
ar
X

iv
:1

00
4.

15
86

v4
 [

cs
.D

M
]

 1
1

Ju
l 2

01
2

Belief Propagation for Min-cost Network Flow: Convergence &

Correctness ∗

David Gamarnik † Devavrat Shah ‡ Yehua Wei §

July 13, 2012

Abstract

Distributed, iterative algorithms operating with minimal data structure while performing
little computation per iteration are popularly known as message-passing in the recent literature.
Belief Propagation (BP), a prototypical message-passing algorithm, has gained a lot of attention
across disciplines including communications, statistics, signal processing and machine learning
as an attractive scalable, general purpose heuristic for a wide class of optimization and statistical
inference problems. Despite its empirical success, the theoretical understanding of BP is far from
complete.

With the goal of advancing the state-of-art of our understanding of BP, we study the perfor-
mance of BP in the context of the capacitated minimum-cost network flow problem – a corner
stone in the development of theory of polynomial time algorithms for optimization problems
as well as widely used in practice of operations research. As the main result of this paper, we
prove that BP converges to the optimal solution in the pseudo-polynomial-time, provided that
the optimal solution of the underlying network flow problem instance is unique and the problem
parameters are integral. We further provide a simple modification of the BP to obtain a fully
polynomial-time randomized approximation scheme (FPRAS) without requiring uniqueness of
the optimal solution. This is the first instance where BP is proved to have fully-polynomial
running time. Our results thus provide a theoretical justification for the viability of BP as an
attractive method to solve an important class of optimization problems.

1 Introduction

Message-passing has emerged as canonical algorithmic architecture to deal with the scale of the
optimization and inference problems arising in the context of variety of disciplines including com-
munications, networks, machine learning, image processing and computer vision, signal processing
and statistics. The Belief Propagation (BP) is a message-passing heuristic for solving optimiza-
tion and inference problems in the context of graphical model. The graphical model or a Markov
random field provides a succinct representation for capturing the dependency structure between a

∗A conference version of this paper appeared in Proceedings of the 21-st ACM-SIAM Symposium on Discrete
Algorithms [11]

†Operations Research Center and Sloan School of Management, MIT, Cambridge, MA, 02139, e-mail:
gamarnik@mit.edu

‡Laboratory for information and decision systems (LIDS) and Operations Research Center, Department of EECS,
MIT, Cambridge, MA, 02139, e-mail: devavrat@mit.edu

§Operations Research Center, MIT, Cambridge, MA, 02139, e-mail: y4wei@MIT.EDU

1

http://arxiv.org/abs/1004.1586v4

collection of random variables. In the recent years, the need for large scale statistical inference and
optimization has made graphical models the representation of choice in a variety of applications.
There are two key problems for a graphical model of interest. The first problem is the computation
of marginal distribution of a random variable. This problem is (computationally) equivalent to the
computation of the so-called partition function and can be thought of as a weighted combinatorial
counting problem (e.g., counting the number of independent sets of a graph is a special case of this
problem). The second problem is that of finding the mode of a distribution, i.e., an assignment
with the maximum likelihood (ML). For a constrained optimization (maximization) problem, when
the constraints are modeled through a graphical model and probability is proportional to the cost
of the assignment, an ML assignment is an optimal solution to the optimization problem. Both of
these questions, in general, are computationally hard either in the #P or NP-complete sense.

Belief Propagation (BP) is an “umbrella” message-passing heuristic designed for these two
problems. Its version for the first problem is known as the “sum-product algorithm” and for the
second problem is known as the “max-product’’ or “min-sum algorithm”. Both versions of the
BP algorithm are iterative, easy to implement and distributed in nature. When the underlying
graph is a tree, the BP algorithm essentially performs the dynamic programming recursion [10],
[33], [24], and, as a result, leads to a correct solution both for the optimization and inference
problems. Specifically, BP provides a natural parallel iterative version of the dynamic programming
in which variable nodes pass messages between each other along edges of the graphical model.
Somewhat surprisingly, this seemingly naive BP heuristic has become quite popular in practice
even for graphical models which do not have the tree structure [3], [14], [17], [25]. In our opinion,
there are two primary reasons for the popularity of BP. First, it is generically applicable, easy to
understand and implementation-friendly due to its iterative, simple and message-passing nature.
Second, in many practical scenarios, the performance of BP is surprisingly good [32],[33]. On one
hand, for an optimist, this unexpected success of BP provides a hope for it being a genuinely much
more powerful algorithm than what we know thus far (e.g., better than primal-dual methods).
On the other hand, a skeptic would demand a systematic understanding of the limitations (and
strengths) of BP, in order to caution a practitioner. Thus, irrespective of the perspective of an
algorithmic theorist, rigorous understanding of BP is very important.

Despite the apparent empirical success of the BP algorithm for solving a variety of problems,
theoretical understanding of BP is far from complete. In this paper, primarily our interest lies
in the correctness and convergence properties of the min-sum version of BP when applied to the
minimum-cost network flow problems (or simply min-cost flow) - an important class of linear (or
more generally convex) optimization problems. As a secondary interest, we wish to bring BP to
the attention of researchers in the Operations Research (OR) community and thereby improving
the current state in which BP has remained elusive in OR.

1.1 Contributions

As the main contribution of this paper, we establish that BP converges to the optimal solution of a
min-cost network flow problem in the pseudo-polynomial time, provided that the optimal solution
of the underlying problem is unique and the problem input is integral. At the same time, it is
known [29] that BP fails to converge for general linear programming (LP) problem by means of a
counter-example. Thus our results extend, in an important way, the scope of the problems that
are provably solvable by the BP algorithm. We also point out that identifying the broadest class
of optimization problems solvable using the BP algorithm is an interesting open problem. Indeed,

2

resolution of it will lead to the precise understanding of the structure of optimization problems that
are solvable by BP.

The contributions of this paper, in detail are as follows. First, we show that an exact version
of BP can be implemented for the min-cost flow problems, by encoding each message in BP as
a piece-wise linear convex function. This is significant because the natural formulation of BP
requires maintaining a vector of real-valued functions which may require an infinite amount of
memory to store and computation to update. Then, we provide a proof to show that BP finds the
optimal solution in pseudo-polynomial time, provided that the optimal solution is unique. Next, we
present a simple modification of the BP algorithm which gives a fully polynomial-time randomized
approximation scheme (FPRAS) for the same problem, which no longer requires the uniqueness of
the optimal solution. This is the first instance where BP is proved to have fully-polynomial running
time, except for the case when the underlying graph is a tree and BP solves the problem exactly.
The modification of BP is obtained by applying a novel lemma; it is a natural generalization of
the so-called Isolation Lemma found in [21]. Unlike the Isolation Lemma, our lemma can be used
for generic LP. In essence, we show that it is possible to perturb the cost of any LP using little
randomness so that the resulting modified LP has unique solution which is a good approximation
to the original LP, and its gap to the next optimal solution is large enough. Indeed this is a
general method and can be useful in a variety of applications including improving performance of
distributed algorithms; it is no surprise that it is already used in a subsequent work [15].

1.2 Prior work on BP

Despite compelling reasons explained earlier, only recently we have witnessed an explosion of re-
search for theoretical understanding of the performance of the BP algorithm in the context of
various combinatorial optimization problems, both tractable and intractable (NP-hard) versions.
In the earlier work, Weiss and Freeman [32] identified certain local optimality properties of the BP
(max-product) for arbitrary graphs. It implies that when graph has a single-cycle then the fixed
point of max-product corresponds to the correct answer. However they do not provide any guaran-
tee on the convergence of max-product. Bayati, Shah and Sharma [5] considered the performance of
BP for finding the maximum weight matching in a bipartite graph. They established that BP con-
verges in pseudo-polynomial time to the optimal solution when the optimal solution is unique [5].
Bayati et al. [4] as well as Sanghavi et al. [28] generalized this result by establishing correctness
and convergence of the BP algorithm for b-matching problem when the linear programming re-
laxation corresponding to the node constraints has a unique integral optimal solution. Note that
the LP relaxation corresponding to the node constraints is not tight in general, as inclusion of the
odd-cycle elimination constraints [30] is essential. Furthermore, [4] and [28] established that the BP
does not converge if this LP relaxation does have a non-integral solution. Thus, for a b-matching
problem BP finds an optimal answer when the LP relaxation can find an optimal solution. In the
context of maximum weight independent set problem, a one-sided relation between LP relaxation
and BP is established [29]; if BP converges then it is correct and LP relaxation is tight. In [29], a
counter-example was produced that shows that BP does not converge to the optimal solution of an
LP. This seem to suggest that BP is unlikely to solve all forms of LP.

Beyond LP, the performance of BP for quadratic optimization problems (QP) and more gener-
ally convex optimization problems (CP) are recently studied. The conditions for correctness and
convergence of BP in the context of inference in Gaussian graphical models such as those estab-
lished by Malioutov, Johnson and Willsky [16] lead to sufficient conditions for when BP can solve

3

(a certain class of) QP. More recently, in a sequence of works, Moallemi and Van Roy [18, 19] have
identified sufficient conditions under which BP converges to correct solution for convex optimization
problems. It is worth identifying the differences between results of this paper and that of Moallemi
and Van Roy [18, 19]. To start with, our work applies to constrained min-cost network flow LP
while that of [18, 19] applies to unconstrained convex optimization problem. While constrained
min-cost network flow LP can be seen as an unconstrained convex optimization problem (e.g. via
Lagrangian relaxation), the resulting convex optimization is not a strictly convex and hence suf-
ficient conditions (the diagonal dominance of Hessian) of [18, 19] is not applicable. Indeed, the
proof methods are different, and results of this paper provide ‘implementation’ of BP unlike results
of [18, 19]. We also take note of a work by Ruozzi and Tatikonda [27] that utilizes BP to find
source-sink paths in the network.

1.3 Prior work on min-cost network flow

The min-cost network flow problem (MCF) has been fundamental in the development of the-
ory of polynomial time algorithms for optimization problems. The first polynomial-time algo-
rithm for MCF was developed by Edmonds and Karp [8] with a running time of O(m(logU)(m+
n log n)), where m represents the number of edges, n represents the number of nodes and U the
largest capacity of an arc. Subsequently the first strongly polynomial time algorithm was pro-
posed by Tardos [31]. Since MCF has been central to the development of algorithmic theory, a
wide variety of efficient algorithms have been proposed over years with different virtues such as
[26],[22],[23],[9],[6],[12],[13], [1]. Among these, the fastest polynomial time algorithm runs (evalu-
ated in the centralized computation model) in essentially O(n3 log(nC)) time [6], [13], [1], where
C is the largest cost of an arc. On the other hand, the fastest strongly polynomial time algorithm
for MCF runs (again, evaluated in the centralized computation model) in O(m log n(m+n log n))
[23].

It is worth comparing the running time of the BP algorithm that we have obtained for MCF .
The basic version of BP takes (evaluated under decentralized computation model) O

(

C3mn4 log n
)

computation (C represents the largest cost) in total. The modified FPRAS version of BP algo-
rithm requires O

(

ε−3n8m7 log n
)

computation in total on average (w.r.t. decentralized computation
model) for obtaining (1 + ε) approximation. It should be noted that the number of iterations re-
quired by the algorithm scales as nL where L is the maximal cost of a directed path.

It is clear from the comparison that the bounds implied by our results for BP are not com-
petitive with respect to the best known results for MCF . BP’s performance is evaluated for the
decentralized model while the above reported computation time analysis for other algorithms is
for centralized model. Indeed, some of the known algorithms can be implemented in decentralized
model such as that of [6] and [12] (see [2, Chapters 10-12] for further details). The analysis of BP
for MCF , when specialized to specific instances of MCF like the bipartite matching problem, leads
to tighter performance bounds that are competitive with respect to the best known results (see
Theorem 4.14 in Section 4.2). But the important thing is that BP is a general purpose algorithm,
not specialized for the problem at hand like the best known algorithm for MCF . For this reason,
BP is highly desirable from an implementor’s perspective as it does not require specific modifica-
tions for the problem of interest. Finally, it should be noted that the BP algorithm can operate in
asynchronous decentralized environment unlike most known algorithms.

