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Abstract—This paper considers a network in which a set of vehi-
cles is responsible for picking up and delivering messages that ar-
rive according to a Poisson process. Message pickup and delivery
locations are uniformly distributed in a convex region. The vehi-
cles are required to pickup and deliver the messages so that the av-
erage delay is minimized. It is required that the vehicle that picks
up a message must be the one to deliver it. This problem is called
the dynamic pickup and delivery problem (DPDP) and has appli-
cations in the context of autonomous vehicles and wireless ad hoc
networks.

The control policies considered are separable into two parts: an
assignment policy used by a centralized controller to assign ar-
riving messages to the vehicles for service and a service policy used
by each vehicle to determine the service routes through its assigned
messages.

Lower bounds are provided on the delay achievable by sepa-
rable control policies that depend on the information constraints
in place. It is proved that the optimal average delay scaling can
be reduced when message destination information is available to
the centralized controller in addition to the message source infor-
mation. The paper also provides policies that achieve these scaling
bounds, proving that these bounds are tight.

Index Terms—Dial-a-ride problem (DARP), dynamic pickup
and delivery problem (DPDP), dynamic traveling repair-person
problem (DTRP), less-than-truckload (LTL), unmanned aerial
vehicle (UAV).

I. INTRODUCTION

W E consider the dynamic pickup and delivery problem
(DPDP), in which a set of vehicles is responsible for

picking up and delivering messages that arrive at different
pickup locations at different times with different delivery
locations. The goal is to find control policies that determine the
routes of the vehicles such that the average time to first pickup
and then deliver a message is minimized. In this paper, we will
require that a single message must be picked up and delivered
by the same vehicle. Because information about the pickup
location, delivery location and arrival time of a particular
message is not available until after it has arrived, this vehicle
routing problem is dynamic. The control policies produce
routes for vehicles as function of the arrived demands and their
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pickup and delivery locations with the objective to minimize
the average message time in system over an infinite horizon.

A classical problem in dynamic vehicle routing is the dy-
namic traveling repair-person problem (DTRP), which was ex-
tensively studied by Bertsimas and van Ryzin [1]–[3]. Unlike
the DPDP, each demand in the DTRP corresponds to a single
location to be visited. The DTRP can be thought of as a special
case of DPDP by identifying the delivery location to be the same
as the pick-up location. Though the DTRP is relatively simpler,
we find the analysis methods developed in the above mentioned
papers to be quite useful in obtaining our results. For this reason,
the known results on DTRP will be described in more detail
in Section II-B. We note that recent surveys [4] and [5] pro-
vide state-of-the-art in the context of dynamic vehicle routing
problem.

The DPDP problem arises in many important applications.
For example, consider a scenario where people telephone a
cab-service exchange to request a ride. The cab-service ex-
change is to decide which cab picks up (and delivers) which
person at what time. This problem is also known as dial-a-ride
problem (DARP). Other applications include courier services,
manufacturing and inventory routing, less-than-truckload (LTL)
trucking, emergency services, mobile sensor networks, and
unmanned aerial vehicle (UAV) routing. Most of the previous
work on the pickup and delivery problem deal with static setup
or periodic re-optimization over a receding horizon. We refer
an interested reader to surveys [5], [6] and [7] for a detailed
account of previous work. In the case that demands are packets
of bits and wireless communication capability is added to the
vehicles, the DPDP may also be applied to suggest control
methods for mobile, multi-agent wireless networks. This will
be a subject of our future work.

In this paper, our interest is two-fold: a) Obtain a lower bound
on the performance of any control policy under a general sto-
chastic setup; and b) Obtain a control policy that provides such
optimal performance. Of particular interest is the quantifica-
tion of the performance of the network as a function of sev-
eral scaling parameters, including the number of vehicles, the
total arrival rate of messages, the required service times, and to
a lesser extent, the vehicle velocity and network area. Similar
analysis exists for the single-stage Dynamic Traveling Repair-
person Problem and a two-stage unit-capacity Dynamic Pick-up
and Delivery Problem [8]. However, the methods used to derive
these results are not sufficient for the multi-stage, multi-vehicle
problems we are interested in. Our results for the infinite-ca-
pacity two-stage DPDP are the first of their kind. Besides ana-
lyzing system performance as a function of the scaling param-
eters, we also examine the impact of several other system qual-
ities, including information structure and service type. Our re-
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sults provide general methods which are different than those in
the existing literature. A salient feature of our optimal control
policy is the non-intuitive partitioning of space for pickup and
delivery that comes out of the lower bound analysis.

