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Abstract

We study the best achievable performance (in terms of the average queue size and delay)
in a stochastic and dynamic version of the bin-packing problem. Items arrive to a queue
according to a Poisson process with rate 2ρ, where ρ ∈ (0, 1). The item sizes are
independent and identically distributed (i.i.d.) with a uniform distribution in [0, 1]. At
each time unit, a single unit-size bin is available and can receive any of the queued items,
as long as their total size does not exceed 1. Coffman and Stolyar (1999) and Gamarnik
(2004) have established that there exist packing policies under which the average queue
size is finite for every ρ ∈ (0, 1). In this paper we study the precise scaling of the
average queue size, as a function of ρ, with emphasis on the critical regime where ρ

approaches 1. Standard results on the probabilistic (but static) bin-packing problem
can be readily applied to produce policies under which the queue size scales as O(h2),
where h = 1/(1 − ρ), which raises the question of whether this is the best possible. We
establish that the average queue size scales as �(h log h), under any policy. Furthermore,
we provide an easily implementable policy, which packs at most two items per bin. Under
that policy, the average queue size scales as O(h log3/2 h), which is nearly optimal. On
the other hand, if we impose the additional requirement that any two items packed together
must have near-complementary sizes (in a sense to be made precise), we show that the
average queue size must scale as �(h2).
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1. Introduction

Bin packing is an extremely well-studied combinatorial optimization problem, which arises
naturally in many situations including, for example, bandwidth allocation (see, for example, [5])
and selection of multicast trees (see, for example, [20]). The classical version of the problem is
as follows. We are given n items, of sizes X1, . . . , Xn with Xi ∈ [0, 1], and an unlimited supply
of bins of unit size. Items i1, . . . , ip can be packed into the same bin if Xi1 + · · · + Xip ≤ 1.
The goal is to pack all n items in the smallest possible number of bins. In the offline setting, all
item sizes are known up front, while in the online setting, items sizes are revealed one by one
and each item must be placed in a bin as soon as it appears. It is well known that the decision
version of the offline bin-packing problem is NP-complete. This has resulted in extensive work
on polynomial-time (as a function of n) approximation algorithms for both the offline and online
settings; see, for example, the extensive survey by Coffman et al. [6].
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The probabilistic version of the bin-packing problem, in which the sizes X1, . . . , Xn are
assumed to be independent and identically distributed (i.i.d.) with a known distribution µ on
[0, 1], has also been extensively studied in both the offline and online settings. For example,
Knodel [10] and Lueker [12] established that the expected waste in a stochastic offline setting is
�(

√
n); Shor [19] studied online algorithms (best fit and first fit); Bentley et al. [2] studied the

first fit and first-fit decreasing algorithms; Karp et al. [9] studied multidimensional bin packing;
Leighton and Shor [11] provided various results through a connection with grid-matching
problems; and several results are given in a series of papers by Rhee and Talagrand [14], [15],
[16], [17], [18]. A central theme in this literature is that, for both the offline and online settings,
and for a large class of distributions, the expected number of required bins is c(µ)n + O(

√
n);

furthermore, with high probability, the number of required bins is c(µ)n + O(
√

n log n) [16],
[17]. Here c(µ) is a constant determined by the distribution µ. For the case of the uniform
distribution on [0, 1], c(µ) is equal to 1

2 . The O(
√

n) term can be interpreted as the average
waste caused by the randomness in the item sizes. However, in the online case, the waste is
�(

√
n log n) with high probability [19], and there exist online algorithms [19] whose waste is

O(
√

n log3/4 n) with high probability.
In this paper we consider a different model, in which items arrive to a queue according to

a Poisson process with rate 2ρ, where ρ ∈ (0, 1), and the item sizes are i.i.d. with a uniform
distribution in [0, 1]. At each time unit, a single unit-size bin is available and can receive any
of the queued items, as long as their total size does not exceed 1.

We highlight some key differences between the online setting and our model. In the online
setting, items need to be packed as soon as they arrive. In contrast, our model allows queueing,
which provides additional flexibility, and can in principle result in smaller waste, albeit at the
expense of delay. (For example, under our model, an item can be queued until the arrival of a
‘matching’ item, i.e. an item whose size is approximately 1 minus the size of the queued item.)
On the other hand, the online setting assumes that all bins are always available. In contrast,
our model assumes that a bin remains available for only one time unit, and this restriction may
result in larger waste. Because of these two differences, the online model and our queueing
model cannot be reduced to each other, existing results are not directly applicable, and a new
analysis is required.

At a higher level, our work deals with the trade-off between throughput and delay. However,
because of the stability constraint, high throughput is equivalent to low waste. Thus, we are in
effect dealing with the trade-off between waste and delay.

Our model is motivated from contexts such as networking, where a bin corresponds to the
available bandwidth during a single time slot, and an item corresponds to a packet or a file
that can only be transmitted ‘unbroken’ (within one time slot). In an alternative interpretation,
bins correspond to regularly scheduled fixed-capacity trucks, and items correspond to pieces
of cargo that cannot be broken up into smaller pieces.

1.1. Our model

We provide here a precise formulation of the queueing version of the bin-packing problem,
which is the subject of this paper. We assume that items arrive according to a Poisson process
with rate 2ρ, where ρ ∈ (0, 1). (Different arrival models are possible. For example, we could
assume that the numbers of arrivals during each unit time interval are independent random
variables with mean 2. Renewal arrival process models are also possible. Our results remain
valid for more general arrival processes, under suitable assumptions; see the discussion in
Section 3.6.) We index the items according to their arrival order, so that item i is the ith
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arriving item after time 0. We let Xi be the size of the ith item, and assume that the random
variables Xi are i.i.d., uniformly distributed in [0, 1], and independent of the arrival process.

Arriving items join a queue and remain in queue until they are placed in a bin. At each
positive integer time, a bin of size 1 becomes available (‘arrives’) and can receive any of the
items that are in queue at that time, as long as their total size does not exceed 1. (In an alternative
model, bins could be arriving according to a stochastic arrival process, for example, a Poisson
process with rate 1. As will be discussed in Section 3.6, the results do not change under the
assumption of Poisson bin arrivals.) The items that are packed are removed from the queue and
are discarded forever, together with the corresponding bin. We let Q(t) be the number of items
in queue just before time t , i.e. without including the effects of an item or bin arrival at exactly
time t . (Thus, Q(t−) would have been a more accurate, though more cumbersome, notation.)