4

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we introduce the BP algorithm as an
iterative heuristic for a generic optimization problem. We provide an intuitive explanation by means
of an example of how BP is derived as an iterative heuristic for generic problem inspired by parallel
implementation of dynamic programming on tree-like problem structure. In Section 3, we specialize
BP for linear programming (LP). We recall a (counter-)example of an LP for which BP cannot find
its optimal solution. In Section 4, we further specialize BP algorithm for the capacitated min-
cost network flow problem (MCF). We state the main result that establishes pseudo-polynomial
time convergence of BP to the optimal solution of MCF , when the optimal solution is unique.
Specifically, Section 4.1 explains how each message function in the BP algorithm can be computed
leading to an efficient implementation of BP. In Section 4.2, we consider a subclass MCFo of
MCF that includes the problems of min-cost path as well as bipartite matching or more generally
b-matching. For this subclass of MCF , it turns out that BP has very simple message functions and
this subsequently leads to a tighter bound on the running time. In Section 5, the proof of the main
result about convergence of BP for MCF is provided. Section 6 presents an extension of our result
for min-cost flow problems with piece-wise linear convex cost functions. In Section 7, we provide
the running time analysis of BP for MCF and MCFo. From the analysis, we show that BP for
the min-cost flow problem is a pseudo-polynomial-time algorithm when the data input is integral.
In Section 8, we present a randomized approximation scheme for the min-cost flow problem which
uses the standard BP as a subroutine. We prove that for any ε ∈ (0, 1), the approximation scheme
finds a solution that is within 1 + ε of the optimal solution, while its expected running time is
polynomial in m, n, and 1

ε
. In doing so, we introduce a variation of the Isolation Lemma for LP in

Section 8.1. Finally, Section 9 presents conclusions and directions for future work.

2 Belief Propagation for optimization problem

Here we introduce the min-sum version of BP as a heuristic for optimization problem in the general
form. We shall utilize the notations similar to those used in [18],[19]. In the remainder of the paper,
by BP we mean it’s min-sum version for solving optimization problem. To this end, consider the
optimization problem

minimize
∑

i∈V

φi(xi) +
∑

C∈C

ψC(xC) (P)

subject to xi ∈ R, ∀i ∈ V,

where V is a finite set of variables and C is a finite collection of subsets of V representing constraints.
Here φi : R → R̄, ∀i ∈ V and ψC : R|C| → R̄, ∀C ∈ C are extended real-valued functions where R̄

represents extended real-numbers R ∪ {∞}. We call each φi a variable function, each ψC a factor
function and (P) a factorized optimization problem.

It is not difficult to see that essentially any constrained optimization problem of interest can be
represented as a factorized optimization problem. For example, consider the well-known maximum-
size independent set problem on a simple undirected graph G = (V,E) which requires selecting
subset V of maximal cardinality so that no two vertices of the chosen subset are neighbor of each

5

other as per E. The factorized form of the maximum weight independent set is given by

minimize
∑

i∈V

φi(xi) +
∑

(i,j)∈E

ψij(xi, xj)

subject to xi ∈ R, ∀i ∈ V,

where

φi(xi) =











0 if xi = 0

−1 if xj = 1

∞ otherwise

ψij(xi, xj) =

{

0 if xi + xj ≤ 1

∞ otherwise

In above, xi = 1 if and only if node i is selected in the independent set. Finally, we introduce
the notion of factor graph of a factorized optimization problem. A factor graph FP of (P) is a
bipartite graph with one partition containing variable nodes V and the other partition containing
factor nodes C corresponding to the constraints. There is an edge (v,C) ∈ V × C if and only if
v ∈ C. For example, the graph shown in Figure 1, is the factor graph for optimization problem:

minimize
(

5
∑

i=1

φi(xi)
)

+ ψ1,2,3(x1, x2, x3) + ψ1,4,5(x1, x4, x5) + ψ1,5(x1, x5) (P ′)

subject to xi ∈ R, ∀1 ≤ i ≤ 5.

{1, 2, 3} {1, 4, 5} {1, 5}

v1 v2 v3 v4 v5

Figure 1: An example of a factor graph

Now we introduce BP. To start with, suppose the factor graph FP of P is a tree (note that
factor graph in Figure 1 is not a tree because there is a cycle (v1, {1, 4, 5}, v5 , {1, 5}, v1)). In this
case, let us consider the dynamic programming algorithm. The dynamic programming algorithm
would suggest computation of the value or assignment of a given variable node i ∈ V in the optimal
solution as follows: fix a specific value z ∈ R of variable xi corresponding to the variable i ∈ V .
Subject to xi = z compute the cost of optimal assignment for the rest of the problem, say bi(z).
Then the optimal assignment of variable node i is in argminz∈R bi(z). Now to compute bi(z) for all
z ∈ R, the dynamic programming would recurse the same approach on the problem

minimize φi(z) +
∑

j∈V \{i}

φj(xj) +
∑

C∈C

ψC(xC), (1)

subject to xi = z, xj ∈ R, ∀j.

6

Now implementation of this recursion of dynamic programing in general is not straightforward
and can be computationally expensive. However, when the factor graph FP is a tree, it is quite
simple because the problem decomposes into sub-problems on disconnected trees. It is the dynamic
programming implementation for tree factor graph which leads to the derivation of BP. To that
end, given a node i consider any constraint C such that i ∈ C, i.e. (i, C) is an edge in FP . Since
FP is a tree, FP \ (i, C) has two disjoint components, say T1 and T2. Without loss of generality, we
assume i is contained in T1 and C is contained in T2. Due to this division of the problem structure,
bi(z) for z ∈ R or equivalently solution of optimization problem (1), can be computed recursively
as follows. For edge (i, C), define ‘messages’ mi→C(z) and mC→i(z) as

mi→C(z) = minimize
∑

j∈V ∩T1

φj(xj) +
∑

D∈C∩T1

ψD(xD),

subject to xi = z, xj ∈ R, ∀ j.

mC→i(z) = minimize
∑

j∈V ∩T2

φj(xj) +
∑

D∈C∩T2

ψD(xD),

subject to xj ∈ R, ∀ j.

Note that such two directional ‘messages’ can be defined for any edge in FP in a similar manner
since it is a tree. Again, invoking the tree structure of FP and definition of ‘messages’, the solution
of (1) can be re-written as

bi(z) = φi(z) +
∑

C∈Ci

mC→i(z), ∀ z ∈ R, (2)

where Ci is the set of all factor nodes (or constraints) that contain i, i.e.

Ci
△
= {C ∈ C : i ∈ C}.

That is, if the graph underlying FP is a tree, then in order to compute bi(z) it is sufficient to have
knowledge of the ‘messages’ coming towards node i from the factor nodes to which it is connected
to. For the tree FP , such messages can be recursively defined as follows: for any edge (i, C) in FP ,
for any z ∈ R

mi→C(z) = φi(z) +
∑

K∈Ci\C

mK→i(z), (3)

mC→i(z) = min
y∈R

|C|

yi=z

ψC(y) +
∑

j∈C\i

mj→C(yj). (4)

For tree structured FP , starting from leaf nodes using (3)-(4) the ‘messages’ mi→C(z) and mC→i(z)
for all edges (i, C) can be computed. A parallel implementation of this recursive procedure is as
follows. Initially, for t = 0 we set m0

C→i(z) = m0
i→C(z) = 0 for all edges (i, C) of FP . For t ≥ 1,

update messages for each edge (i, C) of FP as

mt
i→C(z) = φi(z) +

∑

K∈Ci\C

mt−1
K→i(z), (5)

mt
C→i(z) = min

y∈R
|C|

yi=z

ψC(y) +
∑

j∈C\i

mt
j→C(yj). (6)

7

The estimation of bi(z) at the end of iteration t for each i ∈ V and z ∈ R is given by

bti(z) = φi(z) +
∑

C∈Ci

mt
C→i(z). (7)

It is easy to show by induction that if the graph underlying FP is a tree, then for t larger than
the diameter of the tree, bti(·) equals to the value produced by the dynamic programming problem,
therefore resulting in the optimal assignment of xi.

The parallelized implementation of the dynamic programming problem described by (5) and
(6) can be applied to any factor graph in general. This is precisely the BP min-sum heuristic. The
algorithm is described in detail next. For the non-tree graphs the convergence and/or correctness
of such a heuristic is, by no means guaranteed in general.

Algorithm 1 min-sum BP

1: Given a factorized optimization problem (P), construct factor graph FP .
2: Set N to be the number of iterations for BP.
3: Initialize t = 0, and for each edge (i, C) in FP , initialize m

0
C→i(z) = 0 = m0

i→C(z) for all z ∈ R.

4: for t = 1, 2, . . . , N do

5: For any edge (i, C) in FP and z ∈ R, update

mt
i→C(z) = φi(z) +

∑

K∈Ci\C

mt−1
K→i(z), (8)

mt
C→i(z) = min

y∈R|C|,yi=z
ψC(y) +

∑

j∈C\i

mt
j→C(yj). (9)

6: t := t+ 1
7: end for

8: Set the belief function as bNi (z) = φi(z) +
∑

C∈Ci
mN

C→i(z), ∀1 ≤ i ≤ n.

9: Estimate the optimal assignment as x̂Ni ∈ argmin bNi (z) for each i ∈ V .
10: Return x̂N .

3 BP for Linear Programming

The linear programming (LP) problem in the standard form is given by

minimize cTx (LP)

subject to Ax = g,

x ≥ 0, x ∈ R
n,

where A ∈ R
m×n, g ∈ R

m and c ∈ R
n. In the notation of factorized optimization problem

introduced earlier, variable nodes are V = {1, . . . , n} with associated variables xi, i ∈ V ; rows of
A correspond to constraint nodes C = {Cj : 1 ≤ j ≤ m} where Cj = {i ∈ V : aji 6= 0}; and

8

Ci = {Cj : aji 6= 0}, ∀ i ∈ V. Define factor function ψj : R
|Cj | → R̄ for 1 ≤ j ≤ m as:

ψj(z) =

{

0 if
∑

i∈Cj
ajizi = gj

∞ otherwise.

And define variable function φi : R → R̄ for i ∈ V as:

φi(z) =

{

ciz if z ≥ 0

∞ otherwise

Then, (LP) is equivalent to following the factorized optimization problem:

minimize

n
∑

i=1

φi(xi) +

m
∑

j=1

ψCj
(xCj

), (PLP)

subject to xi ∈ R, ∀i ∈ V.

Then BP for this factorized optimization problem becomes the BP heuristic for LP. BP described
earlier requires computing message functions of the form mt

i→C and mt
C→i. In general, it is not

clear if such message functions can be stored and updated efficiently. For LP, however it can be
shown that every message function is a piece-wise linear convex function, which allows efficient
encoding of them in terms of a finite vector describing the break points and the slopes of its linear
pieces. In Section 4.1, we will do this in the context of min-cost network flow problem and we will
explain the associated computation procedure in detail.

Now BP being a distributed algorithm, it is unlikely to work well when the (LP) does not
have a unique optimal solution. Yet, even with the assumption that (LP) has a unique optimal
solution, in general the estimation of BP may not converge to the unique optimal solution. One
such instance is an LP-relaxation of the maximum-weight independent set problem on a complete
bipartite graph [29]:

minimize −
3

∑

i=1

2xi −
3

∑

j=1

3yi

subject to xi + yj + zij = 1, ∀1 ≤ i, j ≤ 3, (PI)

x, y, z ≥ 0.

Although BP in [29] was stated in a somewhat different manner, it can be checked that it is
equivalent to the description presented here. It turns out that although this problem has a unique
optimal solution, the BP algorithm does not converge at all, let alone to the optimal solution.
Specifically, the messages x̂N oscillate between two different values values as the number of iterations
N oscillates between odd and even values.