A. Model

1) Vehicles and Messages: Let there be vehicles in a ge-
ographic area , which is a convex, compact set with
volume . For simplicity, we consider , with
the understanding that these results may be extended to other
convex environments with the same area. Throughout this paper,
regions will be labeled in calligraphic script, i.e., , and areas
will be labeled with italics, i.e., . Each vehicle may move in
any direction at any time with a velocity of magnitude .

Messages are generated according to a Poisson process with
time intensity . We will express 1 for some
given scaling function . The precise required scaling of

will be stated in the theorems. For ease of notation, at var-
ious places in the paper we will use for .

Associated with each message are source and destination
locations denoted by and respectively.
Source locations are independently and identically distributed
(IID) in according to the distribution density .
Similarly, destination locations are IID with density

. In this paper, we assume that both source and destination
locations have uniform distribution on , that is

.
The messages need to be picked up from their source loca-

tions and delivered to their destination locations by the vehi-
cles. A message is picked up (delivered) when a vehicle spends
a fixed on-site service time of at the source (delivery) lo-
cation to pick up (deliver) the message.

Note that is a fixed constant, but is expressed as a func-
tion of to emphasize the connection between the arrival rate

, the number of servers , and the maximum onsite ser-
vice time that may be supported in a stable system. To see this,
compare the system to an M/D/n queue, where arrival process
is Poisson of rate , service time is (i.e., only the time
spent in onsite service) and unit rate servers that can serve the
packets in the queue. The average utilization for this system is

, the product of the arrival rate and the service
time per message divided by the number of vehicles that serve
these messages. A necessary condition for the stability of this
system, by classical queuing theory is which is equiva-
lent to . Therefore, the maximum onsite service
time supportable by a stable system is implicitly a function
of and . As stated in our results, in fact is sufficient
for the system to be stable (or have finite number of unserved
requests in the system on average). Note that this sufficiency in
independent of as long as .

We make the requirement that the vehicle that picks up a mes-
sage must be the one that delivers it. That is, messages may not
be transferred between vehicles after they have been picked up.

1Recall the following notation: 1)���� � ������� means that � a constant
� and integer � such that ���� � ������ �� � � . 2) ���� � ������� if
���� � �������. 3) ���� � ������� means that ���� � ������� and
���� � �������.

Furthermore, we assume that each vehicle can carry an unlim-
ited number of messages at any time.

2) Control Policies: A control policy, , is a set of decision
making rules that decides the pickup and delivery schedule of
arriving messages, based on a set of constraints on the informa-
tion available to the vehicle. In this paper, we consider policies

that can be decomposed into two components, as-
signment and service. An assignment policy, , describes how
a centralized controller assigns arriving messages to vehicles on
a real-time basis. A service policy, , describes how each ve-
hicle performs the pickup and delivery of its assigned messages.
In this paper we will focus on characterizing optimal assignment
policies. Given an assignment policy, we then draw on existing
tools in vehicle routing to lower bound the delay incurred under
any service policy with the given message assignment policy.
We assume that neither the vehicles nor the centralized assign-
ment controller have any knowledge of individual messages be-
fore they arrive although the overall message arrival process and
source and destination distributions are known.

In particular, we limit our attention to time-invariant and spa-
tially-based assignment policies where is described by a
collection of scaled densities with the following
property:

(1)

Let and . The
precise operational meaning of is defined below.

We further restrict the set of assignment policies according to
the information available to the controller in making message
assignments. In particular, we consider two types of information
structure:

Source Only Information: When a message arrives, its
source location is known to the centralized controller, but
vehicles do not know the destination of messages until they
pick them up. When a message arrives at location , the cen-
tralized controller randomly assigns the message to one of
the vehicles, with each assignment occuring with probability

. Each
assignment is made independently of all previous assignments.

Because destination information may not be exploited in
making message assignments, the density of destination loca-
tions served by each vehicle must be the same as the overall
density of destinations, that is, . Since the
source and destination locations are independent, has
the form

(2)

Let denote the set of all policies that satisfy the assignment
properties in (1) and (2) above and use Source Only information
in making message assignments.

