds. Each crowd might have
different worker distributions with different prices. Specif-
ically, suppose there are K crowds of workers: the kth
crowd has collective quality g, and requires payment of
¢, to perform a task. Now our optimality result suggests
that the per-task cost scales as (c,/q,)log(1/¢) if we only
used workers of class k. More generally, if we use a
mix of these workers, say «, fraction of workers from
class k, with )", a, = 1, then the effective parameter ¢ =
>, @,q,. And subject to this, the optimal per task cost scales
as [(Xp ape)/ (X arqi)]log(1/€). This immediately sug-
gests that the optimal choice of fraction a;, must be such
that a, > 0 only if ¢,/g, = min, ¢;/g;. That is, the optimal
choice is to select workers only from the classes that have
maximal quality per cost ratio of g,/c, over k € [K]. One
implication of this observation is that it suggests a pricing
scheme for crowdsourcing platforms. If you are managing a
crowdsourcing platform with the collective quality g and the
cost ¢ and there is another crowdsourcing platform with ¢’
and ¢’, you want to choose the cost such that the quality per
cost ratio is at least as good as the other crowd: g/c > ¢'/c’.

General Crowdsourcing Models. Finally, we consider
possible generalizations of our model. The model assumed
in this paper does not capture several factors: tasks with dif-
ferent levels of difficulties or workers who always answer
positive or negative. In general, the responses of a worker j
to a binary question i may depend on several factors: (i) the



Downloaded from informs.org by [18.155.5.7] on 12 October 2017, at 11:48 . For personal use only, all rights reserved.

Karger, Oh, and Shah: Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems

Operations Research 62(1), pp. 1-24, ©2014 INFORMS

17

correct answer to the task; (ii) the difficulty of the task;
(iii) the expertise or the reliability of the worker; (iv) the
bias of the worker toward positive or negative answers. Let
t; € {+1, —1} represent the correct answer and r; € [0, co)
represent the level of difficulty; also, let ; € [—o0, oo] rep-
resent the reliability and B; € (—oo, o) represent the bias
of worker j. In formula, a worker j’s response to a binary
task i can be modeled as

A, =sign(Z; ;),

where Z, ; is a Gaussian random variable distributed as
Z,;~ N(a;t;+ B;,r;) and sign(Z) = 1 almost surely for
Z ~ N(o0, 1). A task with r, =0 is an easy task and large r,
is a difficult task. A worker with large positive «; is more
likely to give the right answer and large negative «; is more
likely to give the wrong answer. When a; = 0, the worker
gives independent answers regardless of what the correct
answer is. A worker with large §3; is biased toward posi-
tive responses and if B; = 0 then the worker is unbiased.
A similar model with multidimensional latent variables was
studied in Welinder et al. (2010).

Most of the models studied in the crowdsourcing liter-
ature can be reduced to a special case of this model. For
example, the early patient-classification model introduced
by Dawid and Skene (1979) is equivalent to the above Gaus-
sian model with r;, = 1. Each worker is represented by two
latent quality parameters p;r and p;, such that

A=
Y —t; otherwise.

with probability p,

This model captures the bias of workers. More recently,
Whitehill et al. (2009) introduced another model where
P(A; =1t | a;,b;)) = 1/(1 + e "), with worker reliabil-
ity a; and task difficulty b;. This is again a special case of
the above Gaussian model if we set 8; = 0. The model we
study in this paper has an underlying assumption that all the
tasks share an equal level of difficulty and the workers are
unbiased. It is equivalent to the above Gaussian model with
B = 0 and r, = 1. In this case, there is a one-to-one rela-
tion between the worker reliability p; and a;: p; = Q(«a;),
where Q(-) is the tail probability of the standard Gaussian
distribution.

3. Proof of Main Results

In this section, we provide proofs of the main results.