4 BP Algorithm for Min-Cost Network Flow Problem

In this section, we formulate BP for the capacitated min-cost network flow problem (MCF), and
state our main result about the convergence of BP for MCF . As mentioned earlier, each message

9

of BP for MCF is a function, and we describe how these messages can be efficiently updated and
stored as vectors in Section 4.1. In Section 4.2, we consider a subclass of MCF , it includes bipartite
matching, for which BP can take advantage of its special structure to obtain much faster running
time.

Let us define the capacitated min-cost network flow problem (MCF). Given a directed graph
G = (V,E), let V , E denote the set of vertices and arcs or directed edges respectively with |V | = n
and |E| = m. For any vertex v ∈ V , let Ev be the set of arcs incident to v, and for any e ∈ Ev, let
∆(v, e) = 1 if e is an out-arc of v (i.e. arc e = (v,w), for some w ∈ V), and ∆(v, e) = −1 if e is an
in-arc of v (i.e. arc e = (w, v), for some w ∈ V). The MCF on G is formulated as follows [2, 7]:

minimize
∑

e∈E

cexe (MCF)

subject to
∑

e∈Ev

∆(v, e)xe = fv, ∀ v ∈ V (demand/supply constraints)

0 ≤ xe ≤ ue, ∀ e ∈ E (flow constraints)

where ce ≥ 0, ue ≥ 0, ce ∈ R, ue ∈ R̄, for each e ∈ E, and fv ∈ R for each v ∈ V . The variables
xe represent flow value assigned to each arc e ∈ E; the first type of constraints state that the
difference of in-flow and out-flow at each node v ∈ V equals the node demand fv (could be positive
or negative); and the second type of constraints state that flow on each arc e ∈ E is non-negative
and can not be larger than its capacity ue. We shall assume the instance of network flow is feasible.
Without loss of generality, let each node v ∈ V be such that |Ev| ≥ 2; or else either Ev = ∅ in
which case we ignore such v or |Ev | = 1 in which case the flow on e ∈ Ev is determined by fv. For
the MCF , define factor and variable functions ψ, φ as follows: for v ∈ V, e ∈ E

ψv(z) =

{

0 if
∑

e∈Ev
∆(v, e)ze = fv,

∞ otherwise,

φe(z) =

{

cez if 0 ≤ z ≤ ue,

∞ otherwise.

Then, solving MCF is equivalent to solving minx∈R|E|{
∑

v∈V ψv(xEv) +
∑

e∈E φe(xe)}. Therefore,
the BP algorithm can be applied for MCF in this standard form. Because of the special structure
of MCF that each variable node is adjacent to exactly two factor nodes, it is indeed possible to
skip the message update step mt

v→e and resulting into a simplified Algorithm 2 stated next.
Intuitively, in Algorithm 2 each arc can be thought of as an agent, who is trying to figure

out its own flow while meeting the conservation constraints at its endpoints. Each link maintains
an estimate of its “local cost” as a function of its flow (thus this estimate is a function, not a
single number). At each time step an arc updates its function as follows: the cost of assigning
x units of flow to link e is the cost of pushing x units of flow through e plus the minimum-cost
way of assigning flow to neighboring edges (with respect to the functions computed at the previous
iteration) to restore flow conservation at the endpoints of e.

Similar to BP for LP, the message functions in BP for MCF , mt
e→v for suitable pairs of e and

v, are also piece-wise linear convex functions. In Section 4.1, we establish this fact and present
an explicit procedure for computing mt

e→v. Hence, Algorithm 2 is indeed a procedure that can be

10

Algorithm 2 BP for MCF

1: Initialize t = 0, messages m0
e→v(z) = 0, m0

e→w(z) = 0, ∀z ∈ R for each e = (v,w) ∈ E.
2: for t = 1, 2, 3, ..., N do

3: For each e = (v,w) ∈ E update messages as follows:

mt
e→v(z) = φe(z) + min

z̄∈R|Ew|,z̄e=z







ψw(z̄) +
∑

ẽ∈Ew\e

mt−1
ẽ→w(z̄ẽ)







, ∀z ∈ R

mt
e→w(z) = φe(z) + min

z̄∈R|Ev |,z̄e=z







ψv(z̄) +
∑

ẽ∈Ev\e

mt−1
ẽ→v(z̄ẽ)







, ∀z ∈ R

4: t := t+ 1
5: end for

6: For each e = (v,w) ∈ E, set the belief function as

bNe (z) = φe(z) +
∑

ẽ∈Ev\e

mN−1
ẽ→v (z) +

∑

ẽ∈Ew\e

mN−1
ẽ→w(z)

7: Calculate the belief estimate by finding x̂Ne ∈ argmin bNe (z) for each e ∈ E.
8: Return x̂N as an estimation of the optimal solution of MCF .

implemented on a computer. Next, we state conditions under which the estimates of BP converge
to the optimal solution of MCF . Before formally stating the result, we first give the definition of a
residual network [2]. Define G(x) to be the residual network of G with respect to flow x as follows:
G(x) has the same vertex set as G, ∀e = (v,w) ∈ E if xe < ue then e is an arc in G(x) with cost
cxe = ce. Finally, if xe > 0 then there is an arc e′ = (w, v) in G(x) with cost cxe′ = −ce. Let

δ(x) = min
C∈C

{cx(C) =
∑

e∈C

cxe}, (10)

where C is the set of directed cycles in G(x). Note that if x∗ is the unique optimal solution of
MCF with directed graph G, then it must be that δ(x∗) > 0 in G(x∗) or else we can change flow
x∗ along the minimal cost cycle in (10) without increasing its cost.

Theorem 4.1. Suppose MCF has a unique optimal solution x∗. Define L to be the maximum cost
of a simple directed path in G(x∗). Then for any N ≥ (⌊ L

2δ(x∗)⌋+ 1)n, x̂N = x∗.

The proof of Theorem 4.1 is presented in Section 5. The above stated theorem claims that
the BP algorithm finds the unique optimal solution of MCF in at most (⌊ L

2δ(x∗)⌋+ 1)n iterations:
this convergence is exact in the sense that BP finds the optimal solution exactly in finite number
of iterations. This is in contrast with the asymptotic convergence established for many iterative
algorithms in the theory of continuous optimization. We note that this result is similar in flavor
to those established in the context of BP’s convergence for combinatorial optimization [5, 4, 29].
However, it differs from the convergence results in [18, 19] where the estimates converge to the
optimal solution with an exponential rate, but are not established to reach exact optimal in finitely

11

many steps. Next we state the total computation performed by Algorithm 2 to find the optimal
solution when the parameters (capacities and costs) are integral in the MCF .

Theorem 4.2. Given an MCF with a unique optimal solution x∗ and integral data, BP algorithm
finds the unique optimal solution of MCF in O

(

c3maxmn
4 log n

)

operations, where cmax = maxe ce.

Theorem 4.2 follows by utilizing Theorem 4.1 to bound the number of iterations along with
a bound on the number of operations required for updating message functions mt

e→v up to those
many iterations. The formal proof of this statement is presented in Section 7.

4.1 Computing/encoding message functions

Here we provide a procedure for constructing message function mt
e→v in BP for MCF . This con-

struction procedure shows that each message function mt
e→v is a piece-wise linear convex function.

Moreover, we provide a bound for the number of operations required for this construction pro-
cedure, which will help in bounding the running time of Algorithm 2. First, we formally define
piece-wise linear convex function:

Definition 4.3. A function f is called piece-wise linear convex if for some finite set of reals,
a0 < a1 < ... < an, (allowing a0 = −∞ and an = ∞),

f(z) =











c1(z − a1) + f(a1) if z ∈ [a0, a1]

ci+1(z − ai) + f(ai) if z ∈ (ai, ai+1], 1 ≤ i ≤ n

∞ otherwise

where f(a1) ∈ R and c1 < c2 < ... < cn satisfy ci+1(ai+1 − ai) + f(ai) = f(ai+1) for 1 ≤ i ≤ n− 1.

We define a0, a1, ..., an as the vertices of f . We define n to be the number of pieces of f , denoted
by p(f). We call ci(z − ai−1) + f(ai−1) for z ∈ [ai−1, ai] as the ith linear piece of f . Clearly, if f
is a piece-wise linear convex function, then all relevant information about f can be stored using
a finite vector of size O(p(f)). We make the following observation that will be useful for efficient
update of messages of BP.

Observation 4.4. Suppose f1, f2 are piece-wise linear convex functions. Then, f1(ax+b), cf1(x)+
df2(x) are also convex piecewise-linear functions, for any real numbers a, b, c and d, where c ≥
0, d ≥ 0.

Definition 4.5. Let S = {f1, f2, ..., fk} be a set of piece-wise linear convex functions, and let
Ψt : R

k → R be

Ψt(x) =

{

0 if
∑k

i=1 xi = t

∞ otherwise

Then the interpolation of f1, . . . , fk or S, denoted by IS(·) is defined as

IS(t) = min
x∈Rk

{

ψt(x) +
k

∑

i=1

fi(xi)
}

, ∀ t ∈ R.

12

Lemma 4.6. Suppose f1, f2 are piece-wise linear convex functions. Then for S = {f1, f2} the
IS(t) is a piece-wise linear convex function and it can be computed in O(p(f1) + p(f2)) operations.

Proof. We shall provide a constructive proof of this result by describing a procedure to construct
IS(t). The idea behind construction of IS(t) is essentially to “stitch” together the linear pieces of f1
and f2. To this end, let z∗1 , z

∗
2 be vertices of f1, f2 such that z∗1 = argmin f1(z), z

∗
2 = argmin f2(z).

Let S = {f1, f2}. In case the case of ties, we select z∗i to be the smallest point in the argmin set.
Let g(t) be the function that is defined only at z∗1 + z∗2 with g(z∗1 + z∗2) = f1(z

∗
1) + f2(z

∗
2). Let

L1 = U1 = z∗1 and L2 = U2 = z∗2 . We shall construct g iteratively for all t ∈ R so that we shall end
up with g(t) = IS(t). The construction is described as follows. At every iteration, let X1 (and X2)
be the linear piece of f1 (and f2) at the left side of L1 (and L2). Choose the linear piece with the
larger slope from {X1,X2}, and “stitch” this piece onto the left side of the left endpoints of g. If
piece, say Pi, of function fi is chosen then update Li to the vertex which is on the left end of Pi

for i = 1, 2. As an example, consider f1 and f2 shown in the Figure 2. Here z∗1 = 1 and z∗2 = 0 are
vertices of f1 and f2 such that z∗1 = argmin f1(z), z

∗
2 = argmin f2(z). Note that the linear piece

X1 in the procedure is labeled as P1 on the graph, while X2 does not exist (since there is no linear
piece for f2 on the right side of z2). Hence, we “stitch” P1 to the left side of g, and update L1

to 0. In a similar manner, let Y1 (Y2) be the linear piece of f1 (f2) to the right side of U1 (U2).
Then choose the linear piece with the smaller slope and “stitch” this piece onto the right side of
the right endpoint of g. If Qi is the chosen piece, update Ui to the vertex which is on the right
side of Qi for i = 1, 2. Again, we use f1 and f2 in Figure 2 as an illustration. The linear piece Y1
in the procedure is labeled as P2, while Y2 is labeled as P3. As P2 has a lower slope than P3, we
“stitch” P2 to the right side of g and update U1 to 2.

Repeat this procedure until both L1 (and L2) and U1 (and U2) are the left most (and right
most) endpoints of f1 (and f2), or both endpoints of g are infinity. See Figure 2 and Figure 3 as
an illustration of resulting interpolation of the two functions.

Note that the total number of iterations is bounded by O(p(f1) + p(f2)) and each iteration
takes at most constant number of operations. Thus total computation performed to obtain g
is O(p(f1) + p(f2)). By construction, it is clear that g is a piece-wise linear convex function.
Also g(z∗1 + z∗2) = f1(z

∗
1) + f2(z

∗
2) and by the way we have constructed g, we must have g(t) ≤

{Ψt(x) + f1(x1) + f2(x2)} for any t ∈ R. Therefore, it follows that g = IS . This completes the
proof of Lemma 4.6.

