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hoice models today are ubiquitous across a range of applications in operations and marketing. Real-world

implementations of many of these models face the formidable stumbling block of simply identifying the
“right” model of choice to use. Because models of choice are inherently high-dimensional objects, the typical
approach to dealing with this problem is positing, a priori, a parametric model that one believes adequately
captures choice behavior. This approach can be substantially suboptimal in scenarios where one cares about using
the choice model learned to make fine-grained predictions; one must contend with the risks of mis-specification
and overfitting /underfitting. Thus motivated, we visit the following problem: For a “generic” model of consumer
choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually
make decisions (such as marginal information about these distributions), how may one predict revenues from
offering a particular assortment of choices? An outcome of our investigation is a nonparametric approach in which
the data automatically select the right choice model for revenue predictions. The approach is practical. Using a
data set consisting of automobile sales transaction data from a major U.S. automaker, our method demonstrates a
20% improvement in prediction accuracy over state-of-the-art benchmark models; this improvement can translate
into a 10% increase in revenues from optimizing the offer set. We also address a number of theoretical issues,
among them a qualitative examination of the choice models implicitly learned by the approach. We believe that
this paper takes a step toward “automating” the crucial task of choice model selection.
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marketing mix
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1. Introduction

A problem of central interest to operations managers
is using historical sales data to predict the revenues or
sales from offering a particular assortment of products
to customers. As one can imagine, such predictions
form crucial inputs to several important business
decisions, both operational and otherwise. A classi-
cal example of such a decision problem is that of
assortment planning: deciding the “optimal” assort-
ment of products to offer customers with a view to
maximizing expected revenues (or some related objec-
tive) subject to various constraints (e.g., limited dis-
play or shelf space). A number of variants of this
problem, both static and dynamic, arise in essentially
every facet of revenue management. Such problems
are seen as crucial revenue management tasks and
needless to say, accurate revenue or sales predictions
fundamentally impact how well we can perform such
tasks.
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Why might these crucial predictions be difficult to
make? Consider the task of predicting expected sales
rates from offering a particular set of products to cus-
tomers. In industry jargon, this is referred to as the
“conversion rate,” and is defined as the probability
of converting an arriving customer into a purchasing
customer. Predicting the conversion rate for an offer
set is difficult because the probability of purchase of
each product depends on all the products on offer.
This is due to substitution behavior, where an arriving
customer potentially substitutes an unavailable prod-
uct with an available one. Because of substitution,
the sales observed for a product may be viewed as a
combination of its “primary” demand and additional
demand. Customer choice models have been used to
model this behavior with success. At an abstract level,
a choice model can be thought of as a conditional
probability distribution that for any offer set yields
the probability that an arriving customer purchases a
given product in that set.
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There is vast literature spanning marketing, eco-
nomics, and psychology devoted to the construction
of parametric choice models and their estimation from
data. In the literature that studies the sorts of revenue
management decision problems we alluded to above,
such models are typically assumed given. The implicit
understanding is that a complete prescription for
these decision problems will require fitting the “right”
parametric choice model to data, so as to make accu-
rate revenue or sales predictions. This is a complex
task. Apart from the fact that one can never be sure
that the chosen parametric structure is a “good” rep-
resentation of the underlying ground truth, paramet-
ric models are prone to overfitting and underfitting
issues. Once a structure is fixed, one does not glean
new structural information from data. This is a seri-
ous issue in practice because although a simple model
(such as the multinomial logit (MNL) model) may
make practically unreasonable assumptions (such as
the so-called “IIA” (independent of irrelevant alterna-
tives) assumption), fitting a more complex model can
lead to worse performance because of overfitting—
and one can never be sure.

In this paper, we propose a nonparametric, data-
driven approach to making revenue or sales predic-
tions that afford the revenue manager the opportunity
to avoid the challenging task of fitting an appropri-
ate parametric choice model to historical data. Our
approach views choice models generically, namely, as
distributions over rankings (or preference lists) of
products. As will be seen subsequently, this view sub-
sumes essentially all extant choice models. Further,
this view yields a nonparametric approach to choice
modeling where the revenue manager does not need
to think about the appropriate parametric structure
for his problem, or the trade-off between model par-
simony and the risk of overfitting. Rather, through
the use of a nonparametric approach, our goal is to
offload as much of this burden as possible to the data
itself.

1.1. Contributions
As previously mentioned, we consider entirely
generic models of choice, specified as a distribution
over all possible rankings (or preference lists) of prod-
ucts. Our view of data is aligned with what one typi-
cally has available in reality, sales rates of products in
an assortment, for some set of product assortments.
This is a general view of choice modeling. Our main
contribution is to make this view operational, yielding
a data-driven, nonparametric approach. Specifically,
we make the following contributions in the context of
this general setup:

* Revenue Predictions. Accurate revenue or sales
predictions form core inputs for a number of im-
portant revenue/inventory management problems.
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Available sales data will typically be insufficient to
fully specify a generic model of choice of the type
we consider. We therefore seek to identify the set of
generic choice models consistent with available sales
data. Given the need to make a revenue or sales pre-
diction on a heretofore unseen assortment, we then
offer the worst-case expected revenue possible for that
assortment assuming that the true model lies in the
set of models found to be consistent with observed
sales data. Such an approach makes no a priori struc-
tural assumptions on the choice model, and has the
appealing feature that as more data become avail-
able, the predictions will improve, by narrowing
down the set of consistent models. This simple phi-
losophy dictates challenging computational problems;
for instance, the sets we compute are computation-
ally unwieldy and, at first glance, highly intractable.
Nonetheless, we successfully develop several sim-
ple algorithms of increasing sophistication to address
these problems.

* Empirical Evaluation. We conducted an empirical
study to gauge the practical value of our approach,
both in terms of the absolute quality of the predic-
tions produced, and also relative to using alternative
parametric approaches. We describe the results of two
such studies:

(i) Simulation study. The purpose of our simula-
tion study is to demonstrate that the robust approach
can effectively capture model structure consistent
with a number of different parametric models and
produce good revenue predictions. The general setup
in this study is as follows: We use a parametric model
to generate synthetic transaction data. We then use
these data in conjunction with our revenue predic-
tion procedure to predict expected revenues over a
swathe of offer sets. Our experimental design permits
us to compare these predictions to the correspond-
ing “ground truth.” The parametric families we con-
sidered included the MNL, nested logit (NL), and
a mixture of multinomial logit (MMNL) models. To
“stress-test” our approach, we conducted experiments
over a wide range of parameter regimes for these gen-
erative parametric choice models, including some that
were fit to DVD sales data from Amazon.com. The
predictions produced are remarkably accurate.

(if) Empirical study with sales data from a major
U.S. automaker. The purpose of our empirical study
is twofold: (1) to demonstrate how our setup can
be applied with real-world data, and (2) to pit the
robust method in a “horse race” against the MNL and
MMNL parametric families of models. For the case
study, we used sales data collected daily at the deal-
ership level over 2009 to 2010 for a range of small
SUVs offered by a major U.S. automaker for a deal-
ership zone in the Midwest. We used a portion of
these sales data as “training” data. We made these
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data available to our robust approach, as well as in the
fitting of an MNL model and an MMNL model. We
tested the quality of conversion-rate predictions (i.e.,
a prediction of the sales rate given the assortment of
models on the lot) using the robust approach and the
incumbent parametric approaches on the remainder
of the data. We conducted a series of experiments by
varying the amount of training data made available
to the approaches. We conclude that (a) the robust
method improves on the accuracy of either of the
parametric methods by about 20% (this is large) in
all cases, and (b) unlike the parametric models, the
robust method is apparently not susceptible to under-
fitting and overfitting issues. In fact, we see that the
performance of the MMNL model relative to the MNL
model deteriorates as the amount of training data
available decreases because of overfitting. Improved
forecast accuracy improves the decisions made. For
instance, a 20% improvment in forecast accuracy can
result in a 10% increase in revenues from optimizing
the offer set.

* Descriptive Analysis. In making revenue predic-
tions, we did not need to concern ourselves with
the choice model implicitly assumed by our predic-
tion procedure. However, it is natural to consider
criteria for selecting choice models consistent with
observed data that are independent of any decision
context. Thus motivated, we consider the natural task
of finding the simplest choice model consistent with
the observed data. As in much of contemporary high-
dimensional statistics, we employ sparsity’ as our
measure of simplicity. First, we use the sparsest fit
criterion to obtain a characterization of the choice
models implicitly used by the robust revenue predic-
tion approach. Loosely speaking, we show that the
choice model implicitly used by the robust approach
is essentially the sparsest model (Theorem 1), and the
complexity of the model (as measured by its spar-
sity) scales with the “amount” of data. This pro-
vides an explanation for the immunity of the robust
approach to overfitting/underfitting as observed in
our case study. Second, we characterize the family
of choice models that can be identified only from
observed marginal data via the sparsest fit criterion
(Theorems 2 and 3). Our characterization formalizes
the notion that the complexity of the models that can
be identified via the sparsest fit criterion scales with
the amount of data at hand.