3.1. Proof of the Main Result in Theorem 1

By symmetry, we can assume that all #,’s are +1. Let t:-(k)

denote the resulting estimate of task i after k iterations of
our iterative inference algorithm defined in §2.1. If we draw
a random task I uniformly in [m], then we want to compute

RIGHTS L

the average error probability, which is the probability that
we make an error on this randomly chosen task:

Ly e, 21 =P i), )

ie[m]

We will prove an upper bound on the probability of error
in two steps. First, we prove that the local neighborhood of a
randomly chosen task node I is a tree with high probability.
Then, assuming that the graph is locally tree like, we pro-
vide an upper bound on the error using a technique known
as density evolution.

We construct a random bipartite graph G([m] U [n], E)
according to the configuration model. We start with
[m] x [£] half-edges for task nodes and [n] x [r] half-edges
for the worker nodes, and pair all the m? task half-edges to
the same number of worker half-edges according to a ran-
dom permutation of [mé].

Let G, denote a subgraph of G([m] U [n], E) that
includes all the nodes whose distance from the “root” i is
at most k. At first iteration of our inference algorithm, to
estimate the task i, we only use the responses provided by
the workers who were assigned to task i. Hence we are per-
forming inference on the local neighborhood G, ;. Similarly,
when we run k iterations of our (message-passing) infer-
ence algorithm to estimate a task i, we only run inference
on local subgraph G; ,,_;. Since we update both task and
worker messages, we need to grow the subgraph by distance
two at each iteration. When this local subgraph is a tree,
then we can apply density evolution to analyze the proba-
bility of error. When this local subgraph is not a tree, we
can make a pessimistic assumption that an error has been
made to get an upper bound on the actual error probability:

P(t; # 1Y) <P(Gyy_, is not a tree)
+P(Gy oy is a tree and 1; # 7). (8)

Next lemma bounds the first term and shows that the proba-
bility that a local subgraph is not a tree vanishes as m grows.
A proof of this lemma is provided in §3.2.

LEMMA 5. For a random (£, r)-regular bipartite graph gen-
erated according to the configuration model,

234
P(Gy. 5, is not a tree) < ((Z —1)(r— 1))2k 2_r'

)

Then, to bound the second term of (8), we provide a
sharp upper bound on the error probability conditioned on
that Gy ,,_, is a tree. Let xfk) denote the decision variable
for task i after k iterations of the iterative algorithm such
that f,-(k) = sign (xi(k)). Then, we make an error whenever this
decision variable is negative. When this is exactly zero, we
make a random decision, in which case we make an error
with probability half. Then,

Pty # i | Gy is a tree)

< [P’(xl(k) < 0| Gy is a tree). (10)
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To analyze the distribution of the decision variable on a
locally tree-like graph, we use a standard probabilistic anal-
ysis technique known as “density evolution” in coding the-
ory or “recursive distributional equations” in probabilistic
combinatorics (Richardson and Urbanke 2008, Mezard and
Montanari 2009). Precisely, we use the following equal-
ity that

P(x” <0| Gy, is a tree) = P(xY <0), (11)

where %) is defined through density evolution Equa-
tions (13)—(15) in the following. We will prove in the fol-
lowing that when qu > 1,

PEY <0) < et/ (12)

Together with Equations (11), (10), (9), (8), and (7), this
finishes the proof of Theorem 1.

Density Evolution. At iteration k the algorithm oper-
ates on a set of messages {xl@j}(i,j)eE and {y}ﬁ,}(i’j)eE. If
we chose an edge (i, j) uniformly at random, the values
of x and y messages on that randomly chosen edge define
random variables whose randomness comes from random
choice of the edge, any randomness introduced by the infer-
ence algorithm, the graph, and the realizations of p;’s and
A;’s. Let x® denote this random variable corresponding to
the message x and y(") denote the random variable cor-

responding to y ﬁ, conditioned on the latent worker quality
being p for randomly chosen edge (i, j).