Theorem 4.7. Given a set S{f1, . . . , fk} of piece-wise linear convex functions, IS(t) is also a
piece-wise linear convex function. Let P =

∑

f∈S p(f). Then IS(t) can be computed in O(P log k)
operations.

Proof. Without the loss of generality we may assume that k is divisible by 2. Let S1 = {f1, f2}, S2 =
{f3, f4}, ..., S k

2
= {fk−1, fk} and S′ = {IS1 , IS2 , ..., IS k

2

}. Then one can observe that IS′ = IS by

the definition of IS . By Lemma 4.6 each function in S′ is piece-wise linear convex and S′ can be
computed in O(P) operations. Consider changing S to S′ as a procedure of decreasing the number
of piece-wise linear convex functions. This procedure reduces the number by a factor of 2 each time
while it consumes O(P) operations. Hence, it takes O(log k) procedures to reduce set S into a single
piece-wise linear convex function. And hence computing IS(t) takes O(P log k) operations.

13

Figure 2: Functions f1 and f2

Definition 4.8. Let S = {f1, f2, ..., fk} be a set of convex piecewise-linear functions, a ∈ R
k, and

let Ψt : R
k → R be:

Ψt(x) =

{

0 if
∑k

i=1 aixi = t
∞ otherwise

, ∀v ∈ V

We call IaS(t) = minx∈Rk{ψt(x) +
∑k

i=1 fi(xi)} the scaled interpolation of S.

Theorem 4.9. Given a set of piece-wise linear convex functions S = {f1, . . . , fk}, I
a
S(t) is also a

piece-wise linear convex function. Let P =
∑

f∈S p(f). Then IS(t) can be computed in O(P log k)
operations.

Proof. Let S = {f1, . . . , fk} and S′ = {f ′1, . . . , f
′
k} with f ′i(x) = fi(aix) for 1 ≤ i ≤ k. If fi is

a piece-wise linear convex function, then it can be easily checked that so is f ′i for 1 ≤ i ≤ k.
Therefore, Theorem 4.9 follows immediately by an application of Theorem 4.7 to S′.

Now recall that for any t ≥ 1, the message update in the BP for MCF problem has the following
form:

mt
e→v(z) = φe(z) + min

z̄∈R|Ew|,z̄e=z







ψw(z̄) +
∑

ẽ∈Ew\e

mt−1
ẽ→w(z̄ẽ)







for z ∈ R.

Therefore, the message update can be performed using the scaled interpolation. Specifically, we
make the following observation.

Observation 4.10. Let S = {mt−1
ẽ→w, ẽ ∈ Ew \ e} and aẽ = ∆(w, ẽ) for any ẽ ∈ Ew \ e. Then the

function m̃t
e→v(z) = mt

e→v(z)− φe(z) is equal to IaS(−∆(w, e)z + fw).

From above Observation 4.10, the following Corollaries are immediate.

Corollary 4.11. For t ≥ 1 and e ∈ E with e = (v,w), the message functions mt
e→v,m

t
e→w of BP

algorithm for MCF are piece-wise linear convex functions.

14

Figure 3: Interpolation of f1 and f2

Proof. The proof follows by induction on t. Initially, t = 0 and m0
e→v is constant function (equal

to 0). Therefore, it is a piece-wise linear convex function by definition. For t ≥ 1, by Corollary 4.9
and Observation4.10, mt

e→v(z) − φe(z) is a piece-wise linear convex. Now φe is a piece-wise linear
convex function. Therefore, mt

e→v is a summation of two piece-wise linear convex functions which
is piece-wise linear convex as well.

Corollary 4.12. Suppose the components of cost vector c in MCF are integers. At iteration t, for
piece-wise linear convex message function mt

e→v(z) of BP algorithm for MCF , let {s1, s2, ..., sk}
be the slopes of its pieces. Then −tcmax ≤ si ≤ tcmax and si is integral for each 1 ≤ i ≤ k, where
cmax = maxe ce.

Proof. The proof follows by induction on t. Initially, t = 0 and the statement is immediate. For
t ≥ 1, since ∆(w, e) = ±1 for any e ∈ Ew, by Observation 4.10 it follows that the absolute values
of the slopes for the linear pieces of mt

e→v − φe is the same as the absolute values of the slopes for
the linear pieces of message functions mt−1

ẽ→w. By induction hypothesis, the absolute values of the
slopes of mt

e→v − φe are integral and bounded by (t − 1)cmax. The slope of pieces in φe is ce and
therefore, the absolute values of slopes of mt

e→v are integral and bounded by tcmax.

Corollary 4.13. Suppose components of vectors f and u take integer values in MCF . Then at
iteration t ≥ 1, for any message function mt

e→v, the vertices of mt
e→v are integral as well.

Proof. Again, the proof is by induction on t. Initially, t = 0 and the statement trivially holds. For
t ≥ 1, first observe that since u has integral components, all of its vertices of φe are integral as well.
By Observation 4.10 and induction hypothesis, all vertices of mt

e→v − φe are integral. Therefore,
all vertices of mt

e→v are integral.

Corollaries 4.9 and 4.11 shows that at every iteration, each message function can be encoded
in terms of a finite vector describing the corners and slopes of its linear pieces in finite number of

15

iterations. These arguments extend easily to the form of linear program considered earlier. That
is, BP for LP can be truly implemented on a computer.

The Corollary 4.12 provides a bound for the number of linear pieces in mt
e→v. This bound

will help us bound the running time of BP algorithm for MCF . We shall discuss this in detail in
Section 7. Finally, we would like to note that the result that message functions mt

e→v are piece-wise
linear convex functions can be also shown by sensitivity analysis of LP, cf. [7, Chapter 5].

4.2 BP for a sub-class of MCF

The Section 4.1 established that each message function is a piece-wise linear convex function.
However, as per the bounds established, the number of pieces increase linearly with iterations and
this requires more computation for message update as iterations grow. Now for an instance of MCF
with integral components of vector b and u, the message function mt

e→v is a piece-wise linear convex
function with integral vertices as per Corollary 4.13. Therefore, it has at most ue linear pieces.
Thus, if ue is bounded by some constant for all e, the message functions at every iteration is piece-
wise linear convex function with a bounded number of pieces. This results in a computationally
efficient update of messages. Next, we present a sub-class of MCF , denoted by MCFo, for which
such property holds and which contains important classes of network flow problems.

To this end, given a directed graph G = (V,E), consider the following sub-class of problem:
with notation in(v) = {(u, v) ∈ E}

minimize
∑

e∈E

cexe (MCFo)

subject to
∑

e∈Ev

∆(v, e)xe = fv, ∀v ∈ V (demand/supply constraints)

∑

e∈in(v)

xe ≤ ũv, ∀v ∈ V

0 ≤ xe ≤ ue. ∀e ∈ E (flow constraints)

In above, c, u, and ũ are all integral. To see MCFo is indeed an instance of MCF consider the
following. Split each v ∈ V into two vertices vin and vout, where vin is incident to all in-arcs of v
with fvin = 0 and vout is incident to all out-arcs of v with fvout = fv. Create an arc from vin to
vout with capacity ũv and cost equal to 0. Denote thus created new graph as Go. Then the MCF
on Go is equivalent to MCFo. Instead of using the Algorithm 2 to solve the MCF on Go, we shall
use it on G with the following functions ψ, φ:

ψv(x) =

{

0 if
∑

e∈Ev
∆(v, e)xe = fv and

∑

e∈in(v) xe ≤ ũv

∞ otherwise
∀v ∈ V,

φe(x) =

{

cex if 0 ≤ x ≤ ue

∞ otherwise
∀e ∈ E.

Now to update message functions mt
e→v for all e ∈ Ew, the inequality

∑

e∈in(w) xe ≤ ũw implies

that it is sufficient to check ũw linear pieces from message functions mt−1
ẽ→w for all but constant

number of e ∈ Ew. This leads to efficient implementation of BP for MCFo. Specifically, we state
the following result.

16

Theorem 4.14. Suppose the MCFo as described above has a unique optimal solution with

max
v

(

ũv, uv, |fv|
)

≤ K, max
e
ce ≤ K.

Then Algorithm 2 for MCFo finds the unique optimal solution using O(K2mn2 log n), which is
O(K2n4 log n), operations in total. As a result, Algorithm 2 is polynomial time when K is a
constant.

The proof of Theorem 4.14 is presented in Section 7.1. It is worth taking note of the fact that
both the shortest-path problem and maximum weight matching in a bipartite graph belong to the
MCFo class of problems with all components of f , u being bounded by 2. For these two classes
of problems we do not need the extra constraint

∑

e∈in(v) xe ≤ ũv, but we do need this constraint
to make a general statement of the theorem. We see that under the uniqueness assumptions, BP
solves these problems in polynomial (as opposed to just pseudo-polynomial) time.

5 Convergence of BP for MCF

This section is devoted to establishing the convergence of BP to the optimal solution of the MCF
under the assumption of the uniqueness of the optimal solution, namely we shall prove Theorem
4.1. The outline of the proof is as follows. First, we define the notion of a computation tree TN

e

that is associated with each variable node xe of MCF for iteration N . We show that in fact the
estimation x̂Ne under BP is the optimal solution of an appropriately defined MCF problem on TN

e

(Lemma 5.1). Next, we show that the optimal assignment to xe under the min-cost flow problem
on the computation tree TN

e is the same as the optimal assignment to xe under the original MCF
as long as N is large enough (see Section 5.2). This immediately implies that BP finds the correct
optimal solution for MCF for large enough N leading to Theorem 4.1. We note that this strategy
is similar to that of [5]. However, the technical details are quite different.

5.1 Computation Tree and BP

We start with the definition of computation tree. The N -level computation tree associated with
arc e = (v,w) ∈ E is denoted by TN

e . It is essentially the breadth first search tree of G (with
repetition of nodes allowed) starting from e up to depth N . Formally, computation tree TN

e is
defined inductively as follows. T 0

e =
(

V
(

T 0
e

)

, E
(

T 0
e

))

is a tree with vertex set V
(

T 0
e

)

= {v′, w′}
and arc set E

(

T 0
e

)

= {e′ = (v′, w′)}. The v′, w′ are considered replicas of v,w ∈ V and this
is represented by a mapping Γ0

e : V
(

T 0
e

)

→ V with Γ0
e(v

′) = v and Γ0
e(w

′) = w. The arc e′ is
considered the “root” of T 0

e and vertices v′, w′ are considered to be at level 0. Define w′ (resp. v′)
as parent of v′ (resp. w′) denoted as P (v′) = w′ (resp. P (w′) = v′). Inductively, let us suppose
that tree TN

e =
(

V
(

TN
e

)

, E
(

TN
e

))

is defined with corresponding ΓN
e : V

(

TN
e

)

→ V such that for
u′1, u

′
2 ∈ V

(

TN
e

)

, (u′1, u
′
2) ∈ E

(

TN
e

)

only if (ΓN
e (u′1),Γ

N
e (u′2)) ∈ E. Let P : V

(

TN
e

)

→ V
(

TN
e

)

represent the parent relation in TN
e . Let L

(

TN
e

)

be the set of leaves1 of TN
e . Now we shall

define TN+1
e =

(

V
(

TN+1
e

)

, E
(

TN+1
e

))

which contains TN
e as a sub-tree. Specifically, V

(

TN+1
e

)

and
E
(

TN+1
e

)

are obtained by adding vertices to V
(

TN
e

)

and arcs to E
(

TN
e

)

as follows. For each leaf
node u′ ∈ L

(

TN
e

)

, add node ũ′ to expand V
(

TN
e

)

and add arc (u′, ũ′) or (ũ′, u′) to expand E
(

TN
e

)

if

1A vertex v
′ is called leaf if it is connected to exactly one other vertex.