1.2. Relevant Literature

The study of choice models and their applications
spans a vast literature across multiple fields includ-
ing at least marketing, operations, and economics.

1By sparsity we refer to the number of rank lists or, in effect,
customer types, assumed to occur with positive probability in the
population.
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In disciplines such as marketing, learning a choice
model is an interesting goal unto itself given that
it is frequently the case that a researcher wishes
to uncover “why” a particular decision was made.
Within operations, the goal is frequently more appli-
cation oriented with the choice model being explicitly
used as a predictive tool within some larger decision
model. Because our goals are aligned with the lat-
ter direction, our literature review focuses predomi-
nantly on operations management (OM); we briefly
touch on key work in marketing. We note that our
consideration of sparsity as an appropriate nonpara-
metric model selection criterion is closely related to
the burgeoning statistical area of compressive sensing;
we discuss those connections in §6.

The vast majority of decision models encountered
in operations have traditionally ignored substitu-
tion behavior (and thereby choice modeling) alto-
gether. Within airline revenue management (RM),
this is referred to as the “independent demand”
model (see Talluri and van Ryzin 2004b). Over
the years, several studies have demonstrated the
improvements that could be obtained by incorpo-
rating choice behavior into operations models. For
example, within airline RM, the simulation studies
conducted by Belobaba and Hopperstad (1999) on the
well-known passenger origin and destination simu-
lator (PODS) suggested the value of corrections to
the independent demand model; more recently, Ratliff
et al. (2008a) and Vulcano et al. (2010) demonstrated
valuable average revenue improvements from using
MNL choice-based RM approaches using real airline
market data. Following such studies, there has been a
significant amount of research in the areas of inven-
tory management and RM attempting to incorporate
choice behavior into operations models.

The bulk of the research on choice modeling in both
the areas has been optimization related. That is to say,
most of the work has focused on devising optimal
decisions given a choice model. Talluri and van Ryzin
(2004a), Gallego et al. (2004), van Ryzin and Vulcano
(2008), Mahajan and van Ryzin (1999), and Goyal et al.
(2009) are all papers in this vein. Kok et al. (2009)
provide an excellent overview of the state-of-the-art
in assortment optimization. Rusmevichientong et al.
(2010) consider the MNL model and provide an effi-
cient algorithm for the static assortment optimiza-
tion problem and propose an efficient policy for the
dynamic optimization problem. A follow-up paper,
Rusmevichientong and Topaloglu (2012), considers
the same optimization problem but where the mean
utilities in the MNL model are allowed to lie in some
arbitrary uncertainty set. Saure and Zeevi (2009) pro-
pose an alternative approach for the dynamic assort-
ment optimization problem under a general random
utility model.
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The majority of the above-mentioned work focuses
on optimization issues given a choice model. Papers
such as Talluri and van Ryzin (2004a) discuss opti-
mization problems with general choice models, and,
as such, our revenue estimation procedure fits in per-
fectly there. In most cases, however, the choice model
is assumed to be given and of the MNL type. Papers
such as Saure and Zeevi (2009) and Rusmevichientong
and Topaloglu (2012) loosen this requirement by
allowing some amount of parametric uncertainty. In
particular, Saure and Zeevi (2009) assume unknown
mean utilities and learn these utilities, whereas
the optimization schemes in Rusmevichientong and
Topaloglu (2012) require knowledge of mean utilities
only within an interval. In both cases, the structure of
the model (effectively, MNL) is fixed up front.

The MNL model is by far the most popular choice
model studied and applied in OM. The origins of the
MNL model date all the way back to the Plackett—
Luce model, proposed independently by Luce (1959)
and Plackett (1975). Before becoming popular in the
area of OM, the MNL model found widespread use
in the areas of transportation (see seminal works of
McFadden 1980 and Ben-Akiva and Lerman 1985)
and marketing (starting with the seminal work of
Guadagni and Little 1983, which paved the way
for choice modeling using scanner panel data). See
Wierenga (2008) and Chandukala et al. (2008) for a
detailed overview of choice modeling in the area of
marketing. The MNL model is popular because its
structure makes it tractable, both in terms of esti-
mating its parameters and solving decision problems.
However, the tractability of the MNL model comes at
a cost: It is incapable of capturing any heterogeneity
in substitution patterns across products (see Debreu
1960) and suffers from independent of irrelevant alter-
natives property (see Ben-Akiva and Lerman 1985),
both of which limit its practical applicability.

Of course, these issues with the MNL model are
well recognized, and far more sophisticated models
of choice have been suggested in the literature (see,
for instance, Ben-Akiva and Lerman 1985, Anderson
et al. 1992); the price one pays is that the more sophis-
ticated models may not be easily identified from sales
data and are prone to overfitting. It must be noted
that an exception to this state of affairs is the paper
by Rusmevichientong et al. (2006), which considers
a general nonparametric model of choice similar to
the one considered here in the context of an assort-
ment pricing problem. The caveat is that the approach
considered requires access to samples of entire cus-
tomer preference lists that are unlikely to be available
in many practical applications.

Our goal relative to all of the above-mentioned
work is to eliminate the need for structural assump-
tions and thereby the associated risks as well.
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We provide a means of going directly from raw sales
transaction data to revenue or sales estimates for a
given offer set. Although this does not represents the
entirety of what can be done with a choice model, it
represents a valuable application, at least within the
operational problems discussed.

2. The Choice Model and

Problem Formulations

We consider a universe of N products, N =
{0,1,2,..., N — 1}. We assume that the Oth product
in N corresponds to the “outside” or “no-purchase”
option. A customer is associated with a permuta-
tion (or ranking) o of the products in ; the cus-
tomer prefers product i to product j if and only
if o(i) < o(j). A customer will be presented with
a set of alternatives /[ C N; any set of alternatives
will, by convention, be understood to include the no-
purchase alternative, i.e., the Oth product. The cus-
tomer will subsequently choose to purchase her single
most preferred product among those in /. In partic-
ular, she purchases

arg min o (i). 1

iel
It is quickly seen that the above structural assump-
tion is consistent with structural assumptions made
in commonly encountered choice models including
the multinomial logit, nested multinomial logit, or
more general random utility models. Those models
make many additional structural assumptions, which
may or may not be reasonable for the application at
hand. Viewed in a different light, basic results from
the theory of social preferences dictate that the struc-
tural assumptions implicit in our model are no more
restrictive than assuming that the customer in ques-
tion is endowed with a utility function over alterna-
tives and chooses an alternative that maximizes her
utility from among those available. Our model of the

customer is thus general.?

2.1. Choice Model
To make useful predictions on customer behavior that
might, for instance, guide the selection of a set /[ to
offer for sale, one must specify a choice model. A gen-
eral choice model is effectively a conditional probabil-
ity distribution P(-|-): ¥ x 2" — [0, 1] that yields the
probability of purchase of a particular product in N
given the set of alternatives available to the customer.
We assume essentially the most general model for
P(- | -). In particular, we assume that there exists a dis-
tribution A: Sy — [0, 1] over the set of all possible per-
mutations Sy. Recall here that Sy is effectively the set

2 As opposed to associating a customer with a fixed o, one may
also associate customers with distributions over permutations. This
latter formalism is superfluous for our purposes.
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of all possible customer types because every customer
is associated with a permutation that uniquely deter-
mines her choice behavior. The distribution A defines
our choice model as follows: Define the set

S (M) ={o € Sy: a(j) <o(i), Vied, i#]},

where &;(l) is simply the set of all customer types
that would purchase product j when the offer set is /L.
Our choice model is then given by

PGl )= 3 Mo) &N ().

T ()

Not surprisingly, as previously mentioned, the above
model subsumes essentially any model of choice one
might concoct: In particular, all we have assumed is
that at a given point in time a customer possess ratio-
nal (transitive) (see Mas-Colell et al. 1995) preferences
over all alternatives,® and that a particular customer
will purchase her most preferred product from the
offered set according to these preferences; a given cus-
tomer sampled at different times may well have a
distinct set of preferences.

2.2. Data

The class of choice models we work with is quite
general and imposes a minimal number of behavioral
assumptions on customers a priori. That said, the data
available to calibrate such a model will typically be
limited in the sense that a modeler will have sales
rate information for a potentially small collection of
assortments. Ignoring the difficulties of such a cali-
bration problem for now, we posit a general notion
of what we mean by observable data. The abstract
notion we posit will quickly be seen as relevant to
data one might obtain from sales information.