As proved in Lemma 5, the (¢, r)-regular random graph
locally converges in distribution to a (£, r)-regular tree with
high probability. On a tree, there is a recursive way of
defining the distribution of messages x*) and y{". At ini-
tialization, we initialize the worker messages with Gaus-
sian random variables with mean one and variance one.
The corresponding random variable y{* ~ #'(1, 1), which
at initial step is independent of the worker quality p, fully

describes the distribution of yﬁl for all (i, j). At first iter-

ation, the task messages are updated according to M =

l—)/
D iean A,J,y] Z,;- If we know the distributlon of A;;’s and

Yyi'S, We can update the distribution of xH - Since we are
assuming a tree, all xH ; are independent. Further, because
of the symmetry in the way we construct our random graph,
all x( ) ;s are identically distributed. Precisely, they are dis-
tributed according to x( defined in (13). This recursively
defines x* and y® through the density evolution equations
in (13) and (14) (Mezard and Montanari 2009).

Let us first introduce a few definitions. Here and after,
we drop the superscript k denoting the iteration number
whenever it is clear from the context. Let x,’s and y, ,’s
be independent random variables distributed according to x
and y,, respectively. Here we use a and b as indices for
independent random variables with the same distribution.

RIGHTS L

Also, z, ,’s and z,, ,’s are independent random variables dis-

>%p.a

tributed according to z,, where

. — +1 with probability p,
P~ | -1 with probability 1 — p

This represents the answer given by a worker conditioned
on the worker having quality parameter p. Let p ~ ¥ be
a random variable distributed according to the distribution
of the worker’s quality F over [0, 1]. Then p,’s are inde-
pendent random variable distributed according to p. Further
z,,’s and x,’s are independent, and z, ,’s andy, ,’s are
conditionally independent conditioned on P.-

We initialize y, with a Gaussian distribution, whence it is
independent of the latent variable p: y(© ~ A'(1, 1). Let =
denote equality in distribution. Then, for k € {1, 2, ...}, the
task messages are distributed as the sum of £ — 1 incoming
messages that are independent and identically distributed
according to yi,k_l) and weighted by i.i.d. responses:

xXVL 3 g, ayl(f‘ b, (13)

aegl[t—1]

Similarly, the worker messages (conditioned on the latent
worker quality p) are distributed as the sum of r — 1
incoming messages that are independent and identically dis-
tributed according to x*) and weighted by i.i.d. responses:

k
yOL Y 7, ,x0. (14)

be[r—1]

)

For the decision variable x( on a randomly chosen task I,

we have
(K (k=1)
g0 L =3 Zy Vi - (15)
ie[(]

Numerically or analytically computing the densities in
(13) and (14) exactly is not computationally feasible when
the messages take continuous values as is the case for
our algorithm. Typically, heuristics are used to approximate
the densities such as quantizing the messages, approximat-
ing the density with simple functions, or using the Monte
Carlo method to sample from the density. A novel contri-
bution of our analysis is that we prove that the messages
are sub-Gaussian using recursion, and we provide an upper
bound on the parameters in a closed form. This allows us
to prove the sharp result on the error bound that decays
exponentially.

Mean and Variance Computation. To give an intu-
ition on how the messages behave, we describe the evolution
of the mean and the variance of the random variables in (13)
and (14). Let p be a random variable distributed according
to the measure 7. Define m® = E[x¥], m (k) = [E[ 1 pl,

v® = var(x®), and f)(k) = Var(y{" | p). Also let 6 =¢—1
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and 7 = r — 1 to simplify notation. Then, from (13) and (14)
we get that

m® = 0E,[(2p - 1);1%;“)],

{ [ (k—1)+(ﬁ\1(k—l))2]_([Ep[(2p 1) ~ (k— 1)]) }
8y = v + (m®)? = (2p - Hm)?}.

~A(k) A _ (k)
m,’ =r2p—1)m",

Recall that u = E[2p— 1] and ¢ = E[(2p — 1)?]. Substituting
m, and v, we get the following evolution of the first and
the second moment of the random variable x®:

m&+D — 2

3

vk = érv B4 (m )2 (1 — q)(1 4 7q).
Since m” =1 and 9 =1 as per our assumption, we have
m® =l and v = #(4 — u?). This implies that m® =
wl(£7g)1, and v = qv*=V 4 bck2, with a = €7, b =
M2@3f(1 —¢)(1+ 7q), and ¢ = (£7¢)?. After some algebra,
it follows that v = vV a*~! 4 bt Sia(a/c)t.