17

Figure 4: Computation tree of G rooted at e3 = (1, 3)

(a) there is a node ũ ∈ V so that (u, ũ) or (ũ, u) is in E with ΓN
e (u′) = u, and (b) ΓN

e (P (u′)) 6= ũ. In
this case, define P (ũ′) = u′, the map ΓN+1

e (ũ′) = ũ and level of ũ′ as N+1. Indeed, ΓN+1
e is identical

to ΓN
e for nodes V

(

TN
e

)

⊂ V
(

TN+1
e

)

. In what follows, we shall drop reference to e,N in notation
of ΓN

e when clear from context and abuse notation by denoting Γ(e′ = (u′1, u
′
2)) = (Γ(u′1),Γ(u

′
2)).

Sometimes TN
e is also called ‘unwrapped tree” of G rooted at e. Figure 4 gives an example of a

computation tree. It should be noted that the definition of computation tree may appear slightly
different compared to that in related works such as [4], [5], [28] (arc is root here in contrast to a
vertex as root). However, the utility of the computation trees is very similar.

Now we are ready to relate the computation tree with the BP. Let V o(TN
e) ⊂ V (TN

e) denote
the set of all the vertices which are not on the N -th level of TN

e . Consider the problem

minimize
∑

ẽ∈E(TN
e)

cΓ(ẽ)xẽ (MCFN
e)

subject to
∑

ẽ∈Eu′

∆(u′, ẽ)xẽ = fΓ(u′), ∀ u
′ ∈ V o(TN

e)

0 ≤ xẽ ≤ uΓ(f), ∀ f ∈ E(TN
e).

In above, Eu′ ⊂ E(TN
e) is the set of arcs incident on u′ ∈ V o(TN

e) in TN
e and ∆(u′, ẽ) for ẽ ∈ Eu′ is

defined as −1 or +1 depending upon whether e′ is in-arc or out-arc for node u′. Loosely speaking,
MCFN

e is essentially an MCF on TN
e : there is a flow constraint for every arc ẽ ∈ E(TN

e) and a
demand/supply constraint for every node, except for the nodes on the Nth level. Now, we state
the following well known result which exhibits the connection between BP and the computation
trees.

18

Lemma 5.1. Let x̂Ne be the value produced by BP at the end of iteration N for the flow value on
edge e ∈ E. Then there exists an optimal solution y∗ of MCFN

e such that y∗e′ = x̂Ne where e′ is the
root of TN

e (and Γ(e′) = e).

Proof. Let e′ = (v′, w′) be the root arc of computation tree TN
e with e = (v,w) such that Γ(e′) =

e,Γ(v′) = v and Γ(w′) = w. By definition, TN
e has two components connected via the root arc e′.

Let C be the component containing w′ and TN
e′→v′ denote the C with edge e′; indeed TN

e′→v′ is a
tree. As before, let V o(TN

e′→v′) be the set of all nodes excluding those at the Nth level. Define

minimize
∑

ẽ∈E(TN
e′→v′

)

cΓ(ẽ)xẽ (MCFN
e′→v′(z))

subject to
∑

ẽ∈Eq′

∆(q′, ẽ)xẽ = fΓ(q′), ∀ q
′ ∈ V o(TN

e′→v′)

xe′ = z,

0 ≤ xẽ ≤ uΓ(ẽ), ∀ ẽ ∈ E(TN
e′→v′).

Now, we shall establish that under the BP algorithm (running on G) the value of message function
from e → v evaluated at z, that is mN

e→v(z), is the same as the cost of the optimal assignment for
MCFN

e′→v′(z). This can be established inductively. To start with, for N = 1, the statement can be
checked to be true trivially. For N > 1, let Ew′ denote the edges incident on w′ in TN

e where recall
e′ = (v′, w′) is it’s root arc. Then for each g′ ∈ Ew′\e′ with g′ = (u′, w′) (or (w′, u′)), let TN−1

g′→w′ be

the subtree of TN
e′→v′ that includes g

′ and everything in TN
e′→v′ that is part of it’s component that

does not include w′. Define optimization problem

minimize
∑

ẽ∈E(TN−1
g′→w′)

cΓ(ẽ)xẽ (MCFN−1
g′→w′(z))

subject to
∑

ẽ∈Eq′

∆(q′, ẽ)xẽ = fΓ(q′), ∀ q
′ ∈ V o(TN−1

g′→w′)

xg′ = z,

0 ≤ xẽ ≤ uΓ(ẽ), ∀ ẽ ∈ E(TN−1
g′→w′).

By induction hypothesis, it must be thatmN−1
g′→w′(z) equals the cost of the solution of MCFN−1

g′→w′(z).

Given this hypothesis and the relation of sub-tree TN−1
g′→w′ for all g′ ∈ Ew′\e′ with TN

e′→v′ , it follows

that the optimization problem MCFN
e′→v′(z) is equivalent to

minimize cez +
∑

g′∈Ew′\e′

mN−1
Γ(g′)→Γ(w′)

(xg′)

subject to ∆(w′, e′)z +
∑

g′∈Ew′\e′

∆(w′, g′)xg′ = fΓ(w′)

0 ≤ xg′ ≤ uΓ(g′), ∀ g
′ ∈ Ew′\e′.

This is exactly the same as the relation between mN
e→v(z) and message function mN−1

g→w(·) for g ∈

Ew\e as defined by BP. That is, mN
e→v(z) is exactly the same as the cost of optimal assignment of

MCFN
e′→v′ . We shall use this equivalence, to complete the proof of Lemma 5.1.

19

To that end, for given e = (v,w) with 0 ≤ z ≤ ue, the optimization problem MCFN
e (z) is

equivalent to

minimize cez +
∑

ẽ∈E(TN
e′→v′

)

cΓ(ẽ)xẽ +
∑

ẽ∈E(TN
e′→w′)

cΓ(ẽ)xẽ

subject to
∑

ẽ∈Eq′

∆(q′, ẽ)xẽ = fΓ(q′), ∀ q
′ ∈ V o(TN

e) ∩
(

V (TN
e′→v′) ∪ V (TN

e′→w′)
)

0 ≤ xẽ ≤ uΓ(ẽ), ẽ ∈ E(TN
e′→v′) ∪E(TN

e′→w′).

That is, the cost of an optimal assignment of MCFN
e (z) equals mN

e→u(z) +mN
e→v(z) + cez for any

0 ≤ z ≤ ue. Now the claim of Lemma 5.1 follows immediately.

5.2 Proof of theorem 4.1

Now we are ready to establish Theorem 4.1. Suppose to the contrary that there exists e0 =
(vα, vβ) ∈ E and N ≥

(⌊

L
2δ(x∗)

⌋

+ 1
)

n such that x̂Ne0 6= x∗e0 . By Lemma 5.1, there exists an optimal

solution y∗ of MCFN
e0

such that y∗
e′0

= x̂Ne0 . Without loss of generality, assume y∗
e′0
> x∗e0 . Using

the optimality of x∗, we will show that it is possible to modify y∗ to obtain a feasible solution of
MCFN

e0
with cost strictly lower than that of y∗. This will lead to contradiction to the assumption

that x̂Ne0 6= x∗e0 and establish the result.
To that end, let e′0 = (v′α, v

′
β) be the root edge of the computation tree TN

e0
as discussed earlier.

Because y∗ is a feasible solution of MCFN
e0

and x∗ is a feasible solution of MCF ,

fΓ(v′α) =
∑

ẽ∈Ev′α

∆(v′α, ẽ)y
∗
ẽ = y∗e′0

+
∑

ẽ∈Ev′α
\e′0

∆(v′α, ẽ)y
∗
ẽ (constraint at v′α in MCFN

e0
)

fΓ(v′α) =
∑

ẽ∈EΓ(v′α)

∆(Γ(v′α), ẽ)x
∗
ẽ = x∗e0 +

∑

ẽ∈EΓ(v′α)\e0

∆(Γ(v′α), ẽ)x
∗
ẽ (constraint at Γ(v′α) in MCF).

Note that the edges in Ev′α
in the computation tree TN

e0
are copies of edges in Evα in G where vα =

Γ(v′α). Therefore, ∆(v′α, ẽ) = ∆(Γ(vα),Γ(ẽ)) for ẽ ∈ Ev′α
. Therefore, from above inequalities, it

follows that since y∗
e′0
> x∗e0 , there exists arc e

′
1 6= e′0 incident on v

′
α in TN

e0
such that ∆(v′α, e

′
1)(x

∗
Γ(e′1)

−

y∗
e′1
) is strictly positive. Therefore, if ∆(v′α, e

′
1) = 1 then x∗Γ(e′1)

> y∗
e′1

else x∗Γ(e′1)
< y∗

e′1
. That is,

if edge e′1 has the opposite orientation with respect to e′0 at node v′α (both are outgoing from v′α
and hence opposite orientation), then x∗Γ(e′1)

> y∗
e′1

else x∗Γ(e′1)
< y∗

e′1
. The Figure 5 explains this by

means of a simple example.
More generally, using similar argument we can find arc e′−1 6= e′0 incident to v′β satisfying similar
condition. Let v′α1

, v′α−1
be the other end points of e′1, e

′
−1 respectively. A recursive application of

similar argument utilizing the feasibility condition of x∗ and y∗ and the inequalities between value
of components of x∗ and y∗ at edges e′1 and e′−1, leads to existence of arcs e′2, e

′
−2 incident on v′α1

,
v′α−1

respectively so that x∗
e′2

6= y∗
e′2

and x∗
e′−2

6= y∗
e′−2

with inequalities being < or > depending upon

the orientation of the edges with respect to e0. Continuing further in this manner all the way down
to the leaves, it is possible to find arcs {e′−N , e

′
−N+1, ..., e

′
−1, , e

′
1, ..., e

′
N} such that for −N ≤ i ≤ N ,

y∗e′i
> x∗Γ(e′i)

⇐⇒ e′i has the same orientation as e0,

y∗e′i
< x∗Γ(e′i)

⇐⇒ e′i has the opposite orientation as e0.

20

Figure 5: An example of Augmenting path between the flow assignment on computation tree T 2
e3

and the flow assignment on G. The dashed edges represent the edges belonging to the augmenting
path. Root edge and edge from v4 to v1 have same orientation.

Let us denote the path containing these edges as X = {e′−N , e
′
−N+1, ..., e

′
−1, e

′
0, e

′
1, ..., e

′
N}. For any

e′ = (v′p, v
′
q) ∈ X, define Aug(e′) = (v′p, v

′
q) if y∗e′ > x∗Γ(e′), and Aug(e′) = (v′q, v

′
p) if y∗e′ < x∗Γ(e′).

Given the feasibility conditions of y∗ and definition of Aug(e′), it can be checked that Γ(Aug(e′)) is
an arc in the residual graph G(x∗). The directed pathW = (Aug(e′−N), . . . , Aug(e′0), . . . , Aug(e

′
N))

on TN
e0

will be called the augmenting path of y∗ with respect to x∗. Also, Γ(W) is a directed walk
on G(x∗). Now we can decompose Γ(W) into a simple directed path P and a collection of simple
directed cycles C1, . . . , Ck. Now each simple directed cycle or path on G(x∗) can have at most n
edges. Since W has 2N + 1 arcs and N ≥

(⌊

L
2δ(x∗)

⌋

+ 1
)

n, it follows that k > L
δ(x∗) . Now the cost

of path P , denoted by c∗(P), with respect to the residual graph G(x∗) is at least −L (and at most
L) by definition of L. Since each Ci is a simple cycle in G(x∗), by definition it’s cost, denoted by
c∗(Ci) with respect to G(x∗) is at least δ(x∗); δ(x∗) > 0 since x∗ is the unique optimal solution.
Therefore, as explained below we obtain that the cost of W is strictly positive:

N
∑

i=−N

c∗Γ(e′i)
= c∗(W)

= c∗(P) +

k
∑

j=1

c∗(Cj)

≥ −L+ kδ(x∗)

> −L+
L

δ(x∗)
δ(x∗) = 0.