A policy is a rule that, at each integer time t , selects the items (if any) to be placed in the
available bin, as a function of the available items and the entire history of the process until just
before time t . As before, let Fπ(ρ) be the value of lim supt→∞ E[Q(t)] under policy π , as a
function of the arrival parameter ρ, starting from an empty queue. Let F ∗(ρ) be the infimum
of Fπ(ρ) over all policies π . We are interested in the behavior of F ∗(ρ) as ρ ↑ 1 and, more
specifically, in terms of the parameter h defined by

h = 1

1 − ρ
.

For some preliminary insights into the problem, we make some observations. If we were
to relax the problem and allow items to be broken into pieces that can be placed in different
bins, then the system becomes almost (the reason for the qualification ‘almost’ is that services
can only start at integer times) identical to a single-server M/U/1 queue with Poisson arrivals
(arrival rate of 2ρ), uniformly distributed service times (mean service time of 1

2 ), and utilization
factor equal to 2ρ 1

2 = ρ. The M/U/1 queue is stable if and only if ρ < 1, and the steady-state
queue size is of order �(h) when ρ < 1. This readily implies that F ∗(ρ) = ∞ when ρ ≥ 1
and F ∗(ρ) = �(h) when ρ < 1 (this follows from Kingman’s lower bound [21]). It is not hard
to come up with stable policies and show that F ∗(ρ) < ∞ for all ρ < 1. However, available
results, for example, from Coffman and Stolyar [5] and Gamarnik [8], only lead to an upper
bound of the form F ∗(ρ) = O(h2). This motivates the central question to be addressed in
this paper, namely, whether the behavior of F ∗(ρ) is of the form �(h), of the form �(h2), or
something in between.

1.2. Comparison with other stochastic and dynamic combinatorial problems

A question similar to the one studied in this paper has been raised and studied for a stochastic
and dynamic version of the traveling repairman problem (TRP) [3], [4]. In that problem, jobs
arrive as a Poisson process with rate λ at random locations (for example, uniformly distributed)
in the unit square. The different jobs have i.i.d. processing time requirements with mean 1/µ.
A repairman moves from job to job at unit speed and spends time traveling, as well as for
processing the jobs. Let ρ = λ/µ. If the repairman could travel infinitely fast, we would
be dealing with an M/G/1 queueing system, whose expected queue size is �(h), where again
h = 1/(1−ρ). However, because of the finite speed, the repairman must also waste some time
traveling between jobs, and the optimal average queue size (number of yet unprocessed jobs)
turns out to be of the order of 1/h2.

From the analysis of the static probabilistic traveling salesman problem, we know that the
travel time (‘waste’) to serve n jobs is of the order of

√
n. For the bin-packing problem,
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the waste is also �(
√

n) and, arguing by analogy, one is tempted to conjecture that queue
sizes should also be �(h2). However, as will be shown, there is no such simple relation
between static probabilistic problems and the corresponding stochastic and dynamic problems,
with the exception of a straightforward upper bound based on the following batching policy
(cf. Section 2.1). This upper bound happens to be tight for the dynamic TRP, but far from tight
for the dynamic bin-packing problem.

1.3. Our results

Our main result, Theorem 1.1, below, effectively shows that the penalty caused by the bin-
packing constraints (as compared to the relaxed problem where the items can be broken up) is
only a polylogarithmic function of 1/(1 − ρ).

Theorem 1.1. We have
F ∗(ρ) = �(h log h),

where h = 1/(1 − ρ). Furthermore, there exists a family π(·) of policies (one policy for each
value of ρ) that packs at most two items in each bin and which satisfies

Fπ(ρ)(ρ) = O(h log3/2 h).

We will also consider a special class of packing policies, which we call restricted-pair
policies. Under these policies (to be described in detail in Section 2.2), the unit interval is
partitioned into pairs of subintervals, every bin receives at most two items, and if two items are
packed together then they must belong to paired subintervals.

Theorem 1.2. If π(·) is a family of restricted-pair policies (one policy for each value of ρ) then

Fπ(ρ)(ρ) = �(h2),

where h = 1/(1 − ρ). Furthermore, there exists a family of restricted-pair policies such that

Fπ(ρ)(ρ) = O(h2).

1.4. Organization

The rest of the paper is organized as follows. In Section 2 we briefly discuss a batching
policy and argue that the corresponding average queue size is �(h2). We introduce restricted-
pair policies and establish an �(h2) lower bound for such policies. We also display a simple
round-robin restricted-pair policy and a corresponding O(h2) upper bound. In Section 3 we
introduce a more powerful policy and use results of [11] to derive an O(h log3/2 h) upper bound.
Section 3.6 contains some brief remarks on possible extensions. Then, in Section 4 we build on
results of [1] and [19] to establish an �(h log h) lower bound for any policy. Finally, Section 5
contains our conclusions.

2. Two inadequate policies

In this section we examine the best performance that can be obtained with relatively simple
policies. We consider two alternative policies and show that they both result in �(h2) queue
sizes; thus, justifying the development of more elaborate policies in the next section. The first
policy is based on batching, which is a generic method, applicable to wide classes of stochastic
combinatorial problems; despite its simplicity, it is often near-optimal, as in the dynamic TRP.
Its �(h2) performance in our context however motivates us to consider a more complex policy.
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The simplest class of nontrivial, and possibly interesting policies, that comes to mind is one
that packs at most two items per bin, but places restrictions on the pairs that can be packed
together. We show that any policy in this class also results in �(h2) queue sizes.

2.1. Batching

Batching is a routine approach for converting policies for static problems to policies for
dynamic problems. In our case, a batching policy works as follows. All the items arriving
during the interval [(k − 1)t∗, kt∗) form the kth batch. Items in the kth batch can be packed
into bins after time kt∗ and after all items in the (k − 1)th batch have already been packed. Let
Sk be the number of bins used for the kth batch, which can be viewed as the ‘service time’ of
that batch. The number of items in the kth batch is concentrated around 2ρt∗. From this, and
the results of [10] and [12], it follows that E[Sk] = ρt∗ + �(

√
t∗). For the expected ‘work’

in the system (number of bins required for the queued items) to remain bounded, the stability
condition ρt∗ + �(

√
t∗) ≤ t∗ must hold, which yields t∗ = �(1/(1 − ρ)2) = �(h2). On

the other hand, a typical arriving item must wait until the end of the interval [(k − 1)t∗, kt∗)
during which it arrives, resulting in an �(t∗) delay. This shows that the expected queue size
associated with the batching policy we have described is �(h2).