Source-Destination Information: When a message arrives,
both its source and also its destination location are known to
the centralized controller. These densities are used to make the
message assignments in the following way. When a message ar-
rives at location that is destined for location , the centralized
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controller randomly assigns the message to one of the vehicles,
with each assignment occuring with the following probability:

Each assignment is made independently of all previous assign-
ments. Under the Source and Destination information structure,
destination information may be used to shape the destination
density and therefore (1) remains the only restriction on the as-
signment policy.

Let denote the set of all policies satisfying this as-
signment property and using only information available in the
Source and Destination information structure.

Our results will show that that the performance of optimal
control policies is significantly affected by the particular infor-
mation structure in place.

Given the Poisson arrival process and the random message
assignments with the above probabilities, by the Poisson
splitting property the assignment process to each vehicle is
an independent Poisson process with smaller rate. Precisely,
independent of service policy, the messages arrive for vehicle
under a fixed assignment policy according to an independent
Poisson process with rate

(3)

Combining (1) and (3) implies that for any valid single vehicle
assignment density

(4)

3) Performance Metrics: The delay of message , denoted
, is defined to be the elapsed time between the message’s

arrival to the system and its delivery to its destination location.
This includes any time the message waits to be picked up, the
onsite service time for pickup, travel time on the vehicle before
arriving at the delivery location, and finally onsite service time
for delivery. The quantity is defined to be

(5)

If has unique stationary distribution with finite mean, then
the limsup in the above definition is replaced by lim. We say that
the system is stable if . Recalling the stability discus-
sion in Section I-A1, a necessary condition for the existence of
a stable policy is . If is a stable policy,
then denote the associated asymptotic delay as defined
above. Note that is a function of both the
assignment policy and the service policy.

We may also define the single vehicle equivalent of the .
First, let denote the message assigned to vehicle . Then

(6)

If no messages are served by vehicle , then . If is such
that the system has unique invariant (stationary) distribution,
all are finite and the corresponding limits exist then the
expected delay over all messages

(7)

Note that for any valid assignment policy. The
system is then stable if . For a single vehicle with
message arrival rate , a necessary condition for the existence
of a stable policy is . Therefore, is
necessary to guarantee .

4) Problem Definition: We seek stable policies that minimize
that average delay per message. These policies may be described
by a collection of densities with the information
constraints described in the set description. That is, we must
solve the following optimization problem. For emphasis, the de-
pendence of the various terms on the assignment and service
policies is given explicitly

We call this problem the Dynamic Pickup-Delivery Problem
(DPDP).

B. Main Results

The goal of the current paper is to find the minimum average
message delay achievable by any valid control policy for the
Dynamic Pickup and Delivery Problem. We further divide the
control policies into two categories based on the information
structure in place for making the control decisions. In the Source
Only structure, only message source locations are known before
the message is picked up. In the Source and Destination struc-
ture, both the source and destination locations of messages are
known as soon as the message arrives. First, we will prove lower
bounds on the average message delays achieveable by control
policies from these two groups. We will then propose policies
that adhere to these information structures and will show that
the order of the delay scaling demonstrated by these policies
matches that of the lower bounds. Therefore these policies are
order optimal and the lower bounds may be achieved. In partic-
ular, we prove the following two theorems:

Theorem 1:
(a) For any policy in under the Source Only information

structure, the average delay per message is finite only if
and it is lower bounded as

with constants and .
(b) Further, if then there exists a policy using Source

Only information, for which the average delay is finite and
is upper bounded as
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TABLE I
AVERAGE DELAY SCALING OVER VARIOUS RANGES OF ����

for all . Therefore the lower bound scaling is achiev-
able, and is necessary and sufficent for stability.

Theorem 2:
a) For any policy in under the Source-Destination in-

formation structure, the average delay per message is fi-
nite only if . In that case, the fol-
lowing lower bounds hold. If both
and , then

b) Further, if then there exists a policy using Source
and Destination information for which the average delay
is finite and is upper bounded as

for all . Therefore the lower bound scaling is achiev-
able and is necessary and sufficient for stabilty.

Theorem 1 first quantifies the achievable performance for con-
trol policies with some minimal amount of information. The-
orem 2 then quantifies the effect of additional information on
achievable performance. We note that even the full information
case is greater than the results on the DTRP in [2] by a factor of

.