For £7¢* > 1, we have a/c < 1 and

o = (4 = ) (0!
I 1—1/(éFg*)F!
(1= )1+ gy (Ergpr2 L)
irg* —1
The first and second moment of the decision variable X**

in (15) can be computed using a similar analysis: E[X (k)]
(¢/0)m™® and Var(x™) = (¢/£)v®. In particular, we have

var®")  i(4-p?)
[E[ﬁ(k)]z eéMZ(équ)k—l

+Z(1—q)(1+rq)< _ 1 )
Llrg>—1) (Lrq?)x!

Applying Chebyshev’s inequality, it immediately follows
that P(X*® < 0) is bounded by the right-hand side of the
above equality. This bound is weak compared to the bound
in Theorem 1. In the following, we prove a stronger result
using the sub-Gaussianity of x*). But first, let us analyze
what this weaker bound gives for different regimes of ¢, r,
and ¢, which indicates that the messages exhibit a funda-
mentally different behavior in the regimes separated by a
phase transition at {7g* = 1.

In a “good” regime where we have éfqz > 1, the bound
converges to a finite limit as the number of iterations k
grows. Namely,

{(1—q)(1+7q)
(lrg2—1)

Notice that the upper bound converges to (1 —¢)/(£g) as
¢ig* grows. This scales in the same way as the known

hm PGEY <0) <

RIGHTS L1 N Hig

bounds for using the left singular vector directly for infer-
ence (cf. Karger et al. 2011). In the case when £7¢> < 1, the
same analysis gives

Var()e(k)) — 090
E NG :
(X

Finally, when £7¢? = 1, we get
v® = (U7 + 07 (1 — q) (1 + Fq) (E7q)* 2k,
which implies

~(k)
Var(x™) — o).
E )2<k)]2
Analyzing the Density. Our strategy to provide a tight
upper bound on P(X* < 0) is to show that %) is sub-
Gaussian with appropriate parameters and use the Chernoff
bound. A random variable z with mean m is said to be sub-
Gaussian with parameter ¢ if for all A € R the following
inequality holds:

[ )\z] <em)\+(l/2)a'2)\2

Define

~ A R R 1—1 27 p)k-1
52 =200 48 P g+ 1) (g iy LD
1—1/(g%¢7)
and m, = ,ué(qéf)"‘l for k € Z. We will first show that,
x® is sub-Gaussian with mean m, and parameter ¢ for a

regime of A we are interested in. Precisely, we will show
that for [A| < 1/(2m,_,7),

[E[e)\x(“] < emk)\+(l/2)&f)\2‘ (16)

By definition, because of distributional independence, we
have E[¢X"] = [E[e’\"<k)l(‘/ 0. Therefore, it follows from (16)
that 3 satisfies E[e"] < e(@/DmA+(t205E4°  Applying the
Chernoff bound with A = —m, /(67), we get

(k)] < e_zmﬁ/(zfz}f)’ (17)

ﬂ:[)( (k) <O) <[E[ AX
Since mymy_,/(67) < w2l (¢0F)* ) (Bu2ql P (q07)*)
= 1/(3F), it is easy to check that [A| < 1/(2m,_,F). This
implies the desired bound in (12).

Now we are left to prove that x*) is sub-Gaussian with
appropriate parameters. We can write down a recursive for-
mula for the evolution of the moment generating functions
ofxandy, as

[E[e“‘k)] = (&, [pE[e™ " | pl+BEe™ " [p]])’.  (18)

E[e™ ] = (pE[e™"] + pE[e ™), (19)
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where p=1— p and p =1 — p. We can prove that these are
sub-Gaussian using induction.

First, for k = 1, we show that x() is sub-Gaussian
with mean m, = pj and parameter 07 = 24, where n=
E[2p — 1]. Since y,, is initialized as Gaussian with unit mean
and variance, we have [E[e)‘yﬁ’o)] = MUY peoardless of p.
Substituting this into (18), we get for any A,

E[e™"] = (E[ple* + (1~ E[p])e ) e

g eéuA+2A2 , (20)

where the inequality follows from the fact that ae® +
(1—a)e~* < @ V=+(1/22 for any z € R and a € [0, 1] (cf.
Alon and Spencer 2008, Lemma A.1.5).