Conversely, it is not hard to show (using, for example, Kingman’s bound [21] and a con-
centration inequality on the waste, such as the one in [18]) that, by choosing t∗ = �(h2), the
resulting expected queue size is �(h2).

2.2. Restricted-pair policies

In this subsection we partition the range [0, 1] of item sizes into subintervals of equal length.
We consider policies that pack at most two items in each bin and require that any two items that
are packed together belong to an allowed pair of subintervals.

The intuitive idea behind the approach in this subsection is that, with a given utilization rate ρ,
there is a certain amount of slack, 1 − ρ. If item sizes are discretized, with a discretization
error bounded by c(1 − ρ), where c < 1, the remaining slack is (1 − c)(1 − ρ); so the optimal
achievable performance, as a function of (1−ρ), should still be of the same order of magnitude.
Discretizing the item sizes is the same as partitioning the interval [0, 1] into subintervals of
length O(1 − ρ), and taking into account only the interval to which an item belongs, not its
exact size. However, besides discretization, we will be placing additional restrictions on the
allowed packing policies.

Given the value of ρ, we divide the unit interval into 2m + 1 equal subintervals of length
δ = 1/(2m + 1), where m is of the order of 1/(1 − ρ). For concreteness, we assume that

8

1 − ρ
≤ 2m ≤ 8

1 − ρ
+ 1. (2.1)

We note, for future reference, that, for every ρ ≥ 1
2 , we have

m ≥ 2

1 − ρ
, δ ≥ 1 − ρ

9
,

2m

m + 1
≥ 1 − 1 − ρ

8
. (2.2)

We associate a separate queue with each subinterval. In particular, an arriving item whose
size belongs to the interval [(i − 1)δ, iδ), 1 ≤ i ≤ 2m, joins the ith queue, while an item
whose size belongs to the interval [2mδ, 1] joins the (2m + 1)th queue. Since the item sizes
are i.i.d. with a uniform distribution in [0, 1], each arriving item is equally likely (independent
of everything else) to join each of the 2m + 1 queues. The well-known splitting property of
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the Poisson process implies that the arrival processes to each one of the 2m + 1 queues are
independent Poisson processes with rate γ=2ρ/(2m + 1) = 2ρδ.

Definition 2.1. A restricted-pair policy is a policy with the following two properties.

(a) No more than two items can be packed into the same bin.

(b) If an item from queue i is packed together with an item from queue j then i+j = 2m+1.

Note that any two items in queues i and j , where i + j = 2m + 1, can always be packed
together, because their total size is bounded by iδ + jδ = (2m + 1)δ = 1. Furthermore, when
two such items are packed together, the wasted space in the bin is bounded by 2δ ≈ (1 − ρ)/4,
which is consistent with our earlier discussion. Restricted-pair policies are simple enough to
be tractable. On the other hand, they are restrictive, hence, potentially inefficient. Indeed, the
best possible performance of such policies is �(h2). Next, we present the details of the proof
of Theorem 1.2.

2.3. Lower bound for restricted-pair policies

In this subsection we prove the �(h2) lower bound in Theorem 1.2. Without loss of
generality, we assume that ρ ≥ 1

2 . For i = 1, . . . , 2m + 1, let Ni(t) be the number of
arrivals to queue i until time t . For i = 1, . . . , m, let Qi(t) be the total number of items in the
two paired queues i and 2m + 1 − i at time t . Finally, let Si(t) be the number of bins packed
with items from queues i and/or 2m + 1 − i until time t .

We have
Qi(t) ≥ max{Ni(t), N2m+1−i (t)} − Si(t).

Let X and Y be independent Poisson random variables with mean 2ρδt , which is the same as
the distribution of Ni(t). Summing over i, using the property that

∑m
i=1 Si(t) ≤ t , and taking

expectations, we obtain

E[Q(t)] ≥
m∑

i=1

E[Qi(t)]

≥
m∑

i=1

E[max{Ni(t), N2m+1−i (t)}] − t

= m E[max{X, Y }] − t

= m E[X] + m

2
E[|X − Y |] − t

= ρ
2m

2m + 1
t + m

2
E[|X − Y |] − t. (2.3)

Lemma 2.1. Consider a Poisson random variable X with mean λ. There exists a positive
constant β, independent of λ, such that

P(X > λ + √
λ) ≥ β and P(X < λ − √

λ) ≥ β for all λ ≥ 1.

Proof. Note that P(X > λ + √
λ) is a positive and continuous function of λ. Let β be

its infimum over λ ∈ [1, ∞). Suppose that β = 0. Then the infimum cannot be attained on
a compact set (this would contradict continuity and positivity). Thus, the limit, as λ → ∞,
must be 0. Recalling that the variance of X is also λ, the central limit theorem implies that the
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random variable Zλ = (X−λ)/
√

λ converges in distribution to the standard normal distribution.
Therefore, limλ→∞ P(Zλ > 1) > 0, which is a contradiction. This completes the proof of the
lower bound on P(X > λ + √

λ). The argument for P(X < λ − √
λ) is similar.

Lemma 2.1 establishes that E[|X − Y |] ≥ β2√2ρδt, where β does not depend on δ and t ,
as long as t = �(1/δ). Using (2.3), Lemma 2.1, and the bounds in (2.2), we obtain, after some
straightforward algebra,

E[Q(t)] ≥ ρt − 1 − ρ

8
t + 1

1 − ρ

β2

3

√
(1 − ρ)t − t.

Let us now set t = c/(1 − ρ)3, where c is chosen such that 2c = β2√c/6. Some more algebra
yields

E[Q(t)] ≥ 2c

(1 − ρ)2 ,

which is the desired result.

2.4. Upper bound

In this subsection we consider a simple round-robin restricted-pair policy that results in
O(h2) expected queue sizes. Thus, the lower bound of the preceding subsection is tight,
completing the proof of Theorem 1.2.

Let m be as in (2.1), and consider a time interval of length m + 1. For i ≤ 2, the ith bin
in that interval serves (depending on availability) up to one item from queue i and one time
from queue j , where i + j = 2m + 1. Finally, the (m + 1)th bin serves up to one item from
queue 2m + 1. Let us focus on items in the ith queue. These items arrive as a Poisson process
with rate γ = 2ρ/(2m + 1), and one of them can be served every m + 1 time steps. This is
equivalent to an M/D/1 queue with utilization rate

ρ′ = 2ρ
m + 1

2m + 1
≤ 1 − c(1 − ρ)

for some absolute constant c, except for a restriction that service can only start at integer
multiples of m + 1. (The latter restriction adds at most m + 1 to the expected delay.) Thus,
using standard bounds on M/D/1 queues [21], the expected queue size for items in the ith
interval is of order O(m) = O(h). Since there are O(h) queues/intervals, it follows that the
expected queue size of the overall system is O(h2).