C. Interpretation of Scaling

For convenience, the results of the above theorems are given
in Table I. For ease of exposition, assume , that
is, the time to cross the entire region is constant or increasing.

The delay of a message is made up of three components: 1)
time spent traveling directly to the source and destination lo-
cations of the message itself, 2) time the vehicle to which the
message is assigned spends traveling to serve other messages,
and 3) onsite service times.

When is very small and is of moderate
size, the onsite service time can dominate. In all other cases, the
impact of the onsite service times is generally captured by the

terms in the denominator. The scaling of determines
which of the other two travel time terms dominates.

For , the arrival rate of messages per vehicle,
, shrinks as the number of vehicle increases. Therefore,

most of the delay is accumulated during the travel associated
with the message’s own service. Roughly, this is captured by
the term, which is the average distance between uniformly

distributed source and destination locations. This lower bound
will be proven in Section II-D. Note that this scaling is not a
function of the number of vehicles .

For and , the average delay per
message is increasing as a function of for the Source Only
policy, but shrinks for the Source and Destination policy.
Briefly, this is because the number of vehicles can affect both
the average rate of messages arriving to the vehicle, ,
and also the area that a vehicle must cover to service those mes-
sages. The Source and Destination case performs significantly
better, because as increases, destination information may be
exploited to shrink the region over which each vehicle must
travel (roughly ). The region shrinks faster than the rate
at which the number of messages to be served per vehicle is
growing ( ). Due to this, again the travel time between
the source and destination of an individual message dominates.
The Source Only policies cannot exploit this information to
reduce their travel time, and therefore the delay in traveling
between other messages dominates.

For , the number of messages per vehicle
is always growing faster than any valid policy can shrink the
service regions for the vehicles. Therefore, in this regime, the
travel time for other messages dominates.

D. Organization

The rest of the paper is organized as follows. In Section II, we
provide some preliminary technical results that will be useful
in the remaining analysis. Section III proves the lower bounds
claimed in Theorems 1(a) and 2(a). Section IV describes and
analyzes policies that achieve the claimed performance of The-
orems 1(b) and 2(b). Finally, in Section V we present discussion
and directions for future work.

II. PRELIMINARY TECHNICAL RESULTS

In this section, we review several technical results that will
be used in the remainder of this paper.

A. Single Vehicle Assignment Distributions

Equations (1)–(4) provide characterizations of valid collec-
tions of densities . These equations may also provide
some useful bounds on the density for a single vehicle
.

First, we will adopt the following notation: for any reasonable
function
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Essentially, is the standard (Lebesgue) integration. We retain
the reference to the variable in order to sometimes differentiate
the integration with respect to source and destination location.
Note that is not the same as as the latter has already
been defined as expected value.

Assume that the arrival rate of messages to be served by ve-
hicle is fixed to be . Then, from (3) we have

(8)

That is, each is a scaled probability density with scaling
.

By definition, . Further, from the
defining (1), . This implies

(9)

Finally, note that since the vehicle must both pickup and deliver
each message assigned to it, exactly half of the service locations
visited by a vehicle are pickup locations. Therefore, we may de-
fine , the normalized probability density of vehicle

servicing (i.e., either picking up or delivering) a message at
location , as a uniform mixture of the pickup and delivery dis-
tributions. That is

(10)

B. Dynamic Traveling Repairperson Problem

Before beginning our analysis of the DPDP problem, it is
important to more precisely state a few results on the related
Dynamic Traveling Repair-person Problem (DTRP) that were
proven by Bertsimas and van Ryzin [1]–[3] and that will be used
in our lower bound analysis of the DPDP. The DTRP considers
the case in which demands arrive to a convex environment of
area according to some arrival process with demands being
randomly located in the region according to some distribution.
A demand is serviced when a vehicle arrives to the demand lo-
cation and spends a random amount of onsite service time, ,
to service the demand. To perform these services, there are
vehicles that travel with bounded velocity within . The
average system utilization is defined in the standard queueing
theory sense to be . The demands are to be serviced
in such a way that all demands are eventually serviced and av-
erage delay between arrival and service of the demands, , is
minimized.