We assume that the data observed by the seller
are given by an m-dimensional “partial informa-
tion” vector y = AA, where A € {0, 1}"*N' makes pre-
cise the relationship between the observed data and
the underlying choice model. Typically, we antici-
pate m < N! signifying, for example, the fact that we
have sales information for only a limited number of
assortments.

We now show how the type of data available in
practice can be cast in the form of y = AA. In the
retail context, historical data about customer pur-
chase behavior are available in the form of observed
sales transactions from a set of displayed assortments.
In particular, one typically has information about
observed sales for a sequence of test assortments say
My, My, ..., M;. For each of the assortments ./, and

% Note, however, that the customer need not be aware of these pref-
erences; from (1), it is evident that the customer need only be aware
of his preferences for elements of the offer set.
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products i, the sales data provide the fraction of pur-
chasing customers who purchased product i when the
displayed assortment was ;. Given these data, we
claim that they can be written as a linear combination
of A for an appropriate choice of matrix A.

To see this, it is instructive to start with a simple
special case that we call “comparison data.” Specifi-
cally, suppose that we have access to data that provide
us with the information about the fraction of cus-
tomers that prefer poduct i to product j, for all pairs
of products i and j. For this case, the partial infor-
mation vector y may be indexed by i, j with 0 <4,
J<N—=1i#]j. For each i, j, y; denotes the fraction
of customers that prefer product i to j. The matrix A
is thus in {0, 1}NN-DxN' " A column of A, A(o), will
thus have A(0); =1 if and only if (i) < a(j). It is
important to note here that we have introduced the
comparison data for the simplicity of exposition and
(as will become apparent later) for theoretical con-
siderations. The way we have defined it, comparison
data is in fact not readily available in practice: For
starters, there is typically censoring because of which
we can only observe the fraction of customers who
prefer i to both j and 0 when we offer the pair of
products i, j. In addition, practical applications do
not typically provide sales information about all the
(I;I ) possible pairs of products. Nevertheless, compari-
son data provide a simple yet nontrivial example that
makes our setup concrete.

More realistically, we have sales transaction data
from a set of displayed assortments .M, M, ..., M;.
In this case, denoting by y; the fraction of customers
purchasing product i when assortment J/; is on offer,
our partial information vector, y € [0, 1]N*, may thus
be indexed by i, I with 0 <i <N —1,1<I<L. The
matrix A is then in {0, 1}N*N'. For a column of A
corresponding to the permutation o, A(c), we will
then have A(0); =1 iff i € Ml; and o (i) < o(j) for all
products j in assortment .4, U {0}.

Finally, we emphasize that the idea of viewing par-
tial information as y = AA is a very powerful one.
It captures several different types of interesting par-
tial information in addition to the transactional data
as previously described. This becomes important both
from a theoretical standpoint and from the standpoint
of other applications. Although we will not explore
any other application contexts, we discuss two other
types of partial information, the “ranking data” and
“top-set data,” for our theoretical analysis in §6.

2.3. Incorporating Choice in Decision Models:

A Revenue Estimation Black Box
Although modeling choice is useful for a variety
of reasons, we are largely motivated by decision
models for OM problems that benefit from the incor-
poration of a choice model. In many of these mod-
els, the fundamental feature impacted by the choice
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model is a “revenue function” that measures rev-
enue rates corresponding to a particular assortment
of products offered to customers. Concrete examples
include static assortment management, network rev-
enue management under choice, and inventory man-
agement assuming substitution.

We formalize this revenue function. We associate
every product in N with a retail price p;. Of course,
po = 0. The revenue function, R(/), determines
expected revenues to a retailer from offering a set of
products /L to his customers. Under our choice model
this is given by

R(#) = Y p;N ().

jed

The function R(-) is a fundamental building block for
all of the OM problems previously described, so that
we view the problem of estimating R(-) as our central
motivating problem. The above specification is gen-
eral, and we refer to any linear functional of the type
above as a revenue function. As another useful exam-
ple of such a functional, consider setting p;=1 for
all j > 0 (i.e., all products other than the no-purchase
option). In this case, the revenue function R(/) yields
the probability an arriving customer will purchase
some product in /; i.e., the conversion rate under
assortment /.

Given a “black box” that is capable of produc-
ing estimates of R(-) using some limited corpus of
data, one may then hope to use such a black box for
making assortment decisions over time in the con-
text of the OM problems of the type discussed in the
introduction.

2.4. Problem Formulations

Imagine we have a corpus of transaction data, sum-
marized by an appropriate data vector y as described
in §2.2. Our goal is to use just these data to make
predictions about the revenue rate (i.e., the expected
revenues garnered from a random customer) for some
given assortment, say ./, that has never been encoun-
tered in past data. We propose accomplishing this by
solving the following program:

mini){nize R(M)

subject to AA=y,
1"A=1,
A>0.

)

In particular, the optimal value of this program
will constitute our prediction for the revenue rate.
In words, the feasible region of this program describes
the set of all choice models consistent with the
observed data y. The optimal objective value conse-
quently corresponds to the minimum revenues pos-
sible for the assortment ./ under any choice model
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consistent with the observed data. Because the family
of choice models we considered was generic this pre-
diction relies on simply the data and basic economic
assumptions on the customer that are tacitly assumed
in essentially any choice model.

The philosophy underlying the above program can
be put to other uses. For instance, one might seek to
recover a choice model itself from the available data.
In a parametric world, one would consider a suitably
small, fixed family of models within which a unique
model would best explain (but not necessarily be con-
sistent with) the available data. It is highly unlikely
that available data will determine a unique model
in the general family of models we consider here.
Our nonparametric setting thus requires an appropri-
ate selection criterion. A natural criterion is to seek
the “simplest” choice model that is consistent with
the observed data. There are many notions of what
one might consider simple. One criterion that enjoys
widespread use in high-dimensional statistics is spar-
sity. In particular, we may consider finding a choice
model A consistent with the observed data, that has
minimal support, [|A], £ [{A(0): A(c) #0}|, where |S]
denotes the cardinality of set S. In other words, we
might seek to explain observed purchasing behavior
by presuming as small a number of modes of cus-
tomer choice behavior as possible (where we associate
a “mode” of choice with a ranking of products). More
formally, we might seek to solve

mini}nize Ao

subject to AA=y,
1TA=1,
A>0.

®)

Sections 3, 4, and 5 are focused on providing pro-
cedures to solve the program (2) and on examining
the quality of the predictions produced on simulated
data and actual transaction data, respectively. Sec-
tion 6 will discuss algorithmic and interesting descrip-
tive issues pertaining to (3).

3. Revenue Predictions: Computation
In the previous section, we formulated the task of
computing revenue predictions via a nonparametric
model of choice and any available data as the math-
ematical program (2), which we repeat below, in a
slightly different form for clarity:

minimize ) p;A; (M)
A jett
subject to AA=y,
1TA=1,
A>0.
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This mathematical program is a linear program (LP)
in the variables A. Interpreting the program in words,
the constraints AA =y ensure that any A assumed
in making a revenue estimate is consistent with the
observed data. Other than this consistency require-
ment, writing the probability that a customer pur-
chases j € M, P(j | ), as the quantity A;(M) =
Loeh) A(o) assumes that the choice model satisfies
the basic structure laid out in §2.1. We make no other
assumptions outside of these, and ask for the lowest
expected revenues possible for ./ under any choice
model satisfying these requirements.

Thus, while the assumptions implicit in making a
revenue estimate are something that the user need not
think about, the two natural questions that arise are
the following:

1. How does one solve this conceptually simple
program in practice given that the program involves
an intractable number of variables?

2. Even if one did succeed in solving such a pro-
gram, are the revenue predictions produced useful or
are they too loose to be of practical value?

This section focuses on the first question. In practi-
cal applications, such a procedure would need to be
integrated into a larger decision problem; therefore, it
is useful to understand the computational details that
we present at a high level in this section. The second
“so what” question will be the subject of §§4 and 5,
where we examine the performance of the scheme on
simulated transaction data and finally on a real-world
sales prediction problem using real data. Finally, in
§6, we examine an interesting property enjoyed by
the choice models implicitly assumed in making the
predictions in this scheme.

3.1. The Dual to the Robust Problem

At a high level our approach to solving (2) will be
to consider the dual of that program and then derive
efficient exact or approximate descriptions to the fea-
sible regions of these programs. We begin by consider-
ing the dual program to (2). In preparation for taking
the dual, let us define

st (M) £ {A(0): 0 € F;(M)},

where we recall that #;(Ml) = {0 € Sy: o(j) <
o(i), Vi € M,i# j} denotes the set of all permuta-
tions that result in the purchase of j € /. when the
offered assortment is /. Because Sy = U;c 4 (M) and
S (M) NF (M) = & for i # j, we have implicitly speci-
fied a partition of the columns of the matrix A. Armed
with this notation, the dual of (2) is

maximize (a'y+v)
(4)

subject to max (aij+V)§pj, for each je /L,
xJ estj(M)
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where « and v are dual variables correspond-
ing, respectively, to the data consistency constraints
AA=y and the requirement that A is a probability
distribution (i.e., 1"A = 1), respectively. Of course, this
program has a potentially intractable number of con-
straints. We explore two approaches to solving the
dual:

1. An extremely simple to implement approach that
relies on sampling constraints in the dual that will,
in general, produce approximate solutions that are
upper bounds to the optimal solution of our robust
estimation problem.