3. A near-optimal policy

In this section we present a packing policy, analyze its performance, and show that the
average queue size grows not much faster than h. The policy we describe is randomized,
although as discussed in Section 5, randomization is easily removed.

3.1. The policy

The policy is as follows. When the ith bin arrives, we independently generate a Bernoulli
random variable Bi , with P(Bi = 1) = ρ, a Bernoulli random variable Ci , with P(Ci = 1) = 1

2 ,
and a random variable Ui which is uniformly distributed in the interval [0, 1

2 ]. We assume that
the random variables associated with each bin arrival are independent.

(a) If Bi = 1, we select the largest-sized item whose size is in the range [0, Ui] (if any) and
the largest-sized item whose size is in the range ( 1

2 , 1 − Ui] (if any), and place them in
the bin.
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(b) If Bi = 0 and Ci = 0, we place the largest-sized item whose size is in the range [0, 1
2 ]

(if any) in the bin.

(c) If Bi = 0 and Ci = 1, we place the largest-sized item whose size is in the range ( 1
2 , 1]

(if any) in the bin.

We view the randomization above as splitting the bin into two pieces, dedicating one piece
to ‘small’ items (size at most 1

2 ) and the other to ‘large’ items (size larger than 1
2 ). The

dynamics for the small items are as follows. Small items arrive as a Poisson process with
rate ρ. At each positive integer time, with probability ρ, a bin of size Ui (uniformly distributed
in [0, 1

2 ]) becomes available; with probability (1−ρ)/2, a bin of size 1
2 becomes available; with

probability (1 − ρ)/2, no bin becomes available. At each time step, a single item (the largest
available) is placed in the bin. The dynamics for the large items are essentially identical: the
statistics of item and bin arrivals are exactly the same, except that item and bin sizes are larger
by an additive factor of 1

2 . For this reason, it suffices to analyze a system involving small items
and bins, and multiply the end result by 2 in order to obtain a result for the overall system.
From now on, we restrict attention to a system involving only small item and bin sizes.

3.2. Queue dynamics

We will say that t is an event time if t = 0, or if a bin arrives at time t , or if an item arrives
at time t . Note that, for t > 0, the probability of two such events occurring simultaneously
equals 0 because the arrival process is Poisson and bins arrive at integer times. Thus, we
can associate each nonzero event time with a single event (item or bin arrival). Furthermore,
because the Poisson process involves a finite number of arrivals during a finite interval, the
event times can be ordered in a sequence. For t > 0 and x ∈ [0, 1

2 ], we will say that event
(t, x, +) has occurred if an item of size x arrives at time t and that event (t, x, −) has occurred
if a bin of size x arrives at time t . Finally, we introduce an event (0, x, +) for every item of
size x in queue at time 0.

We now develop equations that describe the evolution of the queue. For any x ∈ [0, 1
2 ] and

t > 0, we use Qx(t) to denote the number of items of size greater than x that are found in the
queue just before time t , i.e. before the effects of an item or bin arrival at time t are accounted
for. Note that the collection of variables {Qx(t) | x ∈ [0, 1

2 ]} is a complete description of the
‘state’ of the system at time t . For x = 0, we use the simpler notation Q(t) in place of Q0(t).
Even though we are interested in the evolution of the queue starting with an empty system, for
the purposes of our development here, it will be convenient to allow for the presence of some
queued items at time 0.

Suppose that t > 0 is the first event time after time 0. Since nothing happens between
times 0 and t , we have

Qx(t) = Qx(0) for all x ∈ [0, 1
2 ] if no event occurred during (0, t). (3.1)

Now suppose that t > 0 is an event time, but not the first one. Suppose that the previous
event occurred at time τ < t and that it involved an arrival of an item or of a bin of size y, y ≤ x.
Such an arrival does not affect the number of items in queue of size greater than x; thus,

Qx(t) = Qx(τ) if the previous event was (τ, y, +) or (τ, y, −), where y ≤ x. (3.2)

Next suppose that the previous event was the arrival (at time τ < t) of an item of size
y, y > x. This item is added to the queue and

Qx(t) = Qx(τ) + 1 if the previous event was (τ, y, +), where y > x. (3.3)
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Finally, suppose that the previous event was the arrival (at time τ ) of a bin of size y, y > x.
This bin cannot be used with an item of size greater than y; thus, Qy(τ) such items are
still in queue at time t . However, the number of items of size in the range (x, y], which is
Qx(τ) − Qy(τ) if it is positive, decreases by 1. Therefore,

Qx(t) = Qy(τ) + max{0, Qx(τ) − Qy(τ) − 1}
or

Qx(t) = max{Qy(τ), Qx(τ) − 1} if the previous event was (τ, y, −), where y > x. (3.4)

Equations (3.1)–(3.4) for all x ∈ [0, 1
2 ] are a complete description of the queue dynamics.

3.3. Discrepancies and their relation to queue sizes

In this subsection we relate queue sizes to a certain ‘discrepancy’ measure. Let us fix a time
t > 0 and consider the rectangle [0, t) × [0, 1

2 ]. We place a ‘+’ at (0, z) if there is an item of
size z in queue at time 0. We place a ‘+’ at (τ, z) if an item of size z arrives at time τ > 0. We
place a ‘−’ at (τ, z) if a bin of size z arrives at time τ > 0. Now consider a continuous curve
that starts at (0, 1

2 ), ends at (t, x), and consists entirely of horizontal segments (moving to the
right) and vertical segments (moving downward); see Figure 1. We use this curve to define a
region (subset of the rectangle) as follows. A point (τ, z) in the rectangle is in the region if
and only if 0 ≤ τ < t and there exists a point (τ, w) on the curve with w < z. We note some
consequences of this definition. If the initial queue contains an item of size z and if the first
segment of the curve is vertical and ends at a point (0, y) with y < z, then the point (0, z)

associated with this item is included in the region. Points of the form (τ, 1
2 ) (which correspond

to bins of size 1
2 ) are included only if τ < t and τ is greater than or equal to the time of the first

vertical segment; see Figure 1.
Let A be a region constructed as above, to be called an admissible region. We add the

number of plusses in the region and subtract the number of minusses to arrive at a quantity to
be denoted by D(A). Let Dx(t) be the maximum possible value of D(A), where the maximum
is taken over all admissible regions defined by curves that end at (t, x). It turns out that Qx(t)

is always equal to Dx(t). For our purposes, we only need to state and prove one direction of
this fact. The intuition is the same as for Loynes’ description of the G/G/1 queue in terms of
the maximum of a random walk: queues build up only when there is a discrepancy between
the arrival and departure processes; hence, small discrepancies imply small queue sizes.
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Figure 1: Two types of curve and resulting admissible regions. In both cases, the points marked with a
‘Y’ are included in the region, but the points marked with an ‘N’ are not.
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Proposition 3.1. For every t > 0 and every x ∈ [0, 1
2 ], we have Qx(t) ≤ Dx(t).