Next, assuming E[e™”] < emM /DT for |A] <
1/(2m,_,7), we show that E[e™"] < emen A /DTN for
[A| < 1/(2m,7), and compute appropriate My and G7,,.
Substltutmg the bound E[e™"] < emAT(1/2502 i (19), we
get E[eM] < (pe™ + pe=4) (/275X Fyrther applying
this bound in (18), we get

[E[eAx(k+l)] < ([Ep[p(pemk)\ _I_I—)efmk/\)f
"2/\2

+I—)(pe—mkA +I—)emkA)F])Ze(l/2)2PUk (21)
To bound the first term in the right-hand side, we use the
next key lemma. A proof of this lemma is provided in §3.3.

LEMMA 6. For any |z| < 1/(2F) and p € [0, 1] such that
q =E[(2p — 1)?], we have

24 5,=2\ | ol —2\F Pz P47z
E,[p(pe’ + e ™) + p(pe’ + pe*)7] < e 1/2Ba7H,

Applying this inequality to (21) gives

[E[e)"‘(Hl)] <e glrm A+(1/2)((3qéF +/r)mk+(r0'k))\2

for |A| < 1/(2m,7). In the regime where gf7 > 1 as
per our assumption, m, is nondecreasing in k. At itera-
tion k, the above recursion holds for |A| < min{1/(2m,F),

. 1/(2m,_,7)} =1/(2m,_,7). Hence, we get the follow-
ing recursion for m, and &, such that (16) holds for |A| <
1/(2m,_7):

Moy = qbimy, Gpp = (3qlF* + LF)ym? + (767

With the initialization m, = u and &1 =20, we have m, =
wl(glF)k=" for k € {1,2,...} and a’k = aO'k | + bc*? for
ke(2,3,...}, with a =07, b= ,u,zﬁ (3¢ 7 —i—Zr) and ¢ =
(qbr)2. After some algebra, it follows that 67 = d7a*~" +
bck2 32 (a/c)t. For £7¢q* # 1, we have a/c # 1, whence
G} =0}a & '+ bc*2(1—(a/c)*")/(1—a/c). This finishes
the proof of (16).
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3.2. Proof of Lemma 5

Consider the following discrete time random process that
generates the random graph Gy ,,_, starting from the root I.
At first step, we connect £ worker nodes to node I accord-
ing to the configuration model, where ¢ half-edges are
matches to a randomly chosen subset of nr worker half-
edges of size £. Let o, denote the probability that the result-
ing graph is a tree, that is, no pair of edges are connected
to the same worker node. Since there are ( ) pairs and each
pair of half-edges are connected to the same worker node
with probability (r — 1)/(nr —1):

2\ r—1
a; < .
2)nr—1

Similarly, define

a, =P(Gy ,,_, is not a tree | Gy ,,_, is a tree), and

B, =P(Gy ,_, is not a tree | G ,,_3 is a tree).

Then,

k
P(Gy 5, is not a tree) < a; + Y _(a, +B,). (22)

t=2

We can upper bound «,’s and 3,’s in a similar way. For gen-
eratlng Gy i condltloned on Gy ,,_, being a tree, there are
Z(Er)[ ! half-edges, where {=f—1andFf=r—1. Among
(l(lrz)’ ) pairs of these half-edges, each pair will be con-
nected to the same worker with probability at most (r — 1)/
(r(n=2""" €(£F)*") —1), where 3"_! €(£7)* " is the total
number of worker nodes that are assigned so far in Gy ,,_,.
Then,

C(LF)H-2 r—1
o, < = =
2 r(n— ()2 =1))/(tF = 1) —1
KZ(E;)Zr—z 52(3}")% 2 N K(E’a)t—z
2(n—£(£r)’ 2/2) n n