2. An approach that relies on producing effective
representations of the sets s/;(./l), so that each of the
constraints maxx,-ewj(#,ﬂ)(aTxf +v) <p, can be expressed
efficiently. This approach is slightly more complex to
implement, but in return can be used to sequentially
produce tighter approximations to the robust estima-
tion problem. In certain special cases, this approach is
provably efficient and optimal.

3.2. The First Approach: Constraint Sampling
The following is an extremely simple to implement
approach to approximately solve the problem (4):

1. Select a distribution over permutations, .

2. Sample n permutations according to the distri-
bution. Call this set of permutations .

3. Solve the program:

maximize (a'y+v)
' )
subject to a'A(0)+v<p;, foreachjel,ce.

Observe that (5) is essentially a “sampled” ver-
sion of the problem (4), wherein constraints of that
problem have been sampled according to the distri-
bution ¢ and are consequently a relaxation of that
problem. A solution to (5) is consequently an upper
bound to the optimal solution to (4).

The question of whether the solutions thus obtained
provide meaningful approximations to (4) is partially
addressed by recent theory developed by Calafiore
and Campi (2005). In particular, it has been shown
that for a problem with m variables and given n =
O((1/e)(mIn(1/e) + In(1/6)) samples, we must have
that with probability at least 1 — 6 the following
holds: An optimal solution to (5) violates at most
an e fraction of constraints of the problem (4) under
the measure . Hence, given a number of samples
that scales only with the number of variables (and is
independent of the number of constraints in (4), one
can produce a solution to (4) that satisfies all but a
small fraction of constraints. The theory does not pro-
vide any guarantees on how far the optimal cost of
the relaxed problem is from the optimal cost of the
original problem.
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The heuristic nature of this approach notwithstand-
ing, it is extremely simple to implement, and in the
experiments conducted in the next section, provided
close to optimal solutions.

3.3. The Second Approach: Efficient
Representations of s/;(/)

We describe here one notion of an efficient represen-
tation of the sets 3;(/(), and assuming we have such
a representation, we describe how one may solve (4)
efficiently. We deal with the issue of actually coming
up with these efficient representations in Online
Appendix B (online appendices available at http://
papers.ssrn.com/sol3/papers.cfm?abstract_id=2187779),
where we develop an efficient representation for
ranking data and demonstrate a generic procedure to
sequentially produce such representations.

Let us assume that every set ¥;(/l) can be
expressed as a disjoint union of D; sets. We denote
the dth such set by &#,(/l) and let s4;;(M) be the cor-
responding set of columns of A. Consider the convex
hull of the set s{,,(/M), conv{s;, (M)} = &@d(/%). Recall-
ing that A € {0, 1}"N, s,,(M) C {0, 1}™. s4;4( M) is thus
a polytope contained in the m-dimensional unit cube,
[0, 1]™. In other words,

&g]d(‘/%) = {xf”’: A]idxjd > b{d, A]zdxjd = béd,
A3 <bl!, 4 e R™) (6)

for some matrices A" and vectors b. By a canonical
representation of o;(./), we thus understand a parti-
tion of (/) and a polyhedral representation of the
columns corresponding to every set in the partition
as given by (6). If the number of partitions as well
as the polyhedral description of each set of the parti-
tion given by (6) is polynomial in the input size, we
will regard the canonical representation as efficient.
Of course, there is no guarantee that an efficient repre-
sentation of this type exists; clearly, this must rely on
the nature of our partial information, i.e., the structure
of the matrix A. Even if an efficient representation
did exist, it remains unclear whether we can iden-
tify it. Ignoring these issues for now, in the remainder
of this section, we demonstrate how given a repre-
sentation of the type (6), one may solve (4) with the
time complexity that is polynomial in the size of the
representation.

For simplicity of notation, in what follows we
assume that each polytope &ﬁ_jd(/%) is in standard form,

g (M) = {xi: Al = b, x4 > 0},

Now because an affine function is always optimized
at the vertices of a polytope, we know that

max (a'x/+v)= max (a'x+v).
xiest; (L) d, x4 esly (dt)
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We have thus reduced (4) to a “robust” LP. Now, by
strong duality, we have the following;:

maximize a'x/?+v o T
o/ minimize (b yit v
. . . ]
subject to Alxid=pid =7 L @)
2 >0 subject to (y1) A?>a.

We have thus established the following useful
equality:

{a,v: max (aij+V)§pj}
xlest; (L)

={a,v: O) Y 4v<p, (y) A'za,d=1,2,..., D).

It follows that solving (2) is equivalent to the fol-
lowing LP whose complexity is polynomial in the
description of our canonical representation:

maximize a'y+v
subject to (b)) yH 4+ v < p;

forall jedl,d=1,2,...,D; (8

(y") A > a

forall je /M, d:l,Z,...,Dj.

As discussed, our ability to solve (8) relies on our
ability to produce an efficient canonical representa-
tion of #;(/) of the type (6). In Online Appendix B,
we first consider the case of ranking data, where
such an efficient representation may be produced. We
then illustrate a method that produces a sequence of
“outer approximations” to (6) for general types of
data, and thereby allows us to produce a sequence
of improving lower bounding approximations to our
robust revenue estimation problem, (2). This provides
a general procedure to address the task of solving (4)
or, equivalently, (2).

We end this section with a brief note on noise. So
far we have assumed that the choice probabilities y;
obtained from historical data are known exactly and
fit the model exactly so that there exists a choice
model A such that y = AA. This is, of course, hardly
the case in practice. Specifically, there are two sources
of errors. First is the finite sample error caused due
to the fact that the choice probabilities y; can only be
estimated through a sample average of finitely many
samples; depending on the number of samples avail-
able, there is uncertainty in the estimate of y,;. Sec-
ond, there could be model misfit errors. That is, even
if the choice probabilities y; are known exactly, our
choice model may not be an exact fit, making the set
of equalities ¥y = AX and A a distribution infeasible.
To overcome these issues, we incorporate these errors
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in making our predictions. Specifically, we assume
that we are given an uncertainty region € constructed
from the data such that there exists a choice model A
with AA € €. The uncertainty region € may either be
an uncertainty ellipsoid or a “box” derived from sam-
ple averages of the associated choice probabilities and
the corresponding confidence intervals. Given such an
uncertainty region €, we predict revenues by solving
the following LP:

jed

mifimize Yo piA; ()

subject to AA=y,
1TA=1,
A>0.

Provided ¢ is convex, this program is essentially no
harder to solve than the variant of the problem we
have discussed, and similar methods to those devel-
oped in this section apply. It is clear from the con-
vex program that if the uncertainty region € is “too
small,” then the constraint set will become infeasible.
On the other hand, if € is “too large,” then we would
have a poor fit to the data and conservative revenue
predictions. To balance the extremes, in our empirical
analyses, we choose the “smallest” uncertainty region
such that the constraint set becomes feasible. Precise
details of how we do that are provided in §5.

4. Revenue Predictions: Data-Driven
Computational Study

In this section, we describe the results of an exten-
sive simulation study, the main purpose of which is to
demonstrate that the robust approach can capture var-
ious underlying parametric structures and produce
good revenue predictions. For this study, we pick a
range of random utility parametric structures used
extensively in current modeling practice.

The broad experimental procedure we followed is
the following:

1. Pick a structural model. This may be a model
derived from real-world data or a purely synthetic
model.

2. Use this structural model to simulate sales for a
set of test assortments. This simulates a data set that
a practitioner likely has access to.

3. Use this transaction data to estimate marginal
information y, and use y to implement the robust
approach.

4. Use the implemented robust approach to predict
revenues for a distinct set of assortments, and com-
pare the predictions to the true revenues computed
using the ground-truth structural model chosen for
benchmarking in step 1.

RIGHTS L

Note that the above experimental procedure lets
us isolate the impact of structural errors from that
of finite sample errors. Specifically, our goal is to
understand how well the robust approach captures
the underlying choice structure. For this purpose,
we ignore any estimation errors in data by using
the ground-truth parametric model to compute the
exact values of any choice probabilities and rev-
enues required for comparison. Therefore, if the
robust approach has good performance across an
interesting spectrum of structural models that are
believed to be good fits to data observed in practice,
we can conclude that the robust approach is likely to
offer accurate revenue predictions with no additional
information about structure across a wide-range of
problems encountered in practice.