Proof. Suppose that t > 0 is the first event time after time 0. Consider the curve that starts
at (0, 1

2 ), moves down to (0, x), and then moves horizontally to (t, x). For the resulting region
A, the quantity D(A) equals the number of points (0, z) crossed by the vertical segment, which
is Qx(0). Since D(A) ≤ Dx(t), we obtain

Qx(0) ≤ Dx(t) for all x ∈ [0, 1
2 ] if no event occurred during (0, t). (3.5)

Now suppose that t > 0 is an event time, but not the first one. Suppose that the previous
event occurred at time τ < t and that it involved an arrival of an item or of a bin of size y, y ≤ x.
Consider a curve that ends at (τ, x) such that the resulting region A′ satisfies D(A′) = Dx(τ).
Extend the curve horizontally until (t, x), forming a new region A. The event at time τ is
outside the region A, and, therefore, Dx(t) ≥ D(A) = D(A′) = Dx(τ), leading to

Dx(t) ≥ Dx(τ) if the previous event was (τ, y, +) or (τ, y, −), where y ≤ x. (3.6)

Next suppose that the previous event was the arrival (at time τ ) of an item of size y, y > x.
Consider a curve that ends at (τ, x) such that the resulting region A′ satisfies D(A′) = Dx(τ).
Extend the curve horizontally until (t, x). The newly formed region A includes the event
(τ, y, +), so that Dx(t) ≥ D(A) = D(A′) + 1 = Dx(τ) + 1, leading to

Dx(t) ≥ Dx(τ) + 1 if the previous event was (τ, y, +), where y > x. (3.7)

Finally, suppose that the previous event was the arrival (at time τ ) of a bin of size y, y > x.
Consider the following two options for coming up with a curve that ends at (t, x).

(i) Form a curve that ends at (τ, y) and which attains Dy(τ); move horizontally to (t, y) and
then down to (t, x). The resulting region A satisfies D(A) = Dy(τ) .

(ii) Form a curve that ends at (τ, x) and which attains Dx(τ); move horizontally to (t, x).
The resulting region A′ includes the point (τ, y, −) and, therefore, satisfies D(A′) =
Dx(τ) − 1.

Since Dx(t) ≥ max{D(A), D(A′)}, we obtain

Dx(t) ≥ max{Dy(τ), Dx(τ) − 1} if the previous event was (τ, y, −), where y > x. (3.8)

Note that inequalities (3.5)–(3.8) describing the evolution of Dx(t) are satisfied by the
variables Qx(t) with equality (cf. (3.1)–(3.4)). By moving along the sequence of event times,
an easy induction shows that Qx(t) ≤ Dx(t) for every (t, x) associated with an event. For
any (t, x) that does not correspond to an event, we use one step of the recursive equality or
inequality, starting from the last event, to obtain the desired result.

3.4. Proof of the upper bound

For any admissible region A, let 
(A) be the difference between the plusses and minuses
in the region (as in the definition of D(A)), but without counting points on the top horizontal
boundary (corresponding to bins of size exactly 1

2 ) and without counting points on the left
vertical boundary (corresponding to items in the initial queue). Let 
(t) = maxA |
(A)|,
where the maximum is taken over all admissible regions A in the rectangle [0, t) × [0, 1

2 ].
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Let us consider a curve such that the resulting region A satisfies D(A) = Dx(t). First
suppose that the curve starts with a vertical segment. Then the region A includes up to Q0(0)

points from the initial queue (they are all plusses), and all items on the top boundary (they
are all minusses—let Y (t) be their number). Thus, for this case, Dx(t) = D(A) ≤ 
(A) +
Q0(0) − Y (t). Next suppose that the curve starts with a horizontal segment. Then none of
the items in the initial queue contribute to D(A). In this case, Dx(t) equals 
(A) minus the
contribution of (some) events of the form (τ, 1

2 ), so that Dx(t) ≤ 
(A). Combining the two
cases, and using Proposition 3.1, we obtain

Q(t) ≤ max{
(t), 
(t) + Q(0) − Y (t)}.

Using the inequality max2{a, b} ≤ a2 + b2, we obtain

E[Q(t)2] ≤ E[
2(t)]+E[Q2(0)]+E[
2(t)]+E[Y 2(t)]+2 E[Q(0)] E[
(t)−Y (t)], (3.9)

where we used the independence of Q(0) from the future of the process and omitted the negative
term −2 E[
(t)Y (t)]. In order to use this inequality, we need some information on the moments
of 
(t). This is provided by the following lemma, based on results from [11]. So as not to
disrupt continuity, the proof of Lemma 3.1 is deferred to Section 3.5.

Lemma 3.1. Suppose that ρ ≥ 1
2 . There exist positive constants c1 and c2 such that, for all

ρ ≥ 1
2 and all t ≥ 2/(1 − ρ), we have

E[
(t)] ≤ c1
√

t log3/4 t, E[
2(t)] ≤ c2t log3/2 t.

In order to bound the moments of Y (t), recall that bins of size exactly 1
2 are produced at each

time step with probability (1 − ρ)/2. Thus, Y (t) is the number of successes in t independent
Bernoulli trials with the above success probability (we are assuming here that t is an integer).
Therefore, E[Y (t)] = (1 − ρ)t/2, which shows that E[Y (t)] increases (with t) faster than
E[
(t)]. Furthermore, var(Y (t)) ≤ (1 − ρ)t/2 and

E[Y 2(t)] ≤ (1 − ρ)2t2

4
+ (1 − ρ)t

2
≤ (1 − ρ)2t2.