< 362(€r)2r—2
2n

)

where the second inequality follows from the fact that
(a—1)/(b—1) < a/b for all a<b and £7 > 2 as per our
assumption, and in the third inequality we used the fact that
«, is upper bounded by one and the fact that for f(x) =
b/(x — a), which is upper bounded by one, we have f(x) <
(2b/x) + (2a/x). Similarly, we can show that

3@2(zr)2f 2
BiS ——%—

E m
Substituting «, and B, into (22), we get that

A 3¢
P(Gy, 5, is not a tree) < (6?)2"*2—”.
m
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3.3. Proof of Lemma 6

By the fact that ae’” + (1 — a)e™ < ¢@eD0+1/20 for any
beR and a € [0, 1], we have pet + pe < e D:t(1/2)
almost surely. Applying this inequality once again, we get

E[p(pe’ +pe™)" +p(pe” +pe )]
< E[ et 1/2)00-1 72 ] 1/2)722

Using the fact that e* < 1 +a +0.63a? for |a| <5/8,
[E[e<2p—1>2fz+<1/2>(2p—1>2f2z2]
SE[1+@2p—1)*/z+(1/2)(2p — 1)*F°2?
+0.63((2p — 1)* 7z + (1/2)(2p — 1)*7°2?)?]

<1+ gfz+ (3/2)qP 2 < 170202
for |z| < 1/(2F). This proves Lemma 6.

3.4. Proof of a Bound on Majority
Voting in Lemma 2

Majority voting simply follows what the majority of work-
ers agree on. In formula, 7, = sign(}jew, A;;), where W,
denotes the neighborhood of node i in the graph. It makes a
random choice when there is a tie. We want to compute
a lower bound on P(7; # t,). Let x;, = 2 jew, Ajj- Assuming
t; = +1 without loss of generality, the error rate is lower
bounded by P(x; < 0). After rescaling, (1/2)(x; + ¢) is a
standard binomial random variable Binom(£, «), where ¢ is
the number of neighbors of the node i, @ = [E[p,], and by
assumption each A;; is one with probability a.
It follows that

P(x,=—1+2k)=

(1 —a)*.

(€ —I;)!k!

Further, for k < af — 1, the probability distribution function
is monotonically increasing. Precisely,

Pi=—C+2(k+1)) _  a(t—k)
P(x,=—0+2k) ~ (1—a)(k+1)
a(@—afﬁ—f—l)>1
(1-—a)at ’

where we used the fact that the above ratio is decreasing in
k whence the minimum is achieved at k = @f — 1 under our
assumption.

Let us assume that £ is even, so that x; take even values.
When ¢ is odd, the same analysis works, but x; takes odd
values. Our strategy is to use a simple bound: P(x; < 0) >
kP(x, = —2k). For an appropriate choice of k = /I, the
right-hand side closely approximates the error probability.
By definition of x;, it follows that

Downloaded from informs.org by [18.155.5.7] on 12 October 2017, at 11:48 . For personal use only, all rights reserved.

Pl=-2VD=(, | )o@ @)

€2+t

RIGHTS LI L)

Applying Stirling’s approximation, we can show that

<€/2iﬁ) g %21’ 9

for some positive constant C,. We are interested in the
case where worker quality is low, that is « is close to 1/2.
Accordingly, for the second and third terms in (23), we
expand in terms of 2« — 1:

log(o//z_‘/z(l — a)l/2+‘/z)

= (g — JZ) (log(1+(2a—1)) —log(2))

+<§+¢z> (log(1— (2a— 1)) ~log(2))

=—{log(2)— E(ZQT_I)z

+O0(VL(R2a—1)%). (25)
We can substitute (24) and (25) in (23) to get the follow-
ing bound:

P(x; <0) > exp{—C;(¢a—1)*+ 1)}, (26)

for some positive constant Cj.