4.1. Benchmark Models and Nature of
Synthetic Data

The above procedure generates data sets using a vari-
ety of ground-truth structural models. We pick the
following “random utility” models as benchmarks.
A self-contained and compact exposition on the foun-
dations of each of the benchmark models described
next can be found in the online appendix.

Multinomial Logit Family (MNL). For this family, we
have

P ) =w; [ w,
et

where the w; are the parameters specifying the mod-
els. See Online Appendix C.1 for more details.

Nested Logit Family (NL). This model is a first
attempt at overcoming the independence of irrelevant
alternatives effect, a shortcoming of the MNL model.
For this family, the universe of products is partitioned
into L mutually exclusive subsets, or “nests,” denoted
by Ni, N5, ..., N} such that

L
N=WN and N NN,=2, form#l
=1

This model takes the form
P@j | Aty = PN, | AP | Ny, M)
o (w(l, )P w;
T YL (w(m, ) w(l, )

©)

where p <1 is a certain scale parameter, and

w(l, M) E aquw,+ Y. w;.

ie(NN0)\ (0}

Here, a; is the parameter capturing the level of mem-
bership of the no-purchase option in nest I and
satisfies, Yo =1, @, >0, for I =1,2,...,L. In
cases when «; <1 for all /, the family is called the
cross nested logit (CNL) family. For a more detailed
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description, including the corresponding random util-
ity function and bibliographic details, see Online
Appendix C.2.

Mixed Multinomial Logit Family (MMNL). This
model accounts specifically for customer heterogene-
ity. In its most common form, the model reduces to

T])

/ Zze «exp (BTx;)

where x; is a vector of observed attributes for the
jth product, and G(:,0) is a distribution parame-
terized by 0 selected by the econometrician that
describes heterogeneity in taste. Because the coeffi-
cients B are assumed to be random (unlike for the
MNL model), this model is often also termed in the
literature the random coefficients multinomial logit
(RC-MNL) model. For this paper, we restrict ourselves
to Gaussian MMNL models in which we assume that
B has a multivariate Gaussian distribution. For a more
detailed description, including the corresponding ran-
dom utility function and bibliographic details, see
Online Appendix C.3.

P@j| ) = G(dB; 0),

4.1.1. Transaction Data Generated. Having se-
lected (and specified) a structural model from the
above list, we generated sales transactions as fol-
lows:

1. Fix an assortment of two products, i, j.

2. Compute the values of P(i|{i, j,0}), P(jl{i,,0})
using the chosen parametric model.

3. Repeat the above procedure for all pairs, {i, j},
and single item sets, {i}.

The above data are succinctly summarized as an
N? — N dimensional data vector y, where vi, ;=P
{i,j,0}) for 0 <i,j <N —1, i #j. Given the above
data, the precise specialization of the robust estima-
tion problem (2) that we solve can be found in Online
Appendix B.3.

4.2. Experiments Conducted

With the above setup we conducted two broad sets
of experiments. In the first set of experiments, we
picked specific models from the MNL, CNL, and
MMNL model classes; the MNL model was con-
structed using DVD shopping cart data from Amazon
.com, and the CNL and MMNL models were obtained
through slight “perturbations” of the MNL model. To
avoid any artifacts associated with specific models, in
the second set of experiments, we conducted stress
tests by generating a number of instances of mod-
els from each of the MNL, CNL, and MMNL models
classes. We next present the details of the two sets of
experiments.

4.2.1. The Amazon Model. We considered an
MNL model fit to Amazon.com DVD sales data

RIGHTS L

collected between July 1, 2005, to September 30, 2005,
where an individual customer’s utility for a given
DVD, j is given by

Uj =0, +0,x;, 1 + 0,x; , +&;.°

Here, x; ; is the price of the package j divided by the
number of physical discs it contains, and x; , is the
total number of helpful votes received by product j
and §; is a standard Gumbel. The model fit to the data
has 6, = —4.31, 6, = —0.038 and 6, = 3.54 x 107°. See
Table 2 in the online appendix for the attribute values
taken by the 15 products we used for our experiments.
We abbreviate this model AMZN for future reference.

We also considered the following synthetic pertur-
bations of the AMZN model:

1. AMZN-CNL. We derived a CNL model from the
original AMZN model by partitioning the products
into four nests with the first nest containing products
1 to 5, the second nest containing products 6 to 9,
the third nest containing products 10 to 13, and the
last nest containing products 14 and 15. We chose p =
0.5. We assigned the no-purchase option to every nest
with nest membership parameter «, = (1/4)"/? =1/16.

2. AMZN-MMNL. We derived an MMNL model
from the original AMZN model by replacing each 6;
parameter with the random quantity 8; = (1 +; ;)0;,
for i =0,1,2 with »; j a customer specific random
variable distributed as a zero mean normal random
variable with standard deviation s = 0.25. Put differ-
ently, we assumed that the random coefficients $; are
independent and have a Gaussian distribution with
mean 6; and standard deviation s6,.

Figure 1 shows the results of the generic experi-
ment for each of the three models. Each experiment
queries the robust estimate on sixty randomly drawn
assortments of sizes between one and seven and com-
pares these estimates to those under the respective
true model for each case.

4.2.2. Synthetic Model Experiments. The above
experiments considered structurally diverse models,
each for a specific set of parameters. Are the con-
clusions suggested by Figure 1 artifacts of the set
of parameters? To assuage this concern, we per-
formed stress tests by considering each structural
model in turn, and for each model generating a num-
ber of instances of the model by drawing the relevant
parameters from a generative family. For each struc-
tural model, we considered the following generative
families of parameters:

1. MNL Random Family. Twenty randomly gener-
ated models on 15 products, each generated by draw-
ing mean utilities, In w;, uniformly between —5 and 5.

* The specifics of this model were shared with us by the authors of
Rusmevichientong et al. (2010).

*The corresponding weights w; are given by w; = exp(f, +
0x;1 + 03x; 5).
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Figure 1 Robust Revenue Predictions (MIN) vs. True Revenues for the AMZN, AMZN-CNL, and AMZN-MMNL Models
(a) AMZN (b) AMNN-CNL (c) AMZN-MMNL
8
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Note. Each of the 60 points in a plot represents the coordinate (true revenue, MIN revenue) for a randomly drawn assortment.

2. CNL Random Family. We maintained the nests,
selection of p and «; as in the AMZN-CNL model. We
generated 20 distinct CNL models, each generated by
drawing In w; uniformly between —5 and 5.

3. MMNL Random Family. We preserved the basic
nature of the AMZN-MMNL model. We considered
20 randomly generated MMNL models. Each model
differs in the distribution of the parameter vector .
The random coefficients B; in each case are defined
as follows: B; = (1+;, ;)0;, where 7, ; is a N(u;, 0.25)
random variable. Each of the 20 models corresponds
to a single draw of M for j=0, 1,2 from the uniform
distribution on [—1, 1].

For each of the 60 structural model instances pre-
viously described, we randomly generated 20 offer
sets of sizes between one and seven. For a given offer
set ./, we queried the robust procedure and compared
the revenue estimate produced to the true revenue
for that offer set; we can compute the latter quantity
theoretically. In particular, we measured the relative
error, g(M) £ (R (M) — RMN(4))/RMN(L). Figure 2
represents distributions of relative error for the three
generative families previously described. Each his-
togram consists of 400 test points; a given test point

corresponds to one of the 20 randomly generated
structural models in the relevant family, and a ran-
dom assortment.

In the above stress tests, we kept the standard
deviation of the coefficients B; in the MMNL mod-
els as s0; with the multiplier s fixed at 0.25. The
standard deviation of the coefficients in the MMNL
model can be treated as a measure of the hetero-
geneity or the “complexity” of the model. Naturally,
if we keep the amount of transaction data fixed and
increase the standard deviation—and hence the com-
plexity of the underlying model—we expect the accu-
racy of robust estimates to deteriorate. To give a
sense of the sensitivity of the accuracy of robust rev-
enue predictions to changes in the standard devia-
tion of coefficients, we repeated the stress tests with
the MMNL model class for three different values of
the multiplier s: 0.1, 0.25, and 0.4. Figure 3 shows the
comparison of the density plots of relative errors for
the three cases.

We draw the following broad conclusion from the
above experiments:

1. Given limited marginal information for distri-
butions over permutations A arising from a number

Figure 2 Relative Error Across Multiple Instances of the MNL, CNL, and MMNL Structural Models
(a) MNL-Random (b) CNL-Random (c) MMNL-Random
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Figure 3 Accuracy of Robust Revenue Predictions Deteriorates with
Increase in Model Complexity, Measured in Terms of the
Standard Deviation s¢, of the Normally Distributed
Coefficients g; in the MMNL Model

— 5=0.1
- - 5=025
--- 5204

Std. dev. multiplier s~ Avg. relative error
0.10  5.49%
025 7.59%
0.40  13.56%
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Notes. The standard deviation multiplier takes three different values: 0.1,
0.25, and 0.4. The densities were estimated through kernel density estima-
tion. The density estimates go below zero as a result of smoothing.

of commonly used structural models of choice,
the robust approach effectively captures diverse
parametric structures and provides close revenue pre-
dictions under a range of practically relevant para-
metric models.