Let FWD = {e ∈ X : y∗e > x∗Γ(e)}, BCK = {e ∈ X : y∗e < x∗Γ(e)}. Since both FWD and BCK are
finite, there exists λ > 0 such that y∗e −λ ≥ x∗Γ(e), ∀e ∈ FWD and y∗e +λ ≤ x∗Γ(e), ∀e ∈ BCK. Define

21

ỹ ∈ R
|E(TN

e0
)| as

ỹe =











y∗e − λ e ∈ FWD

y∗e + λ e ∈ BCK

0 otherwise.

The ỹ can be thought of as flow that is obtained by pushing λ units of additional flow along path
W over the existing flow y∗ in TN

e0
. Since for each e ∈ FWD, y∗e − λ ≥ x∗Γ(e) ≥ 0 and for each

e ∈ BCK, y∗e +λ ≤ x∗Γ(e) ≤ uΓ(e), ỹ satisfies all the flow constraints. Further since all edges in FWD
have the same orientation as e0 and those in BCK have the opposite orientation compared to e0,
we have that for any v′ ∈ V o(TN

e0
),

∑

e′∈Ev′

∆(v′, e′)ỹe′ =
∑

e′∈Ev′

∆(v′, e′)y∗e′

= fΓ(e′),

which implies that ỹ satisfies all the demand/supply constraints. Therefore, ỹ is a feasible solution
of MCFN

e0
. Now

∑

e′∈E(TN
e0

)

cΓ(e′)y
∗
e′ −

∑

e′∈E(TN
e0

)

cΓ(e′)ỹe′ =
∑

e′∈E(TN
e0

)

cΓ(e′)
(

y∗e′ − ỹe′
)

=
∑

e′∈FWD

cΓ(e′)λ−
∑

e′∈BCK

cΓ(e′)λ

= c∗(W)λ

> 0.

In above we have used the fact that c∗Γ(e′) = cΓ(e′) for e
′ ∈ FWD and c∗Γ(e′) = −cΓ(e′) for e

′ ∈ BCK.
The above contradicts the optimality of y∗. Therefore, the assumption about BP estimate not
converging is false. This completes the proof of Theorem 4.1.

5.3 Detection of uniqueness of optimal solution using BP

In this section, we establish an unusual property of BP in terms of its ability to detect the uniqueness
of optimal solution in the MCF in distributed manner as long as the input parameters c, f and u
are integral. We state this as the following Corollary of Theorem 4.1.

Corollary 5.2. Consider an instance of MCF with integral c, f and u. Suppose cmax = maxe∈E ce.
Suppose the BP Algorithm 2 runs for N = n2cmax + n iterations. Let z∗e ∈ argmin bNe (z). Then

∀ e ∈ E, min
(

bNe (z∗e − 1), bNe (z∗e + 1)
)

> ncmax + bNe (z∗e) (11)

if and only if the MCF instance has a unique solution.

Proof. We first establish the implication that if MCF has a unique optimal solution then (11)
holds. To that end, let us suppose that the instance of MCF of interest has a unique solution.

22

Consider any edge e ∈ E and its computation tree TN
e . Then from Lemma 5.1 it follows that z∗e

is an optimal assignment of the root edge e′ of TN
e with respect to the associated optimization

problem MCFN
e . Now suppose y is an optimal solution of MCFN

e with the additional constraint
that flow on the root edge e′ of TN

e , denoted by ye′ is fixed to value z∗e − 1. Then, using arguments
similar to those used in the proof of Theorem 4.1, it can be shown that there exists an augmenting
path W of y with respect to z∗ of length 2n2cmax in TN

e0
. As before, W can be decomposed into

at least 2ncmax disjoint simple cycles and a simple path. Now each cycle has a cost of at least
δ(x∗), which is at least 1 as MCF has integral data. Since the MCF and MCFN

e have integral
parameters, the y and x∗ can be restricted to be integral. Therefore, the augmenting path W must
allow for pushing at least unit amount of flow to modify y to result in the decrease of its cost by
at least ncmax. This is because (a) the increase, due to pushing unit amount of flow on the simple
path, could be at most ncmax, and (b) decrease along (at least) 2ncmax cycles is at least 2ncmax. In
summary, the modified solution is feasible for MCFN

e on TN
e with cost decreased by at least ncmax.

Therefore, it would follow that the optimal cost bNe (z∗e) for MCFN
e is less than bNe (z∗e − 1)−ncmax.

In a very similar manner, it can be argued that bNe (z∗e) < bNe (z∗e + 1)− ncmax. This concludes that
min

(

bNe (z∗e + 1), bNe (z∗e − 1)
)

is at least bNe (z∗e) + ncmax.

To establish the other side of the equivalence, suppose MCF does not have a unique optimal
solution. Consider any arc e ∈ E, corresponding computation tree TN

e and optimization problem
MCFN

e . Let e′ be the root arc of TN
e as before. Let y be the optimal assignment of MCFN

e with
the assignment for root arc e′ being ye′ = z∗e . Now since MCF has multiple optimal solution, there
exists another optimal assignment x∗ of MCF so that x∗e 6= z∗e . Indeed given that both MCFN

e and
MCF are integral, we can restrict our attention to z∗, x∗ and y having integral components. Since
x∗e 6= z∗e , using arguments similar to those used in the proof of Theorem 4.1, it is indeed possible
to find an augmenting path W , of length 2N , on TN

e with respect to y and x∗. This augmenting
path decomposes into one simple path P of length at most n− 1 and at least 2ncmax simple cycles.
Since x∗ is an optimal solution, the cost of each of the cycles with respect to the residual graph
G(x∗) is non-positive (it is not strictly negative like the proof of Theorem 4.1 since the x∗ is not
unique). The cost of the path, however is between −(n − 1)cmax and (n − 1)cmax. Therefore, by
pushing unit amount of flow (which is possible along this augmenting path W due to integrality of
x∗ and y), the resulting flow ỹ on TN

e is such that its total cost is at most (n − 1)cmax more than
the cost of y. Now either ỹe′ = z∗e − 1 or z∗e + 1. Suppose ỹe′ = z∗e − 1. In that case, the ỹ is a
feasible solution of MCFN

e with additional constraint that the root arc e′ has flow z∗e − 1. This
cost is no less than the cost of an optimal solution of MCFN

e with additional constraint that the
root arc e′ has flow z∗e − 1, which is defined as bNe (z∗e − 1). Putting all together, we obtain

bNe (z∗e − 1) ≤ bNe (z∗e) + ncmax.

In a similar manner, if ỹe′ = z∗e + 1 the we would conclude that

bNe (z∗e + 1) ≤ bNe (z∗e) + ncmax.

That is, we have established that if MCF does not have a unique optimal solution then

min
(

bNe (z∗e − 1), bNe (z∗e + 1)
)

≤ bNe (z∗e) + ncmax.

This completes the proof of the other side of equivalence and hence the proof of Corollary 5.2.

23

6 Network Flow: Piece-wise Linear Convex Objective

This section describes the extension of Theorem 4.1 for network flow problem with piece-wise linear
convex objective or cost function. Specifically, given a graph G = (V,E) as before, consider

minimize
∑

e∈E

ce(xe) (CP)

subject to
∑

e∈Ev

∆(v, e)xe = fv, ∀ v ∈ V (demand/supply constraints)

0 ≤ xe ≤ ue, ∀ e ∈ E (non-negativity constraints),

where ce : R → R is a piece-wise linear convex function for each e ∈ E. As before, we shall assume
that the CP is feasible. Let ψ be the same as before and define

φe(z) =

{

ce(z) if 0 ≤ z ≤ ue

∞ otherwise.

The Algorithm 2 on G with functions ψ and φ thus defined is the BP for this problem instance.
Before we state our result, we need to define the corresponding residual graph. Suppose x is
a feasible solution for CP . Define the residual graph of G and x, denoted by G(x) as follows:

∀ e = (vα, vβ) ∈ E, if xe < ue, then e is an arc in G(x) with cost cxe = limt↓0
c(xe+t)−c(xe)

t
; if xe > 0,

then there is an arc e′ = (vβ , vα) in G(x) with cost cxe′ = limt↓0
c(xe)−c(xe−t)

t
. Finally, let

δ(x) = min
C∈C

{

∑

e∈C

cxe

}

,

where C is the set of all directed simple cycles in G(x). We state result about convergence property
of BP.

Theorem 6.1. Suppose x∗ is the unique optimal solution for CP and hence δ(x∗) > 0. Let L to be
the maximum cost of a simple directed path in G(x∗). Then, for any N ≥

(⌊

L
2δ(x∗)

⌋

+1
)

n, x̂N = x∗.

The proof of Theorem 6.1 is identical to that of Theorem 4.1 with the above defined notions.
Therefore, we shall skip it.

7 Integral MCF : Run-time analysis of BP

In the next two sections, we shall consider MCF with integral components for c, u and f . Our
goal is to analyze the run-time of BP for such integral MCF .

Lemma 7.1. For an integral MCF , the total number of operations performed by Algorithm 2 to
update all the messages at iteration t is O

(

tcmaxm log n
)

.

Proof. Recall that, for edge e ∈ E with v as one of its end point (and w at the other), message
function is updated as

mt
e→v(z) = φe(z) + min

z̄∈R|Ew|,z̄e=z







ψw(z̄) +
∑

ẽ∈Ew\e

mt−1
ẽ→w(z̄ẽ)







.

24

v1

v3

v2

e1

e3

e2

Figure 6:

From Corollary 4.12, all the message functions have integral slopes for an instance of MCF with
integral components. The absolute values of these slopes are bounded by (t− 1)cmax. This implies
that each (convex piece-wise linear) message (function) has at most 2(t− 1)cmax linear pieces. By
Corollary 4.9 and Observation 4.10 it follows that g(z) can be computed in O(tcmax|Ew| log |Ew|) =
O
(

tcmax|Ew| log n
)

total operations since |Ew| ≤ n. Here

g(z) = min
z̄∈R|Ew|,z̄e=z







ψw(z̄) +
∑

ẽ∈Ew\e

mt−1
ẽ→w(z̄ẽ)







.

Now computing g(z) + φe(z) is a simple procedure which requires increasing the slopes of linear
pieces of g(z) by a constant. Since g(·) has at most 2tcmax linear pieces, computing g(z)+φe(z) takes
further O(tcmax) operations. In summary, it follows that all message updates can be performed in
total of O

(

tcmaxm log n
)

operations since
∑

w |Ew| = Θ(m).

We now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. The integral instance of MCF with unique optimal solution has δ(x∗) ≥ 1.
Therefore by Theorem 4.1, the BP Algorithm 2 converges after at most O(nL) iterations. By
Lemma 7.1, the total computation performed up to iteration t is O

(

m log ncmaxt
2
)

. Therefore, the
total computation performed till convergence is O

(

m log ncmaxn
2L2

)

. The L can be bounded as
L = O(ncmax). Therefore, it follows that the overall cost is at most O

(

mn4c3max log n
)

.

The bound of Theorem 4.2 is pseudo-polynomial time. In fact qualitatively this is the best
bound one can hope for. To see this, consider an example of MCF defined on a directed graph G
as shown in Figure 6. Given large integer D, set the costs of edges as ce1 = ce2 = D, ce3 = 2D− 1;
demands as bv1 = 1, bv2 = 0 and bv3 = −1. It can be checked that x̂N1 alternates between 1 and
−1 when 2N + 1 < 2D

3 . This means that BP algorithm takes at least Ω(D) iterations to converge.
Since the input size is Θ(logD), we have that Algorithm 2 for MCF does not converge to the
unique optimal solution in polynomial-time in the size of the input.

7.1 Runtime of BP for integral MCF o

Here we analyze the run time of BP for integral MCFo, the subclass of MCF defined in Section
4.2 and prove Theorem 4.14.