Let t∗ = αh2 log3/2 h, where α is a positive constant and h = 1/(1 − ρ). By choosing α

large enough, and using some straightforward algebra, it follows, from (3.9), Lemma 3.1, and
the bounds for E[Y (t)] and E[Y 2(t)], that there exist positive constants γ1 and γ2 such that

E[
(t∗) − Y (t∗)] ≤ −γ1h log3/2 h, E[
2(t∗)] + E[Y 2(t∗)] ≤ γ2h
2 log3 h. (3.10)

From (3.9), with time 0 replaced by kt∗, and (3.10), we obtain, for k ≥ 0,

E[Q2((k + 1)t∗)] ≤ E[Q2(kt∗)] + 2γ2h
2 log3 h − 2γ1 E[Q(kt∗)]h log3/2 h. (3.11)

For the policy under consideration, it is not hard to see that E[Q(t) | Q(0) = 0] is non-
decreasing with t . Thus, the limit q = limt→∞ E[Q(t) | Q(0) = 0] exists. It then follows
from (3.11) that 2γ1qh log3/2 h ≤ 2γ2h

2 log3 h, which implies that q ≤ (γ2/γ1)h log3/2 h.
This completes the proof of the upper bound.
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3.5. Proof of Lemma 3.1

Let us fix some time t and some admissible region A ⊂ (0, t) × [0, 1
2 ). Let N+(A) and

N−(A) be the number of plusses and minusses, respectively, inside A. Note that E[N+(A)] =
2ρλ(A), where λ(A) is the area of A. Also, note that 
(A) = N+(A) − N−(A) with
probability 1 (this is because the events Ui = 1

2 or Xi = 1
2 for some i have zero probability).

We decompose 
(A) into two terms, involving the discrepancies in the item and bin arrival
processes.


(t) = max
A

|
(A)|
≤ max

A
|N+(A) − E[N+(A)]| + max

A
|N−(A) − E[N+(A)]|. (3.12)

In order to bound E[
2(t)], it suffices to obtain a bound on the mean-square value of each one
of the two terms on the right-hand side of (3.12).

3.5.1. Item arrival discrepancies. We consider here the first term in (3.12). Let N+ be the
total number of points in the rectangle (0, t) × [0, 1

2 ), which is a Poisson random variable with
mean ρt . We will be using the following decomposition:

max
A

|N+(A) − E[N+(A)]|
≤ max

A
|N+(A) − E[N+(A) | N+]| + max

A
| E[N+(A) | N+] − E[N+(A)]|.

We will bound separately the mean square of the two terms on the right-hand side above.
For the second term, we note that

E[N+(A) | N+] = λ(A)

t/2
N+.

Therefore,

E[N+(A) | N+] − E[N+(A)] = 2λ(A)

t
(N+ − ρt).

To maximize over all admissible regions A, we let A be the entire rectangle whose area is t/2.
It follows that

E
[
max

A
(E[N+(A) | N+] − E[N+(A)])2

]
= var(N+) = ρt.

We now deal with the first term. Let B be the event |N+ − ρt | ≥ √
t log3/4 t , and let Bc be

its complement. Let Z = maxA |N+(A) − E[N+(A) | N+]|. We have

E[Z2] = E[Z2 | B] P(B) + E[Z2 | Bc] P(Bc).

We have P(Bc) ≤ 1. We recall the following well-known tail bound for Poisson and binomial
distributions (see [7, pp. 27–35] and [13, p. 72]).

Lemma 3.2. Let X be a Poisson random variable with mean λ. Then,

P(X > λ + δ) ≤ exp

{
− δ2

4λ

}
for all δ ∈ (0, λ/2).
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Similarly, let Y be a binomial random variable with parameters m and p, so that its mean
is mp. Then,

P(|Y − mp| ≥ δ) ≤ 2 exp

{
− δ2

4mp

}
for all δ ∈ (0, mp).

We apply Lemma 3.2 to the Poisson random variable N+ and obtain

P(B) ≤ c4 exp{−c5 log3/2 t} ≤ c6t
−2

for some constants c4, c5, and c6 independent of t . Let B1 = {N+ ≤ ρt − √
t log3/4 t} and

B2 = {N+ ≥ ρt + √
t log3/4 t}, so that B = B1 ∪ B2. In order to bound the term E[Z2 | B],

we will use the fact that Z ≤ N+ and the easily derived inequalities E[N2+ | N+ ≥ a] ≤
E[(N+ + a)2] ≤ 2 E[N2+] + 2a2. We have

E[Z2 | B] ≤ E[N2+ | B]
≤ max{E[N2+ | B1], E[N2+ | B2]}
= E[N2+ | B2]
= E[N2+ | N+ ≥ ρt + √

t log3/4 t]
≤ E[(N+ + ρt + √

t log3/4 t)2]
≤ c7t

2

for some constant c7 independent of t . Therefore, E[Z2 | B] P(B) is bounded by a constant.
We finally deal with the term E[Z2 | Bc]. Given any particular value n of N+ (in the range

allowed by the event Bc), the n points are independent and uniformly distributed. We will apply
the following result of [11].

Lemma 3.3. ([11, Theorem 3].) Consider a set of n points uniformly and independently
distributed in the

√
n × √

n square. Let R be the set of all simply connected subsets of
the square. There exist constants c and n0 (independent of n) such that

P(there exists R ∈ R : |N(R) − E[N(R)]| > cp(R) log3/4 n + c log3/2 n)

≤ 1

n
√

log n
for all n ≥ n0,

where p(r) is the perimeter of R and N(R) is the number of points in R.

Note that our model involves the rectangle (0, t) × [0, 1
2 ), whereas Lemma 3.3 involves the

rectangle [0,
√

n] × [0,
√

n]. This is not an issue because we can just rescale the dimensions
of our rectangle. With this rescaling, an admissible region A ⊂ (0, t) × [0, 1

2 ) is mapped
to a region A′ ⊂ [0,

√
n] × [0,

√
n] with N(A′) = N+(A). Because we are interested in

only admissible regions A, it is easily seen that p(A′) ≤ 4
√

n. Thus, ‘with high probability’,
Z is bounded above by c8

√
n log3/4 n. With the remaining (small) probability, it is bounded

above by n, which gives negligible contribution to the second moment of Z. The values of
n allowed by the event Bc are of order �(t). Putting everything together, we conclude that
E[Z2 | B] ≤ c9t log3/2 t for some constant c9. In particular, the mean square of the first term
on the left-hand side of (3.12) is O(t log3/2 t).
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3.5.2. Bin arrival discrepancies. We now turn to the second term on the right-hand side of (3.12).
If bins of size less than 1

2 were arriving as a Poisson process, the argument would be identical
to the one for the case of item arrivals. However, in our case, the process of small bin arrivals
is different, and some additional work is needed. For simplicity, we will be assuming for the
rest of this subsection that t is an integer.