2. With the type of marginal information y fixed, the
accuracy of robust revenue predictions deteriorates
(albeit mildly) as the complexity of the underlying
model increases; this is evidenced by the deterioration
of robust performance as we go from the MNL to the
MMNL model class, and similarly as we increase the
standard deviation of the coefficients for the MMNL
model while keeping the amount of data fixed.

3. The design of our experiments allows us to con-
clude that in the event that a given structural model
among the types used in our experiments predicts rev-
enue rates accurately, the robust approach is likely to
be just as good without the knowledge of the relevant
structure. In the event that the structural model used is
a poor fit, the robust approach will continue to provide
meaningful guarantees on revenues under the mild
condition that it is tested in an environment where the
distribution generating sales is no different from the
distribution used to collect marginal information.

5. Revenue Predictions: Case Study
with a Major U.S. Automaker

In this section, we present the results of a case
study conducted using sales transaction data from the
dealer network of a major U.S. automaker. Our goal
in this study is to use historical transaction data to
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predict the sales rate or conversion rate for any given
offer set of automobiles on a dealer lot. This conver-
sion rate is defined as the probability of converting
an arriving customer into a purchasing customer. The
purpose of the case study is twofold: (1) to demon-
strate how the prediction methods developed in this
paper can be applied in the real world and the qual-
ity of the predictions they offer in an absolute sense,
and (2) to pit the robust method for revenue predic-
tions in a horse race against parametric approaches
based on the MNL and MMNL families of choice
models. To test the performance of these approaches
in different regimes of calibration data, we carried
out cross-validations with varying amounts of train-
ing/calibration data. The results of the experiments
conducted as part of the case study provide us with
the evidence to draw two main conclusions:

1. The robust method predicts conversion rates
more accurately than either of the parametric meth-
ods. In our case study, the improvement in accuracy
was about 20% across all regimes of calibration data.

2. Unlike the parametric methods we study, the
robust approach is apparently not susceptible to over-
fitting and underfitting.

The 20% improvement in accuracy is substantial.
The second conclusion has important implications
as well: In practice, it is often difficult to ascertain
whether the data available are “sufficient” to fit the
model at hand. As a result, parametric structures
are prone to overfitting or underfitting. The robust
approach, on the other hand, automatically scales the
complexity of the underlying model class with data
available, so in principle one should be able to avoid
these issues. This is borne out by the case study. In the
remainder of this section, we describe the experimen-
tal setup and then present the evidence to support the
above conclusions.

5.1. Setup

We collect data comprising purchase transactions of
a specific range of small SUVs offered by a major
U.S. automaker over 16 months. The data are collected
at the dealership level (i.e., the finest level possible)
for a network of dealers in the Midwest. Each trans-
action contains information about the date of sale,
the identity of the SUV sold, and the identity of the
other SUVs on the dealership lot at the time of sale.
Here, by “identity” we mean a unique model identi-
fier that collectively identifies a package of features,
color, and invoice price point. We make the assump-
tion that purchase behavior within the zone can be
described by a single distribution over preference
lists. To ensure the validity of this assumption, we
restrict attention to a specific dealership zone, defined
as the collection of dealerships within an appropri-
ately defined geographical area with relatively homo-
geneous demographic features. Our data consisted of
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sales information on 14 distinct SUV identities (as pre-
viously described), which we term products.

5.1.1. Data. To describe the data and our methods
precisely, we introduce some notation. We let ) ™ining
and M'™, respectively, denote the set of assortments
used as part of training and test data. For any given
assortment, ./ and product i € /[, define C;; as the
total number of sales of product i across all dealer-
ships over the data collection period, such that the
assortment on offer at the time of sale was /. Simi-
larly, Gy, denotes the number of customers who pur-
chased nothing when /[ was on offer. Note that we
do not have access to this latter quantity; we describe
how it is estimated momentarily. Finally, let T"nn8
denote the set of tuples (i, .l) such that .l € Hnins,
We observed a total of M £ |Mffraining| 4 |prtest| =
203 distinct assortments (or subsets) of the 14 prod-
ucts in the data set, where each assortment /;, i =
1,2,..., M, was on offer at some point at some deal-
ership in the dealership zone.

5.1.2. Demand Untruncation. As previously dis-
cussed, C,, is unavailable because we do not observe
arriving customers that do not purchase. This issue
impacts choice modeling irrespective of whether one
chooses the nonparametric approach adopted here of
any of the extant parametric approaches. We follow
a strategy that is common in practice when one has
access to the rich data we do here. In more data-
limited scenarios, more sophisticated techniques can
be applied; see, for instance, Talluri and van Ryzin
(2004a), Vulcano et al. (2010, 2012) and Ratliff et al.
(2008b). Importantly, our estimates of C,, will be com-
mon to our robust revenue prediction approach and
the incumbent parametric approaches we study. Cen-
tral to the above task is estimating the number of cus-
tomers that considered assortment ./. In particular,
given this estimate, we can compute G, as

Cys = (number of customer arrivals when

is on offer) — ) C,.

jedl

For a given dealership this is the number of arriv-
ing customers over days when J/ was on offer at that
dealership; we then simply sum this figure over all
dealerships. In particular,

number of customer arrivals when /[ was on offer

=Y a, days,(), (10)
a

where a; denotes the average number of customers
arriving daily at dealership d, and days, (/) denotes
the number of days for which ./l was on offer at deal-
ership d. There are a number of ways of estimating a,;
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in fact, this is the focus of the untruncation litera-
ture alluded to previously. As mentioned, we adopt
a strategy that is common in practice when one has
access to historical sales at a retailer: Assume that o,
is proportional to total sales at the dealer over the year
preceding the year in which the data was collected.
We estimate the proportionality constant using cross-
validation on our training data. It is worth noting
that this scheme of estimating «; implicitly assumes a
coarse relationship between arrivals and sales in the
preceding year. This relationship is assumed only for
the purposes of estimating «,,.

5.1.3. Robust Method. Given M8 and an
assortment J/ € M, the conversion rate of / is pre-
dicted by the robust approach by solving the follow-
ing LP:

miniPlize > P | )

jed
subject to a;, <P, (i | M) <b,,,

V(l, %) c Ttraining (11)

1"A=1,
A>0,

where we recall that P, (i | M) = 3 ,cy. (1) AMo) with
Fi(M), denoting the set {o: o (i) <o (j) Vje M, i#]},
and [a;4, b;,] denotes the interval to which P, (i | /)
belongs. We obtained an approximate solution to the
LP in (11) by taking its dual and using the approach
of constraint sampling as described in §3.2. The LP
(11) is a slight modification of the LP in (2) in that the
prices p; are all set to 1 and the equalities y, =P, (/)
are changed to inequalities to account for finite sam-
ple errors in the data. Setting all the prices to 1 has
the effect of computing the conversion rate for the
assortment. For each tuple (i, /() € T™""8, we com-
puted the left and right end points, respectively, as
iy =Y;u(1—z&;y) and by =y;4(1+ z&;,), where

_ Ciu
Cou+2icu G

Here, i, 4, is the standard error, and z is a constant
multiplier that determines the width of the confidence
interval. Different values of z give us approximate
confidence intervals for P,(i | /). For our experi-
ments, we had set z to be 3.15, which corresponded
to the smallest value of z for which (11) was feasi-
ble; incidentally, this value of z also corresponds to
approximate 99.8% confidence interval for P, (i | /).

5.1.4. Parametric Methods. As benchmarks, we
fit an MNL as well as an MMNL model given the C;,
and C,, estimates previously described. For the MNL
model, we assumed the following specific random
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utility structure U; =V, +¢,i1=0,1,2,..., N, where
V. is the mean utility and ¢; are independent and
identically distributed Gumbel distributed with loca-
tion parameter 0 and scale parameter 1, and N = 14
is the number of products. For the MMNL model we
assumed the following specific random utility struc-
ture: U, =V, +Bx;+¢&,i=0,1,2,...,14, where as
before V; denotes the mean utility and N =14 the
number of products, §; are independent and identi-
cally distributed Gumbel with location parameter 0
and scale parameter 1, x; are dummy features with
Xy =0 and x; =1 for i > 0, and B is Gaussian with
mean 0 and variance s2.

For both models, we used the training data 7;,,
for all (i, M) € T™""8 to determine the maximum-
likelihood (ML) estimates of the parameters. Specifi-
cally, fixing V; to 0, we used BIOGEME (Bierlaire 2003,
2008) to estimate V;, i >0, and s.