Now, let ¢; denote the degree of task node i, such that
> ¢; = £m. Then for any {r,} € {£1}", any distribution of
p such that uw = E[2p — 1] = 2a — 1, and any nonadaptive
task assignment for m tasks, the following lower bound is
true:

1 N |
— Z P(r, #1,) > —~ Zesz(l,-,uZJrl) > e*C3(éu2+l)’

i€[m] i=1

where the last inequality follows from convexity of the
exponential function. Under the spammer-hammer model,
where @ = g this gives

SR # 1) > e G,

i€[m]

1
min max —
€T, te{£l}",FeF, m

This finishes the proof of lemma.

3.5. Proof of a Bound on the Adaptive
Schemes in Theorem 2

In this section, we prove that, even with the help of an ora-
cle, the probability of error cannot decay faster than e=*,
We consider a labeling algorithm that has access to an ora-
cle that knows the reliability of every worker (all the p;’s).
At the kth step, after the algorithm assigns 7, and all the
|T,| answers are collected from the kth worker, the oracle
provides the algorithm with p,. Using all the previously col-
lected answers {A;};¢, and the worker reliability {p;};<.
the algorithm makes a decision on the next task assignment
T ... This process is repeated until a stopping criterion is
met, and the algorithm outputs the optimal estimate of the
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true labels. The algorithm can compute the maximum likeli-
hood estimates, which is known to minimize the probability
of making an error. Let W, be the set of workers assigned
to task i, then

~ . Pj
f,= mgn(Z log< )A,—-). 27)
jew; L=p;) "

We are going to show that there exists a family of distribu-
tions 7 such that for any stopping rule and any task assign-
ment scheme, the probability of error is lower bounded
by e~¢%. We define the following family of distributions
according to the spammer-hammer model with imperfect
hammers. We assume that g < a* and

)12 with probability 1 — g/a?,
Pi=)1/2)(1+a) with probability ¢/a?,

such that E[(2p; — 1)*] =g¢.

Let W, denote the set of workers assigned to task i when
the algorithm has stopped. Then |W;| is a random vari-
able representing the total number of workers assigned to
task i. The oracle estimator knows all the values neces-
sary to compute the error probability of each task. Let €, =
E[I(z; #7;) | {A;;}. {p;}] be the random variable representing
the error probability as computed by the oracle estimator,
conditioned on the |W,;| responses we get from the work-
ers and their reliability p;’s. We are interested in identifying
how the average budget (1/m) > ;E[|W;|] depends on the
achieved average error rate (1/m) ), E[%,;]. In the follow-
ing we will show that for any task i, independent of which
task allocation scheme is used, it is necessary that

0.27 1
EW] > T“’g(m{%f])' (28)

By convexity of log(1/x) and Jensen’s inequality, this
implies that

m

1 0.27
— ) E[|W]] > 1
> 2 g

i=1

1
2(1/m) 37, [E[%i]).

Since the total number of queries has to be consistent,
we have }|T;| = >, |W;| < ml. Also, by definition
E[€,] =P(t, #1,). Then, from the above inequality, we get
(1/m) Y P(1; # 1) = (1/2)e~ (/0274 which finishes
the proof of the theorem. Note that this bound holds for any
value of m.

Now, we are left to prove that the inequality (28) holds.
Focusing on a single task i, since we know who the spam-
mers are and spammers give us no information about the
task, we only need the responses from the reliable workers
in order to make an optimal estimate as per (27). The condi-
tional error probability €, of the optimal estimate depends
on the realizations of the answers {A;;};c, and the worker
reliability {p;},cy,. The following lower bound on the error
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only depends on the number of reliable workers, which we
denote by ¢,.

Without loss of generality, let t; = +1. Then, if all the
reliable workers agreed on “—”" answers, the maximum like-
lihood estimation would be “—” for this task, and vice versa.
For a fixed number of ¢, responses, the probability of error
is minimum when all the workers agreed. Therefore,

E[€; | ¢,] = E[€, | all £, reliable workers agreed, ¢;]
(1 —a)/2) S 1<l—a>l"’

T (I +a)/2)i+((1—a)/2)4~ 2\ 2

for all the realizations of {A;;} and {p;}. The scaling by half
ensures that the above inequality holds even when ¢, = 0.
By convexity and Jensen’s inequality, it follows that

log(2E[ €,
o> JoEQEED
log((1—a)/2)
When we recruit |W,| workers, we see £, = (g/a*)|W,|

reliable ones on average. Formally, we have E[¢;] =
(q/a®) E[|W,]]. Again applying Jensen’s inequality, we get

1 a?
HIWll> gt —a72)

Maximizing over all choices of a € (0, 1), we get

log(2E[€;)).