The actual bin arrival process can be described as follows. At each integer time k, 0 < k < t ,
a potential bin arrives whose size Uk is uniform in [0, 1

2 ). An independent coin with success
probability ρ is flipped, and the bin is retained if the coin flip is a success. Thus, the total
number of bin arrivals, N−, is a binomial random variable with parameters t − 1 and ρ.

Let us now consider an alternative bin arrival process, coupled with the actual one. We
generate t − 1 arrival times, independently and uniformly in (0, t), sort them in increasing
order, and let T̂k be the time of the kth arrival. We let the kth arriving bin in the sorted sequence
have the same size Uk as in the above description of the actual process. Finally, we use the
same coins as in the actual bin arrival process to thin out the arrivals. We will use a ‘hat’ to
indicate quantities associated with the alternative bin arrival process. Let C = maxk |k − T̂k|.
The points in (0, t) × [0, 1

2 ) corresponding to the alternative process are the same as the points
corresponding to the actual process, except that each point is shifted horizontally by a random
amount bounded by C. Using Lemma 3.3 (restricted to sets R of the form (0, s) × [0, 1

2 )), it is
easily shown that E[C2] ≤ c10t log3/2 t for some absolute constant c10.

For any admissible region Â, let N̂−(Â) be the number of points in Â obtained from
the alternative process. Given an admissible region A, we can shift horizontally the vertical
segments of the curve that defines it, to obtain a new admissible region Â such that the kth
point in the actual process is in A if and only if the kth point in the alternative process is in Â;
in particular, N̂−(Â) = N−(A). Furthermore, the shifts in the vertical segments are bounded
by C. It follows that |λ(Â) − λ(A)| ≤ C.

Using also the facts that E[N+(A)] = 2ρλ(A) and E[N̂−(Â)] = 2ρλ(Â), we find that, for
every admissible A, there exists an admissible Â such that

|N−(A) − E[N+(A)]| = |N̂−(Â) − E[N+(A)]|
≤ |N̂−(Â) − 2ρλ(Â)| + 2ρ|λ(A) − λ(Â)|
≤ |N̂−(Â) − E[N̂−(Â)]| + C.

It follows that

max
A

|N−(A) − E[N+(A)]| ≤ max
A

|N̂−(Â) − E[N̂−(Â)]| + C.

To obtain a bound for the mean square of maxA |N̂−(Â) − E[N̂−(Â)]|, we proceed exactly
as in the case of item arrival discrepancies, where we obtained a bound on the mean square of
maxA |N̂+(A) − E[N̂+(A)]|. The only difference is that with item arrivals we were dealing
with a Poisson number of points uniformly distributed in the rectangle, whereas here we are
dealing with a binomial number of points. However, using a binomial tail bound analogous to
the one in Lemma 3.2, the proof goes through without change.

3.6. Discussion and extensions

The upper bound for the policy we have considered remains valid for several variations in our
assumptions on the item and bin arrival processes. Our results were developed for the case of
item sizes uniformly distributed in [0, 1], Poisson item arrivals, and deterministic bin arrivals.
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The Poisson item arrival assumption can be relaxed to an assumption of i.i.d. interarrival times
with finite second moment. For example, for an upper bound, we can delay the item arrivals
by an O(h) amount and introduce O(1 −ρ) additional artificial arrivals, so that the new arrival
process is Poisson with rate (1+ρ)/2, and then apply the policy we have developed. Similarly,
the assumption that bin arrivals are deterministic can be relaxed. However, the assumption on
the item-size distribution is more restrictive. We believe that our analysis extends to any item-
size distribution that is symmetric around 1

2 . Moving beyond this simple extension appears to
be an interesting future research problem.

We make a brief remark about our policy. The policy we have analyzed uses randomization.
As an alternative, consider the following deterministic policy. Assume, for simplicity, that
1/(1−ρ) is an integer, and let δ = (1−ρ)/4ρ. Instead of letting the sizes of the bins allocated
to the small items be random variables, we let them cycle through the values 0, δ, 2δ, . . . , 1

2 , 1
2

(the last value, 1
2 , is repeated twice). The bin arrival discrepancies are now easier to bound

(everything is deterministic). While the proof for this deterministic policy is somewhat simpler,
we find the randomized policy to be more elegant.

4. Lower bound

As discussed in the introduction, if we relax the problem and allow items to be broken into
pieces that can be placed in different bins, we obtain a tractable queueing system, resulting
in a �(h) queue size. This readily yields an �(h) lower bound for the dynamic bin-packing
problem. This lower bound does not match the upper bound O(h log3/2 h), which leaves the
question of whether a better policy might result in a �(h) queue size. The �(h log h) lower
bound to be proved in this section shows that this is not the case, although it still leaves a small
gap from the upper bound. The proof below is inspired from the proof of a lower bound for
online bin packing [19].

Given ρ, let us define

t∗ = α

(1 − ρ)2 log
1

1 − ρ
,

where α is an absolute constant. Consider the items that arrive during the interval [0, t∗]. Let
B be the number of such items whose size belongs to ( 1

2 , 1). Let N− be the number of such
items whose size belongs to ( 1

3 , 1
2 ). Let N+ be the number of such items whose size belongs

to ( 1
2 , 2

3 ). Note that E[N−] = E[N+] = 2ρt∗/6 = ρt∗/3. Let

n = ρt∗

3
− 2

√
t∗,

assumed for simplicity to be an integer. Let G be the event {N+ ≥ n, N− ≥ n}. Note that, for
ρ sufficiently close to 1, t∗ is sufficiently large and the Chebychev inequality yields P(G) ≥ 1

2 .
Conditioned on the event G having occurred, let us select at random n of the N− arriving

items of size in ( 1
3 , 1

2 ) and n of the N+ arriving items of size in ( 1
2 , 2

3 ), and call them small
and large special items, respectively. A probabilistically equivalent way of generating the small
special items is as follows (the process is similar for large special items). We generate the value
of the Poisson random variable N− and then generate n independent random points, uniformly
distributed in the rectangle [0, t∗] × ( 1

3 , 1
2 ).