In the case that demands arrive according to a Poisson process
with rate and demand locations are independently and identi-
cally uniformly distributed in , the average delay of message
in the system is:

Theorem 3: (Theorem 2 in [2]) :

(11)

for constant .
The results of [3] treat the more general case of non-Poisson

arrivals and nonuniform iid demand distributions. Although the
DPDP presently considers Poisson arrivals, [3] shows that the

Poisson assumption is easily taken care of with little change
to the delay results. Further, they consider two classes of poli-
cies: spatially unbiased and spatially biased. Spatially unbiased
policies require that the average expected delay of a message is
the same regardless of the demand location, and spatially biased
policies simply remove this restriction. Therefore, if we are not
concerned about the notion of spatial biasedness, the results on
spatially biased policies provide the strongest result. Below we
state a slightly modified version of result in [3] on the average
delay over all messages that arrive according to demand distri-
bution and are served under a spatially biased policy.

Theorem 4: (Theorem 2 From [3] (Modified)): If both
and also , then

Theorem 4 follows with a slight modification of the proof in [3],
which may be found in the appendix .

C. Asymptotic Scaling of TSP Tour Length

For analysis of the specific control policies we will present,
it is necessary to provide some results on the scaling behavior
of solutions to the Traveling Salesperson Problem (TSP). In the
case that , the number of locations to be visited on the tour, is
large, the length of the TSP tour may be bounded with the fol-
lowing asymptotic result originally due to Beardwood, Halton,
and Hammersley [9], but more recently stated in [10]:

Theorem 5: Given points uniformly distributed over a re-
gion of area , and denoting the expected length of the optimal
TSP tour through these points as , there exists a constant

such that

(12)

with probability has been estimated through simulation to
be . Furthermore, the variance of the length of the
optimal tours scales as . That is, for large,

and further .
Theorem 5 may also be generalized for non-uniform distribu-

tions as in [11].
Theorem 6: If are identically and independently

distributed (i.i.d.) according to a general absolutely continuous
distribution with density and compact support , then the
following limit holds:

When is not large, the average length of a TSP tour through
points may be bounded by the length of a worst case tour.

Consider a tour that travels row-wise through the center points
of a grid of cells. The tour pauses in each cell
to visit any demand locations within that cell. Within each cell,
the tour begins at the center point, travels to each of demand
locations in the cell and then returns to the center of the cell
before progressing to the next cell. The tour through the center
points has length . Each of the intracell de-
mand detours adds at most for a total of .
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Summing these two components gives a worst case TSP tour
length bounded by .

That is, even when is not large, the scaling of the TSP tour
length is bounded in terms of and in the same way as in
Theorem 5, with the scaling constant increased to .

D. Lower Bound on Average Delay in Light Traffic

In the current setup, vehicles must pause at a service loca-
tion for the duration of the message pickup and delivery service
times. This restriction implies a lower bound on message delay,
even in the case that the arrival rates per vehicle are small.

Before stating the main theorem of this section, we require
some additional notation. Let message arrive at time , com-
plete pickup service at time , and complete delivery service
and depart the system at time . With this notation, the ar-
rival process is equivalent to . The
counting processes associated with the cumulative pickup and
delivery services may be defined as and

, respectively.
Let be the number of the messages in the system at time

. Because each message in the system is awaiting exactly one
of two kinds of service at any time , we further define
to be the number that have arrived but have not been picked up,
and let be the number that have been picked up but not
yet delivered. These three processes are defined in terms of the
arrival and service counting processes as

We may also define the limiting distributions for the number in
system seen by an arrival or a departure as

when the appropriate limits exist. , and their
limiting expectations are defined similarly.

Theorem 7: For any stable policy for the No Relay DPDP for
which the following properties hold:

1) arrivals to vehicles are independent Poisson processes;
2) onsite message service can only occur when a vehicle is

stopped at the message service location;
3) , , , , have limiting distributions for all

;
4) ;
5) ;

the expected message delay is lower bounded as follows:

where .
This proof requires two main steps. First, a lemma relating the

delay while the vehicle is in onsite service time to the total delay

is proven. Then, this is combined with travel delay to derive the
result. First, we have the follow Lemma bounding for
a single vehicle with arrivals of rate .