Proof of Theorem 4.14. Since MCFo is an instance of MCF with integral components and unique
optimal solution, Theorem 4.1 it follows that the BP Algorithm 2 converges to the optimal solution
within O(Ln) iterations. To bound computation performed in each iteration and subsequently

25

bound overall computation cost, without loss of generality we shall assume that the piece-wise
linear convex message function is such that each linear piece is of unit length. This assumption is
without loss of generality, as each linear piece has integral vertices from Corollary 4.13 and hence
assumption of each piece being unit length only leads to upper bound on computation. Now each
message function is defined on a uniformly bounded interval due to uniform bound K on capacity
of each edge in MCFo. Therefore, the number of pieces in each piece-wise linear convex message
function is bounded by K + 1. Recall that for t ≥ 1,

mt
e→v(z) = φe(z) + min

z̄∈R|Ew|,z̄e=z







ψw(z̄) +
∑

ẽ∈Ew\e

mt−1
ẽ→w(z̄ẽ)







.

As explained in detail in Section 4.1, specifically Lemma 4.6 and Theorem 4.9, computing mt
e→v

takes at mostO
(

K log |Ew|
)

which is O
(

K log n
)

as |Ew| ≤ n for all w. Since there are at most O(m)
messages, total computation per iteration is O(Km log n). As discussed earlier, it takes O(Ln)
iterations for the algorithm to converge. Therefore, overall computation scales O(KLmn log n).
Finally, due to uniform bound of K on cost of edges, L = O(ncmax) = O(nK). In summary, the
total computation cost is bounded above by O

(

K2mn2 log n
)

.

8 FPRAS for MCF using BP

In this section, we provide a fully polynomial-time randomized approximation scheme (FPRAS) for
MCF using BP as a subroutine. As mentioned earlier, we shall assume integral MCF . We start
by describing the insights behind the algorithm followed by precise description in Section 8.2. To
this end, recall that the key hurdles in making BP fully polynomial-time as indicated by Theorem
4.2 are the following:

1. The convergence of BP requires MCF to have a unique optimal solution.

2. The running time of BP is polynomial in m, n and cmax.

Therefore, to find FPRAS for any given instance of MCF we need to overcome the requirement
of uniqueness and dependence over cmax of running time. To do so, we shall utilize appropriate
randomized modification of cost vector so that the resulting problem with modified cost vector c̄
has the following properties:

1. The modified problem has a unique optimal solution with high probability.

2. The modified cost vector has c̄max polynomial in m, n and 1
ε
.

3. The optimal solution of the modified problem provides 1 + ε multiplicative approximation to
the optimal solution of MCF .

It seems intuitive that by adding enough randomness to cost vector, the modified problem will
have unique solution with high probability. However, requiring the resulting cost vector to be
polynomially small in m,n and 1/ε as well as having small approximation error is challenging and
a priori not clear if it is even feasible. The so called Isolation Lemma introduced in [21] helps to
address precisely this question for a specific class of combinatorial problems including matching. It

26

is not directly applicable to our setup primarily because the Isolation Lemma requires the feasible
set of optimization problem to be a monotone subset of {0, 1}M (for appropriate M) while the
feasible set of interest here is a polytope derived from a linear programming problem. For this
reason we state and prove a variation of Isolation Lemma for our setup next.

8.1 Variation of the Isolation Lemma

Theorem 8.1. Let MCF be an instance of min-cost flow problem with underlying graph G =
(V,E), demand vector b, constraint vector u. Let its cost vector c̄ be generated as follows: for each
e ∈ E, c̄e is chosen independently and uniformly over Ne, where Ne is a discrete set of 4m positive
numbers (m = |E|). Then, the probability that MCF has a unique optimal solution is at least 1

2 .

Proof. Fix an arc e1 ∈ E and fix c̄e for all e ∈ E \ e1. First suppose there exists a value α ≥ 0 such
that when c̄e1 = α, MCF has two optimal solutions x∗, x∗∗ and, moreover, x∗e1 = 0 and x∗∗e1 > 0.
Then, if c̄e1 > α, for any feasible solution x of MCF with xe1 > 0,

∑

e∈E

c̄ex
∗
e =

∑

e∈E,e 6=e1

c̄ex
∗
e

(a)

≤
∑

e∈E,e 6=e1

c̄exe + xe1α

(b)
<

∑

e∈E

c̄exe.

In above, (a) follows from the fact that x∗ is optimal with c̄e1 = α; (b) follows c̄e1 > α and xe1 > 0.
On the other hand, if c̄e1 < α, then for any feasible solution x of MCF where xe1 = 0, we have

∑

e∈E

c̄ex
∗∗
e

(a)
<

∑

e∈E,e 6=e1

c̄ex
∗∗
e + αx∗∗e1

(b)

≤
∑

e∈E,e 6=e1

c̄exe + αxe1

=
∑

e∈E

c̄exe.

In above (a) follows from x∗∗e1 > 0 and c̄e1 < α; (b) follows from x∗∗ being an optimal solution with
c̄e1 = α. In summary, there exists at most one value for α such that when c̄e1 = α, MCF has two
solutions x∗, x∗∗ with x∗e1 = 0 and x∗∗e1 > 0. In a similar manner, it can be established that there
exists at most one value β such that with c̄e1 = β, MCF has two optimal solutions x∗, x∗∗ with
x∗e1 < ue1 and x∗∗e1 = ue1 .

Let O be the set of all optimal solutions of MCF . From above discussion, it follows that for
a given arc e, if c̄e is chosen uniformly at random from 4m distinct positive integers, then the
probability that there exists two solutions x∗, x∗∗ in O that satisfy either x∗e = 0, x∗∗e > 0 or
x∗e < ue, x

∗∗
e = ue is at most 1/(2m). Therefore, with probability at least 1− 1/(2m) all solutions x

in O satisfy either xe = 0 or 0 < xe < ue or xe = ue. Denote this event by D(e). By union bound
∩e∈ED(e) holds with probability at least 1/2. Now to conclude the proof of Theorem 8.1, we state
the following Lemma.

27

Lemma 8.2. Under event ∩e∈ED(e), the MCF has a unique optimal solution.

Proof. Suppose to the contrary that under event ∩e∈ED(e), MCF has two distinct optimal solutions
x∗ and x∗∗. Let d = x∗∗ − x∗, then x∗ + λd is an optimal solution of MCF iff 0 ≤ (x∗ + λd)e ≤ ue,
∀e ∈ E. Since c̄e > 0 for any e ∈ E and c̄T d = c̄Tx∗∗ − c̄Tx∗ = 0, there exists some e′ ∈ E such
that de′ < 0. Let

λ∗ = sup{λ ≥ 0 : x∗ + λd is a feasible solution of MCF}.

Since de′ < 0, λ∗ is bounded and since x∗+d = x∗∗, λ∗ ≥ 1. Further, the supremum λ∗ is achieved,
that is x∗ + λ∗d is a feasible solution of MCF since the feasible space of MCF is a closed set. By
definition of λ∗, there must exists some e′′ such that x∗e′′ 6= x∗∗e′′ and either (x∗ + λ∗d)e′′ = 0 or ue′′ .
Since λ∗ > 0, x∗e′′ 6= (x∗+λ∗d)e′′ . That is, we have two solutions x∗ and x∗+λ∗d that do not satisfy
D(e′′). This contradicts the hypothesis and hence MCF must have a unique optimal solution.

We note that Theorem 8.1 can be easily modified for LP in the standard form.

Corollary 8.3. Let LP be an LP problem with constraint Ax = b, where A is a m × n matrix,
b ∈ R

m. The cost vector c̄ of LP is generated as follows: for each e ∈ E, c̄e is chosen independently
and uniformly over Ne, where Ne is a discrete set of 2n elements. Then, the probability that LP
has a unique optimal solution is at least 1

2 .

8.2 Finding the correct modified cost vector c̄

Next, we construct a randomly generated cost vector c̄ with the desired properties stated in the
beginning of this section. Let X : E → {1, 2, ..., 4m} be a random function where for each e ∈ E,
X(e) is chosen independently and uniformly over the range. Let t = cmaxε

4mn
and generate c̄ as follows:

for each e ∈ E, let c̄e = 4m
⌊

ce
t

⌋

+X(e). Then, c̄max is polynomial in m, n and 1
ε
. By Theorem 8.1,

the probability of MCF having a unique optimal solution is greater than 1
2 .

Now, we introduce algorithm APRXMT(MCF , ε) as follows. Select a random c̄; try to solve
MCF using BP. If BP discovers that MCF has no unique optimal solution (using Corollary 5.2),
then restart the procedure by selecting another c̄ at random, otherwise, return the unique optimal
solution found by BP. Formally, we present APRXMT(MCF , ε) as Algorithm 3.

Corollary 8.4. The APRXMT(MCF , ε) runs in O
(

n8m7 logn
ε3

)

expected time.

Proof. Theorem 8.1 implies that on average O(1) instances of MCF are required to be solved by
the BP. Each such instance requires running Algorithm 2 for O

(

n2c̄max

)

iterations. Therefore,

the total cost scales as O
(

c̄3maxmn
4 log n

)

on average by Lemma 7.1. Since c̄max = O
(

m2n
ε

), it is
bounded as O

(

ε−3m7n7 log n
)

.

Now let c̄ be the randomly chosen vector as per above described procedure such that MCF has
a unique optimal solution, say x(2). Next, we show that x(2) is a “near optimal” solution of MCF .

28

Algorithm 3 APRXMT(MCF , ε)

1: Let t = cmaxε
4mn

, for any e ∈ E, assign c̄e = 4m · ⌊ ce
t
⌋+pe, where pe is an integer chosen indepen-

dently, uniformly random from {1, 2, . . . , 4m}
2: Let MCF be the problem with modified cost c̄.
3: Run Algorithm 2 on MCF for N = 2c̄maxn

2 iterations.
4: Use Corollary 5.2 to determine if MCF has a unique solution.
5: if MCF does not have a unique solution then

6: Restart the procedure APRXMT(MCF , ε).
7: else

8: Terminate and return x(2) = x̂N , where x̂N is the estimate of optimal flow assignments found
in Algorithm 2.

9: end if

To accomplish this, let e′ = argmax ce, ties broken arbitrarily, and define a new optimization
problem MCF as follows:

minimize
∑

e∈E

cexe (MCF)

subject to
∑

e∈Ev

∆(v, e)xe = bv, ∀v ∈ V (demand/supply constraints)

xe′ = x
(2)
e′

0 ≤ xe ≤ ue, ∀e ∈ E (flow constraints).

Lemma 8.5. Suppose x(3) is an optimal solution for (MCF) and x(1) is an optimal solution of
MCF . Then

cTx(3) − cTx(1) ≤
∣

∣x
(2)
e′ − x

(1)
e′

∣

∣nt.

Proof. Let d = x(2)−x(1). Call γ ∈ {−1, 0, 1}|E| as a synchronous cycle vector of d if for any e ∈ E,
γe = 1 only if de > 0, γe = −1 only if de < 0 and the set {e ∈ E : γe = 1 or γe = −1} forms exactly
one directed cycle in G. Now d is an integral vector of circulation (i.e., d send 0 unit amount of
flow to every vertex v ∈ V) since it is difference of two feasible solution of the same network flow
problem. Therefore, d can be decomposed as

∑

γ∈K′ γ = d with K′ ⊂ K and K being a finite set

of synchronous cycle vectors of G (cf. see [2]). For any γ ∈ K′, observe that x(2) − γ is a feasible
solution for MCF . Now since x(2) is an optimal solution for MCF , it follows that c̄Tγ ≤ 0. Now
for any e ∈ E,

c̄e = 4m
⌊ce
t

⌋

+ pe, 1 ≤ pe ≤ 4m,

=⇒ c̄e,
4mce
t

∈
[

4m
⌊ce
t

⌋

, 4m
(⌊ce

t

⌋

+ 1
)]

,

=⇒
∣

∣

∣
c̄e −

4mce
t

∣

∣

∣
≤ 4m,

=⇒
∑

e

∣

∣

∣

4mce
t

− c̄e

∣

∣

∣

∣

∣

∣
γe

∣

∣

∣
≤ 4m

∑

e

∣

∣γe
∣

∣ ≤ 4mn.