Let us now fix a policy, assume that the event G has occurred, and let Q(t) be the number
of items in queue at some time t under that policy. For any small special item i−, there are
two possibilities: (a) item i− is eventually placed in a bin (either before or after t∗) together
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with a large special item i+ (plus possibly other items), in which case we say that i− and i+
are ‘matched’; (b) the bin to which item i− is eventually placed does not contain a large special
item. In case (b) we say that item i− is ‘unmatched’. Let K be the number of unmatched small
special items.

For i = 1, . . . , n, let t−i and t+i be the arrival times of the pair of items i− and i+ that are
matched together. Clearly, one of these two items will have to be in queue for at least |t−i − t+i |
time units. Therefore, ∫ t∗

0
Q(t) dt ≥

n∑
i=1

|t−i − t+i |. (4.1)

Another useful bound is provided by the next lemma.

Lemma 4.1. We have

E[Q(t∗) | G] ≥ n + 2

3
ρt∗ + E[K | G]

2
− t∗.

Proof. Let us consider the number of bins that the policy uses for the items that arrive in
[0, t∗]. There are n large special items, and they have to be in separate bins. Furthermore, the
expected number of items whose size is in [ 2

3 , 1] is 2ρt∗/3, and these must also be in separate
bins. Finally, any unmatched small special item has size at least 1

3 and cannot be together with
an item of size in [ 2

3 , 1]; also, it cannot be together with a large special item, by the definition
of unmatched items. Since at most two small special items can fit in the same bin, at least K/2
bins will be required. Thus, an expected number of n + 2ρt∗/3 + E[K | G]/2 bins will be
required, but only t∗ bins are available until time t∗. The difference provides a lower bound on
the expected queue size at time t∗.

Combining (4.1) and Lemma 4.1, and using the definition of n, we obtain

1

t∗

∫ t∗

0
E[Q(t) | G] dt +E[Q(t∗) | G] ≥ c E

[
K + 1

t∗
n∑

i=1

|t−i − t+i |
∣∣∣∣ G

]
− (1−ρ)t∗ −2

√
t∗,

(4.2)
where c is a positive absolute constant. (The above argument involves an interchange of
integration and expectation, which is justified by the Fubini theorem.)

The quantity inside the expectation on the right-hand side of (4.2) can be interpreted in
terms of a certain matching problem, which we now describe. We have n i.i.d. points uniformly
distributed in [0, t] × ( 1

2 , 2
3 ), marked by a ‘+’, and n i.i.d. points uniformly distributed in

[0, t]×( 1
3 , 1

2 ), marked by a ‘−’, corresponding to the large and small special items, respectively.
Now, let us ‘fold’ the rectangle [0, t]× ( 1

3 , 2
3 ) along the x = 1

2 line, so that a ‘+’ point at (τ, x)

gets moved to (τ, x′), where x′ = 1 − x. As a result, we now have n ‘+’ points and n ‘−’
points, all uniformly and independently distributed in [0, t]× ( 1

3 , 1
2 ). A ‘+’ point at (τ, x′) can

be matched together with a ‘−’ point at (s, x) (i.e. be placed in the same bin) only if x′ ≥ x

(i.e. if the ‘+’ point lies above the ‘−’ point). For such a pair of matched points, there is a
penalty equal to their horizontal distance, |s − τ |. For any unmatched ‘−’ point, there is a
penalty of 1. Lemma 1 of [19] (building on the results of [1]) shows that the expected value of
the optimal cost in such a matching problem on the unit rectangle is �(

√
n log n). (Actually,

for an unmatched ‘−’ point at (s, x), [19] used a penalty equal to 1 − x; our unit penalty is at
least as large, so the lower bound still applies.) Our rectangle has height 1

3 instead of 1, but
this does not matter. Also, our rectangle has length t∗ (instead of 1), but this is taken care of
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by our dividing by t∗ in (4.2). Using also the facts that P(G) ≥ 1
2 and n = �(t∗), and taking

expectations of both sides, we obtain

1

t∗

∫ t∗

0
E[Q(t)] dt + E[Q(t∗)] ≥ c1

√
t∗ log t∗ − (1 − ρ)t∗ − 2

√
t∗. (4.3)

Recalling the definition of t∗, some elementary algebra shows that if α is chosen suitably small,
and if ρ is sufficiently close to 1, the right-hand side of (4.3) is lower bounded by ch log h (c is
some absolute constant).

Now consider the same length time interval [s, s + t∗] instead of the time interval [0, t∗].
What is different now is that there may be some items already in queue at the beginning of the
interval [s, s + t∗]. However, the presence of such items cannot reduce the minimum possible
value of the left-hand side of (4.3). It follows that

1

2t∗

∫ s+t∗

s

E[Q(t)] dt + 1

2
E[Q(t∗)] ≥ ch log h for all t ≥ 0.

This implies that lim supt→∞ E[Q(t)] ≥ ch log h, concluding the proof of the lower bound in
Theorem 1.1.

5. Conclusion

In this paper we have studied a dynamic version of the bin-packing problem that involves
queueing (as opposed to the previously studied online problem, in which decisions need to be
made as soon as an item arrives). Whereas some past work on our problem has addressed the
stability question, we focused on the scaling of the expected queue size as the load factor ρ

approaches its stability limit. (By Little’s law, this also addresses the scaling of the expected
delay.) We showed that, as ρ approaches 1, there exists a policy under which the expected
queue size scaling is very close to (within a logarithmic factor of) the �(1/(1 − ρ)) scaling
associated with an M/U/1 queueing system in which items can be broken into pieces that can
be placed into different bins. While the logarithmic factor may be aesthetically unappealing,
we also showed that this is unavoidable. Our upper and lower bounds are not tight as far as the
logarithmic factor is concerned (log3/2 h versus log h), but a method for closing this gap is not
apparent.

Our results were developed for the case of item sizes uniformly distributed in [0, 1], Poisson
item arrivals, and deterministic bin arrivals. The Poisson item arrival assumption can be relaxed
to an assumption of i.i.d. interarrival times with finite second moment. For example, for an
upper bound, we can delay the item arrivals by an O(h) amount and introduce O(1 − ρ)

additional artificial arrivals, so that the new arrival process is Poisson with rate (1 + ρ)/2,
and then apply the policy we have developed. Similarly, the assumption that bin arrivals are
deterministic can be relaxed. However, the assumption on the item-size distribution is more
restrictive. We believe that our analysis extends to any item-size distribution that is symmetric
around 1

2 . Moving beyond this simple extension appears to be an interesting future research
problem.
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