E[W,[] > —log(ziE[%iDO%,

which in particular is true with a = 0.8. For this choice of
a, the result holds in the regime where ¢ < 0.64. Notice that
by changing the constant in the bound, we can ensure that
the result holds for any values of ¢. This finishes the proof
of (28).

3.6. Proof of a Bound with One
Iteration in Lemma 4

The probability of making an error after one iteration of our
algorithm for node i is P(z; # ffl)) <P(x; <0), where X, =
2 jcoi A,-jy_g»l_),i. Assuming f; = 4+, without loss of generality,
A,; is +1 with probability E[p] and —1 otherwise. All y\" s
are initialized as Gaussian random variables with mean one
and variance one. All these random variables are indepen-
dent of one another at this initial step. Hence, the resulting
random variable X; is a sum of a shifted binomial random
variable 2(Binom(¢, E[p]) — ¢) and a zero-mean Gaussian
random variable V' (0, £). From calculations similar to (20),
it follows that

) 2
[E[eAx ]g ee,mH/\’ < e—(1/4)m2’

where we choose A = —u /2. By Chernoff’s inequality, this
implies the lemma for any value of m.
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4. Conclusion

We conclude with some limitations of our results and inter-
esting research directions.

1. More general models. In this paper, we provided
an order-optimal task assignment scheme and an order-
optimal inference algorithm for that task assignment assum-
ing a probabilistic crowdsourcing model. In this model,
we assumed that each worker makes a mistake randomly
according to a worker specific quality parameter. Two main
simplifications we make here is that, first, the worker’s reli-
ability does not depend on whether the task is a positive task
or a negative task, and second, all the tasks are equally easy
or difficult. The main remaining challenges in developing
inference algorithms for crowdsourcing is how to develop
a solution for more generic models formally described in
§2.7. When workers exhibit bias and can have heteroge-
neous quality parameters depending on the correct answer
to the task, spectral methods using low-rank matrix approx-
imations nicely generalize to give an algorithmic solution.
Also, it would be interesting to find algorithmic solutions
with performance guarantees for the generic model where
tasks difficulties are taken into account.

2. Improving the constant. We prove our approach is
minimax optimal up to a constant factor. However, there
might be another algorithm with a better constant factor than
our inference algorithm. Some modification of the expecta-
tion maximization or the belief propagation might achieve a
better constant compared to our inference algorithm. It is an
interesting research direction to find such an algorithm and
give an upper bound on the error probability that is smaller
than what we have in our main theorem.

3. Instance optimality. The optimality of our approach is
proved under the worst-case worker distribution. However,
it is not known whether our approach is instance optimal or
not under the nonadaptive scenario. It would be important to
prove lower bounds for all worker distributions or to find a
counterexample where another algorithm achieves a strictly
better performance for a particular worker distribution in
terms of the scaling of the required budget.

4. Phase transition. We empirically observe that there is
a phase transition around quz = 1. Below this, no algo-
rithm can do better than majority voting. This phase transi-
tion seems to be an algorithm-independent and fundamental
property of the problem (and the random graph). It might
be possible to formally prove the fundamental difference
in the way information propagates under the crowdsourcing
model. Such phase transition has been studied for a simpler
model of broadcasting on trees in information theory and
statistical mechanics (Evans et al. 2000).

Endnotes

1. http://www.mturk.com.

2. For certain high-value tasks, crowdsourcers can use entrance
exams to “prequalify” workers and block spammers, but this in-
creases the cost of the task and still provides no guarantee that
the workers will try hard after qualification.
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3. http://turkopticon.differenceengines.com.
4. http://turkernation.com.
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