5.2. Experiments and Results

We now describe the experiments we conducted and
present the results we obtained. To test the predictive
performance of the robust, the MNL, and the MMNL
methods, we carried out k-fold cross-validations with
k=2,5,10. In k-fold cross-validation (see Mosteller
and Tukey 1968), we arbitrarily partition the collec-
tion of assortments J, M,, ..., M, into k partitions
of about equal size, except maybe the last partition.
Then, using k — 1 partitions as training data to cali-
brate the methods, we test their performance on the
kth partition. We repeat this process k times with each
of the k partitions used as test data exactly once. This
repetition ensures that each assortment is tested at
least once. Note that as k decreases, the number of
training assortments decreases resulting in more lim-
ited data scenarios. Such limited data scenarios are of
course of great practical interest.

We measure the prediction accuracy of the methods
using the relative error metric. In particular, letting
7J(M) denote the conversion-rate prediction for test
assortment J(, the incurred relative error is defined as
[948) — y ()] /y (1), where

y(M) := (number of customers who purchase
product when ./ is on offer) - (number of
customer arrivals when ./l was on offer) ™.

In the case of the parametric approaches, (/) is com-
puted using the choice model fit to the training data.
In the case of the robust approach, we solve an appro-
priate mathematical program. A detailed description
of how () is determined by each method is pro-
vided in the online appendix.

We now present the results of the experiments. Fig-
ure 4 shows the comparison of the relative errors of
the three methods from k-fold cross-validations for
k =10,5,2. Table 1 shows the mean relative error
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Figure 4 Robust Method Outperforms Both MNL and MMNL Methods
in Conversion-Rate Predictions Across Various Calibration
Data Regimes

LI L L TR T B Robust
o= 10— s o wenmnweernn MMNL
L1 T TR A I A MNL

LT LD O U A |
Vi R L LT LR T 1 T A A [ B
LI (LD T TN Tt I I |

NN 0 O RO
k=2- m L L IR e I R AR R T I (A | (|
(L0 L T L A | (N

I T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5

Relative errors

Notes. This figure compares relative errors of the three methods in k-fold
cross-validations for k = 10,5, 2. Each point corresponds to the relative
error for a particular test assortment.

percentages of the three methods and the percent-
age of improvement in mean relative error achieved
by the robust method over the MNL and MMNL
methods for the three calibration data regimes of
k =10,5,2. It is clear from the definition of k-fold
cross-validation that as k decreases, the amount of
calibration data decreases, or equivalently calibration
data sparsity increases. Such sparse calibration data
regimes are of course of great practical interest.

The immediate conclusion we draw from the results
is that the prediction accuracy of the robust method is
better than those of both MNL and MMNL methods
in all calibration data regimes. In particular, using the
robust method results in close to 20% improvement
in prediction accuracy over the MNL and MMNL
methods. We also note that although the prediction
accuracy of the more complex MMNL method is
marginally better than that of the MNL method in
the high calibration-data regime of k =10, it quickly
becomes worse as the amount of calibration data
available decreases. This behavior is a consequence of
overfitting caused by the complexity of the MMNL
model. The performance of the robust method, on
the other hand, remains stable across the different
regimes of calibration data.

Table 1 Mean Relative Errors in Percentages of Different Methods

Percentage of
improvement over

k MNL MMNL Robust MNL MMNL
10 43.43 43.39 34.79 19.89 19.80
5 43.25 45.73 35.79 17.23 21.62
2 45.65 46.61 36.83 19.33 20.99
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6. The Sparsest Choice Model

Consistent with Data

In making revenue predictions, we did not need to
concern ourselves with the choice model implicitly
assumed by our prediction procedure. However, it is
natural to consider criteria for selecting choice mod-
els consistent with the observed data that are inde-
pendent of any decision context. Thus motivated,
we consider the natural task of finding the simplest
choice model consistent with the observed data. As
in much of contemporary high-dimensional statis-
tics (see, for example, Candes et al. 2006, Cormode
and Muthukrishnan 2006), we employ sparsity as our
measure of simplicity. Sparse models use as few pref-
erence lists as possible to explain observed substitu-
tions and have provided a great deal of tractability
in multiple applications (see, for example, van Ryzin
and Vulcano 2008). Our goal in this section is to first
understand the choice models implicitly assumed by
the robust procedure through the lens of the sparsity
criterion, and second, to understand the discrimina-
tive power of this criterion.

Toward this goal, we begin by characterizing choice
models implicitly used by the robust approach in
terms of their sparsity. Loosely speaking, we estab-
lish that the choice model implicitly used by the
robust approach is indeed simple or sparse. In partic-
ular, such choice models have sparsity within at most
one of the sparsity of the sparsest model consistent
with the data. As such, we see that the choice model
implicitly selected by our robust revenue prediction
procedure is, in essence, the sparsest choice model
consistent with the data. From a descriptive perspec-
tive, this establishes the appealing fact that simplic-
ity or sparsity is a natural property possessed by all
choice models used in making robust revenue predic-
tions. We also establish that the sparsity of the choice
model used by the robust approach scales with the
dimension of the data vector y thereby establishing
that the complexity of the model used by the robust
approach scales with the amount of data available.
This provides a potential explanation for the immu-
nity of the robust approach to overfitting /underfitting
issues, as evidenced in our case study.

Next, we turn to understanding the discrimina-
tive power of the sparsest fit criterion. Toward this
end, we describe a family of choice models that can
be uniquely identified from the given marginal data
using the sparsest fit criterion. We intuitively expect
the complexity of identifiable models to scale with the
amount of data that is available. We formalize this
intuition by presenting for various types of data, con-
ditions on the model generating the data under which
identification is possible. These conditions character-
ize families of choice models that can be identified
in terms of their sparsity and formalize the scaling
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between the complexity of a model class and the
amount of data needed to identify it.

6.1. Revenue Prediction and Sparse Models
We now provide a characterization of the choice mod-
els implicitly used by the robust procedure through
the lens of model sparsity. As previously mentioned,
loosely speaking, we can establish that the choice
models selected implicitly via our revenue estimation
procedure are, in essence, close to the sparsest model
consistent with the observed data. In other words, the
robust approach implicitly uses the simplest models
consistent with observed data to predict revenues.
To state our result formally, let us define the set %
as the set of all possible data vectors, namely, the con-
vex hull of the columns of the matrix A. For some
y €% and an arbitrary offer set, ./, let A™"(y) be an
optimal basic feasible solution to the program used
in our revenue estimation procedure, namely, (2).
Moreover, let, A****¢(y) be the sparsest choice model
consistent with the data vector y; ie., AP*™¢(y) is
an optimal solution to (3). We then have that with
probability one, the sparsity (i.e., the number of rank
lists with positive mass) under A™"(y) is close to
that of A*P**¢(y). In particular, we have the following
theorem:

THEOREM 1. For any distribution over %Y that is abso-
lutely continuous with respect to Lebesgue measure on Y,
we have with probability 1, that

0 < [IA™ (W) llo — AP (y)llo < 1.

Theorem 1 establishes that if K were the support
size of the sparsest distribution consistent with y, the
sparsity of the choice model used by our revenue esti-
mation procedure is either K or K +1 for “almost all”
data vectors y. As such, this establishes that the choice
model implicitly employed by the robust procedure
is essentially also the sparsest model consistent with
the observed data.

In addition, the proof of the theorem reveals that
the sparsity of the robust choice model consistent with
the observed data is either® m or m +1 for almost all
data vectors y of dimension m. This yields yet another
valuable insight into the choice models implicit in our
revenue predictions—the complexity of these models,
as measured by their sparsity, grows with the amount
of observed data. As such, we see that the complexity
of the choice model implicitly employed by the robust
procedure scales automatically with the amount of
available data, as one would desire from a nonpara-
metric scheme. This provides a potential explanation
for the robust procedures’ lack of susceptibility to
the overfitting observed for the MMNL model in our
empirical study.

¢ Here, we assume that matrix A has full row rank.
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6.2. Identifiable Families of Choice Models

We now consider the family of choice models that can
be identified via the sparsest fit criterion. For that, we
present two abstract conditions that, if satisfied by the
choice model generating the data y, guarantee that the
optimal solution to (3) is unique and, in fact, equal to
the choice model generating the data.

Before we describe the conditions, we introduce
some notation. As before, let A denote the true under-
lying distribution, and let K denote the support
size, ||Allo. Let oy, 0, ..., 0 denote the permutations
in the support, ie., A(o;)) #0 for 1 <i <K, and
Ao) =0 for all o # 0;, 1 <i < K. Recall that y is of
dimension m, and we index its elements by d. The
two conditions are the following;:

Signature Condition. For every permutation o; in the
support, there exists a d(i) € {1,2,..., m} such that
A(07)aqy =1 and A(0})s;) =0, for every j#iand 1 <i,
j < K. In other words, for each permutation o; in the
support, y,; serves as its “signature.”