29

Using this and fact that c̄Tγ ≤ 0, we have

4m

t
cT γ ≤

4m

t
cTγ − c̄Tγ

≤
∑

e

∣

∣

∣

4mce
t

− c̄e

∣

∣

∣

∣

∣

∣
γe

∣

∣

∣

≤ 4mn.

Therefore, we have cTγ ≤ nt. By definition of K′, x(2) = x(1) +
∑

γ∈K′ γ. Therefore, for all e ∈ E

min{x(1)e , x(2)e } ≤ x(1)e +
∑

γ∈K′

γe ≤ max{x(1)e , x(2)e }.

Therefore, it follows that x(1) +
∑

γ∈K′ γ is a feasible solution for MCF . Since x(3) is the optimal
solution of MCF ,

cTx(3) ≤ cTx(1) +
∑

γ∈K′

cTγ

≤ cTx(1) +
∣

∣

∣
K′

∣

∣

∣
nt.

Since
∣

∣K′
∣

∣ ≤
∣

∣x
(2)
e′ − x

(1)
e′

∣

∣, it follows that

cTx(3) − cTx(1) ≤
∣

∣

∣
x
(2)
e′ − x

(1)
e′

∣

∣

∣
nt.

Corollary 8.6. For any ε ∈ (0, 1),

cTx(3) ≤
(

1 +
ε

2m

)

cTx(1).

Proof. By Lemma 8.5 we may assume without the loss of generality that x
(2)
e′ 6= x

(1)
e′ . Also by

Lemma 8.5,

cTx(3) − cTx(1)

cTx(3)
≤

∣

∣x
(2)
e′ − x

(1)
e′

∣

∣nt

cTx(3)

≤

∣

∣x
(2)
e′ − x

(1)
e′

∣

∣nt
∣

∣x
(2)
e′ − x

(1)
e′

∣

∣ce′
=

nt

ce′
, (12)

where the last inequality follows because of cTx(3) ≥ |x
(2)
e′ − x

(1)
e′ |ce′ justified as follows: using

x
(3)
e′ = x

(2)
e′ by definition,

cTx(3) ≥ x
(2)
e′ ce′ ≥ (x

(2)
e′ − x

(1)
e′)ce′ ;

the optimal solution x(3) of MCF is a feasible solution for MCF , x(1) is optimal solution for MCF
and therefore

cTx(3) ≥ cTx(1) ≥ x
(1)
e′ ce′ ≥ (x

(1)
e′ − x

(2)
e′)ce′ .

30

That is, cTx(3) ≥ |x
(2)
e′ − x

(1)
e′ |ce′ .

Using t =
ce′ε

4mn
, from (12) it follows that

cTx(3) − cTx(1)

cTx(3)
≤

ε

4m
.

Therefore

cTx(3) ≤
(

1−
ε

4m

)−1
cTx(1) ≤

(

1 +
ε

2m

)

cTx(1),

where the last inequality holds because ε ∈ (0, 1).

8.3 The FPRAS

Loosely speaking, Corollary 8.6 shows that x(2) at arc e′ is “near optimal”, since fixing the flow

at arc e′ to x
(2)
e′ helps us in finding a feasible solution of MCF which is close to optimal. This

leads us to an approximation algorithm AS(MCF , ε) (Algorithm 4) below. This algorithm at every
iteration uses APRXMT (Algorithm 3), and iteratively fixes the flow values at the arc with the
largest cost. Theorem 8.7 establishes that this algorithm AS(MCF , ε) is indeed an FPRAS.

Algorithm 4 AS(MCF , ε)

1: Let G = (V,E) be the underlying directed graph of MCF with m = |E|, n = |V |.
2: while MCF flows for all arcs are not assigned do

3: Run APRXMT (MCF , ε), let x(2) be the solution returned.

4: Find e′ = argmaxe∈E ce and modify MCF by fixing the flow on arc e′ by x
(2)
e′ ; change the

demands/supply on node v′, w′ with e′ = (v′, w′).
5: end while

Theorem 8.7. Given ε ∈ (0, 1), algorithm AS(MCF , ε) takes O
(

ε−3n7m8 log n
)

operations on
average. Let x∗ be the solution produced by AS(MCF , ε). Then

cTx∗ ≤ (1 + ε)cTx(1).

Proof. By Corollary 8.4, APRXMT(MCF , ε) takes O
(

ε−3n7m7 log n
)

operations on average. Since
AS(MCF , ε) invokes the method APRXMT(MCF , ε) m times, AS(MCF , ε) performs on average
total operations bounded as O

(

ε−3n7m8 log n
)

. By successive application of Corollary 8.6,

cTx∗ ≤
(

1 +
ε

2m

)m

cTx(1)

≤ e
ε
2 cTx(1)

≤ (1 + ε)cTx(1)

where the last two inequalities follows for ε ∈ (0, 1) and m ≥ 1.

31

9 Conclusions

In this paper, we formulated and analyzed the Belief Propagation (BP) algorithm for the capacitated
min-cost network flow problem MCF . We proved that the BP solves MCF exactly in pseudo-
polynomial time when the optimal solution is unique. This result generalizes an earlier result
from [5], and provides new insights for understanding BP as an optimization solver. Although the
running time of BP for MCF is slower than other existing algorithms for MCF , the advantage
of BP is that it is a general purpose distributed heuristic which is widely applicable and which is
easy to formulate and implement for a broad class of constrained optimization problems. We also
showed that a similar result holds for the network flow problem with the piece-wise linear convex
cost function. A salient feature of the BP established in this work is ability to detect uniqueness
of the optimal solution in an entirely distributed manner.

We showed that the BP algorithm, in its original form, at best leads to a pseudo-polynomial
time algorithmic complexity. To address this problem we have introduced a randomized variant
of BP and showed that this variant provides FPRAS. This is the first FPRAS result for the BP
type algorithms. Our variant of BP is based on fixing the values of flow variables one-by-one in a
sequential manner. Such methodology, used commonly in practice, is known as the “decimation”
procedure (see [20]). To the best of our knowledge, this is the first disciplined, provable instance
of the decimation procedure in the context of BP algorithms.

Acknowledgments

While working on this paper, D. Gamarnik was partially supported by NSF Project CMMI-0726733;
D. Shah was supported in parts by NSF EMT Project CCF 0829893 and NSF CAREER Project
CNS 0546590; and Y. Wei was partially supported by a Natural Sciences and Engineering Research
Council of Canada (NSERC) Postgraduate Scholarship. The authors would also like to thank the
anonymous referees for the helpful comments.

References

[1] R. Ahuja, A. Goldberg, J. Orlin, and R. Tarjan, Finding minimum-cost flows by
double scaling, Mathematical Programming, 53 (1992), pp. 243–266.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows., Prentice-Hall Inc., 1993.

[3] S. M. Aji and R. J. McEliece, The generalized distributive law, IEEE Transaction on
Information Theory, 46 (2000), pp. 325–343.

[4] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina, On the exactness of the cavity method
for weighted b-matchings on arbitrary graphs and its relation to linear programs, Journal of
Statistical Mechanics: Theory and Experiment, 2008 (2008).

[5] M. Bayati, D. Shah, and M. Sharma, Max-product for maximum weight matching: Con-
vergence, correctness, and lp duality, IEEE Transaction on Information Theory, 54 (2008),
pp. 1241–1251.

32

[6] D. P. Bertsekas, Distributed relaxation methods for linear network flow problems, in Pro-
ceedings of 25th IEEE Conference on Decision and Control, Athens, Greece, 1986, pp. 2101–
2106.

[7] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific,
third ed., 1997, pp. 289–290.

[8] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for net-
work flow problems, J. ACM, 19 (1972), pp. 248–264.

[9] S. Fujishige, A capacity-rounding algorithm for the minimum-cost circulation problem: A
dual framework of the tardos algorithm, Mathematical Programming, 35 (1986), pp. 298–308.

[10] R. Gallager, Low Density Parity Check Codes, PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1963.

[11] D. Gamarnik, D. Shah, and Y. Wei, Belief propagation for min-cost network flow: con-
vergence & correctness, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2010, pp. 279–292.

[12] A. Goldberg and R. Tarjan, Solving minimum-cost flow problems by successive approxi-
mation, in STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, New York, NY, USA, 1987, ACM, pp. 7–18.

[13] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by canceling neg-
ative cycles, J. ACM, 36 (1989), pp. 873–886.

[14] G. B. Horn, Iterative Decoding and Pseudocodewords, PhD thesis, California Institute of
Technology, Pasadena, CA, 1999.

[15] Y. Kanoria, M. Bayati, C. Borgs, J. T. Chayes, and A. Montanari, Fast convergence
of natural bargaining dynamics in exchange networks, CoRR, abs/1004.2079 (2010).

[16] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, Walk-sums and belief propagation
in gaussian graphical models, J. Mach. Learn. Res., 7 (2006), pp. 2031–2064.

[17] M. Mezard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random
satisfiability problems, Science, 297 (2002), p. 812.

[18] C. Moallemi and B. V. Roy, Convergence of min-sum message passing for convex opti-
mization, in 45th Allerton Conference on Communication, Control and Computing, 2008.

[19] C. C. Moallemi and B. V. Roy, Convergence of the min-sum message passing algorithm
for quadratic optimization, CoRR, abs/cs/0603058 (2006).

[20] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, Solving constraint satisfaction
problems through belief propagation-guided decimation, in 45th Allerton, 2007.

[21] K. Mulmuley, U. Vazirani, and V. Vazirani, Matching is as easy as matrix inversion,
Combinatorica, 7 (1987), pp. 105–113.

33

[22] J. Orlin, A faster strongly polynomial minimum cost flow algorithm, in Proceedings of the
twentieth annual ACM symposium on Theory of computing, ACM, 1988, pp. 377–387.

[23] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, in Operations Re-
search, 1988, pp. 377–387.

[24] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, Mor-
gan Kaufmann, 1988.

[25] T. Richardson and R. Urbanke, The capacity of low-density parity check codes under
message-passing decoding, IEEE Transaction on Information Theory, 47 (2001), pp. 599–618.

[26] H. Röck, Scaling techniques for minimal cost flow problems, Discrete Structures and Algo-
rithms, (1980), pp. 181–191.

[27] N. Ruozzi and S. Tatikonda, s-t paths using the min-sum algorithm, in Forty-Sixth Annual
Allerton Conference on Communication, Control, and Computing, September 2008, pp. 918
–921.

[28] S. Sanghavi, D. Malioutov, and A. Willsky, Linear programming analysis of loopy belief
propagation for weighted matching, in Proc. NIPS Conf, Vancouver, Canada, 2007.

[29] S. Sanghavi, D. Shah, and A. Willsky, Message-passing for maximum weight independent
set, IEEE Transaction on Information Theory, 51 (2009), pp. 4822–4834.

[30] A. Schrijver, Combinatorial Optimization, Springer, 2003.

[31] E. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorica, 5
(1985), pp. 247–255.

[32] Y. Weiss and W. Freeman, On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs, IEEE Transactions on Information Theory, 47
(2001).

[33] J. Yedidia, W. Freeman, and Y. Weiss, Understanding belief propagation and its gener-
alizations, Tech. Rep. TR-2001-22, Mitsubishi Electric Research Lab, 2002.

34

	1 Introduction
	1.1 Contributions
	1.2 Prior work on BP
	1.3 Prior work on min-cost network flow
	1.4 Organization

	2 Belief Propagation for optimization problem
	3 BP for Linear Programming
	4 BP Algorithm for Min-Cost Network Flow Problem
	4.1 Computing/encoding message functions
	4.2 BP for a sub-class of MCF

	5 Convergence of BP for MCF
	5.1 Computation Tree and BP
	5.2 Proof of theorem ??
	5.3 Detection of uniqueness of optimal solution using BP

	6 Network Flow: Piece-wise Linear Convex Objective
	7 Integral MCF: Run-time analysis of BP
	7.1 Runtime of BP for integral MCFo

	8 FPRAS for MCF using BP
	8.1 Variation of the Isolation Lemma
	8.2 Finding the correct modified cost vector
	8.3 The FPRAS

	9 Conclusions