Linear Independence Condition. For any c; € Z (the
set of integers) and |c;| < C, where C is a sufficiently
large number greater than or equal to K, we have
K ciA(0;) #0. This condition is satisfied with prob-
ability 1 if [A;A,--A¢]" is drawn uniformly from the
K-dim simplex or, for that matter, any distribution on
the K-dim simplex with a density.

When these two conditions are satisfied by a choice
model, this choice model can be recovered from
observed data as the solution to problem (3). Specifi-
cally, we have the following theorem:

THEOREM 2. Suppose we are given y = AA, and A sat-
isfies the signature and linear independence conditions.
Then, A is the unique solution to the program in (3).

The proof of Theorem 2 is provided in Online
Appendix A.2. The proof is constructive in that it
describes an efficient scheme to determine the under-
lying choice model. Thus, the theorem establishes that
whenever the underlying choice model satisfies the
signature and linear independence conditions, it can
be identified using an efficient scheme as the optimal
solution to the program in (3). We next characterize a
family of choice models that satisfy the signature and
linear independence conditions. Specifically, we show
that essentially all choice models with sparsity K(N)
satisfy these two conditions as long as K(N) scales as
logN, ¥/N, and N for comparison data, top-set data,
and ranking data, respectively. To capture this notion
of “essentially” all choice models, we introduce a nat-
ural generative model. We discuss how restrictive the
above values of K(N) are at the end of the section.

A Generative Model. Given K and an interval [a, b]
on the positive real line, we generate a choice model A
as follows: Choose K permutations, oy, 0y, ..., o,
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uniformly at random with replacement,” choose K
numbers uniformly at random from the interval [a, b],
normalize the numbers so that they sum to 1,® and
assign them to the permutations o;, 1 <i < K. For all
other permutations o # g;, A(d) =0.

Depending on the observed data, we characterize
values of sparsity K = K(N) up to which distribu-
tions generated by the above generative model can be
recovered with a high probability. We derive the spar-
sity bound for three different types of partial infor-
mation: comparison data, top-set data, and ranking
data. We introduced comparison data in §2. We define
ranking data and top-set data as follows:

* Ranking Data. These data represent the fraction
of customers that rank a given product i as their
rth choice. Here the partial information vector y is
indexed by i,r with 0 <i,r < N. For each i, 7, y,
is thus the fraction of customers that rank product i
at position 7. The matrix A is then in {0, 1}N**N', For
a column of A corresponding to the permutation o,
A(0o), we thus have A(o),; =1 iff o(i) =r.

» Top-Set Data. These data refer to a concatenation
of the comparison data and information on the frac-
tion of customers who have a given product i as their
topmost choice for each i. Thus, A" =[A] A]] where
A, is simply the A matrix for comparison data, and
A, €{0, 1}VN' has A,(0); =1 if and only if o (i) =1.
With these definitions, we can now state the following
result.

THEOREM 3. Suppose A is a choice model of support
size K drawn from the generative model. Then, A satis-
fies the signature’ and linear independence conditions with
probability 1 — o(1) as N — oo provided K = o(log N) for
comparison data, K = o(~/N) for the top-set data, and K =
O(N) for ranking data.

Theorem 3 implies that essentially all choice mod-
els of sparsity log N (and higher) can be recovered
from the types of observed data discussed in the the-
orem. A natural question that arises at this juncture is
what a reasonable value of K(N) might be. To give a
sense of this, we provide the following approximation
result: A good approximation to any choice model for
the purposes of revenue estimation is obtained by a
sparse choice model with support scaling as logN.
Specifically, let us restrict ourselves to offer sets that
are small, i.e.,, bounded by a constant || < C; this is
legitimate from an operational perspective and in line
with many of the applications we have described. We
now show that any customer choice model can be well
approximated by a choice model with sparse support

"Though replacement makes repetitions likely, for large N and
K « +/N/, they happen with a vanishing probability.

8 Any distribution with a density on the K-dim simplex may be
picked; we picked uniform for concreteness.
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for the purpose of evaluating revenue of any offer set
Al of size up to C. In particular, we have the following
theorem:

THEOREM 4. Let A be an arbitrary given choice model.

Then, there exists a choice model A with support
O((2C?p3,./8*)(10g 2C + Clog N)) such that

Jax R(M) — jeZﬂPj)\;(/%) <e.

The proof is provided in Online Appendix A.3.
Along with Theorem 3, the above result establishes
the potential generality of the signature and linear
independence conditions.

In summary, this section visited the issues of explic-
itly selecting a choice model consistent with the
observed data. This is in contrast to our work thus
far, which has been simply making revenue predic-
tions. We showed that the robust procedure we used
in making revenue predictions may also be seen to
yield what is essentially the sparsest choice model
consistent with the observed data. Finally, by present-
ing a family of models for which the sparsest fit to the
observed data was unique, and studying the proper-
ties of this unique solution, we were able to delineate
a data-dependent family of choice models for which
the sparsest fit criterion actually yields identification.
This formalized the intuitive notion that the complex-
ity of the choice model that can be recovered scales
with the amount of data that is available.

7. Conclusion and Potential

Future Directions
This paper presented a new approach to the prob-
lem of using historical sales data to predict expected
sales/revenues from offering a particular assortment
of products. We depart from traditional parametric
approaches to choice modeling in that we assume lit-
tle more than a weak form of customer rationality;
the family of choice models we focus on is essen-
tially the most general family of choice models one
may consider. In spite of this generality, we have pre-
sented schemes that succeed in producing accurate
sales/revenue predictions. We complemented those
schemes with extensive empirical studies using both
simulated and real-world data, which demonstrated
the power of our approach in producing accurate rev-
enue predictions without being prone to overfitting
and underfitting. We believe that these schemes are
particularly valuable from the standpoint of incor-
porating models of choice in decision models fre-
quently encountered in operations management. Our
schemes are efficient from a computational stand-
point and raise the possibility of an entirely data-
driven approach to the modeling of choice for use
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in those applications. We also discussed some ideas
on the problem of identifying sparse or simple mod-
els that are consistent with the available marginal
information.

With that said, this work cannot be expected to
present a panacea for choice modeling problems.
In particular, one merit of a structural/parametric
modeling approach to modeling choice is the abil-
ity to extrapolate. That is to say, a nonparametric
approach such as ours can start making useful pre-
dictions about the interactions of a particular product
with other products only once some data related to
that product are observed. With a structural model,
one can hope to say useful things about products
never seen before. The decision of whether a struc-
tural modeling approach is relevant to the problem
at hand or whether the approach we offer is a viable
alternative thus merits a careful consideration of the
context. Of course, as we discussed previously, resort-
ing to a parametric approach will typically require
expert input on underlying product features that
“matter,” and is thus difficult to automate on a large
scale. In addition, although our modeling approach
is very general, it does not account for competi-
tion (see Berry et al. 1995) or intertemporal choice
behavior (time dependence in the presence of antici-
pated discounts or end of the season clearances; see
Li et al. 2011).

We believe this paper presents a starting point
for a number of research directions. There are
numerous directions to pursue from an applications
perspective:

1. The focus of this paper has been the estimation
of the revenue function R(/) with the rationale that
it forms a core subroutine in essentially any revenue
optimization problem seeking to optimize revenues in
the face of customer choice. A number of generic algo-
rithms (such as local search) can potentially be used in
conjunction with the subroutine we provide to solve
such optimization problems. It would be interesting
to study such a procedure in the context of problems
such as network revenue optimization in the presence
of customer choice.

2. Having learned a choice model that consists of a
distribution over a small number of rank lists, there
are a number of qualitative insights one might hope
to draw. For instance, using fairly standard statisti-
cal machinery, one might hope to ask for the product
features that most influence choice from among thou-
sands of potential features by understanding which of
these features best rationalize the rank lists learned.
In a different direction, one may use the distribution
learned as a “prior,” and given further interactions
with a given customer infer a distribution specialized
to that customer via Bayes rule. This is effectively a
means to accomplishing “collaborative filtering.”
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There are also interesting directions to pursue from
a theoretical perspective: First, extending our under-
standing of the limits of identification. In particular,
it would be useful to characterize the limits of recov-
erability for additional families of observable data
beyond those discussed in Theorem 3. Second, The-
orem 4 points to the existence of sparse approxima-
tions to generic choice models. Can we compute such
approximations for any choice model but with limited
data? Finally, the robust approach in §3 presents us
with a family of difficult optimization problems for
which the present work has presented a generic opti-
mization scheme that is in the spirit of cutting plane
approaches. An alternative to this is the development
of strong relaxations that yield uniform approxima-
tion guarantees (in the spirit of the approximation
algorithms literature).
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