Lemma 1: When each of the following distributions exist for
a single vehicle : , , , , , , the onsite
service time and total service time of messages served by that
vehicle are related as

where .
Proof: For this proof, we shall drop the reference to the

vehicle index and assume that the limits over the message
index are taken only for that are served by vehicle , that
is, . First, we find the
relation between and for an individual message,
and then we take the appropriate limits. For a work-conserving
system, these two measures are the same, that is, the system is
always in onsite service while there are messages in the system
waiting to be served.

is equal to the sum of three terms: 1) the time, de-
noted by , to complete the service of the message (if any)
in service when message arrives, 2) the total number of com-
plete pickups and deliveries completed in the interval
of length , multiplied by the service time , and 3)the
message’s own final delivery service. If , that is, there
is no message in service at time , then in terms of the service
completion processes, and , is defined as

If , then the completion of the message in service at
time is already included in the difference

. To add , we must first subtract this ser-
vice. Adding in the final service of the selected message itself
yields

In either case, because we are looking for a lower bound, we
may ignore the residual terms and use the following bound:

(13)

We may compute the number of services by relating them to the
number in system processes and the arrival process

Because and are both unit increment/decrement

processes, (and likewise for ) when these distri-
butions exist. This is due to an extension of Burke’s Theorem,
which may be found in [12]. In particular,
and . Further, the Poisson arrival rate implies
that, for each interval

(14)
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Combining these two facts, and taking limits, we have

(15)

(16)

Therefore, combining (15) and (16) with (13) and adding back
in the notation yields

With this Lemma, we complete the proof of Theorem 7.
Proof of Theorem 7: Consider the total waiting time

of a randomly tagged message . Because onsite service can
occur only when the vehicle is not traveling, the waiting time
may be divided into two parts: , the time that the vehicle
is traveling between message locations, and , the time
the vehicle spends in onsite service. includes the onsite
service time of the tagged message as well at the onsite service
times of any other messages served between the tagged mes-
sage’s arrival and final delivery service.

Recall that . The travel time may be bounded
by the time to travel the expected distance between the source
and destination locations of the randomly tagged message . The
actual time in travel may include deviations from this straight
line distance, and so this term is a lower bound on . Be-
cause sources and destinations are independently and uniformly
distributed, this distance is , where the constant
(see [13, p. 135]). Therefore

For the onsite waiting time, we have the following claim:
. This does not follow immediately from Lemma 1

which was proven for a single vehicle only. However, taking
the weighted sum of these terms for each vehicle and applying
the definitions in (7) (and similarly for )

(17)

(18)

(19)

The implication of (18) from (17) is given by the assumption that
and are both increasing functions of (and therefore

of ). Combining these bounds on and

III. LOWER BOUNDS ON AVERAGE DELAY

Now that we have presented some preliminaries that will be
useful in our analysis, we prove the claimed lower bounds of
Theorems 1(a) and 2(a) for arbitrary policies. Policies achieving
these lower bounds will be described in Section IV.

A. Lower Bound: Source Only

We consider the Source Only information structure to be one
of minimal information. Because destination locations are not
known immediately upon message arrival, this information may
not be exploited when assigning messages to vehicles.

Theorem 1(a): For any policy in under the Source Only
information structure, the average delay per message is finite
only if and it is lower bounded as

with constants and .
Proof: Consider a fixed stable assignment and service

policy in . Each message is assigned to its vehicle imme-
diately upon arrival. Each vehicle is then treated as a queue of
messages that have been assigned to it. Consider the queue at
vehicle . From (3), the arrival process to vehicle is a Poisson
process of rate .

To lower bound the average delay of messages at a single ve-
hicle, we consider a simplified system in which the same mes-
sage assignment process holds, but messages arrive directly at
the vehicle according to a Poisson process of rate . That is,
vehicles do not spend any time in picking up messages. Further,
for consistency of the notation, let the onsite service time for
delivering each message be . This simplified system natu-
rally has lower delay than the original system.

Because vehicles only have access to information about
the source locations of messages, the destination locations of
the messages may not be exploited by the message assign-
ment policy. Since the distribution of destination locations
is independent of the arrival locations, the distribution of the
destination locations of the messages assigned to a single
vehicle is the same as that of the overall destination process,
irrespective of assignment policy. So for any policy in ,
each vehicle will service messages with destination locations
distributed uniformly at random in . Thus, it is sufficient to
lower bound delay of the following simplified system: each
vehicle has messages arriving according to a Poisson process of
rate with uniformly distributed delivery locations and onsite
service time for delivery.

Therefore, for each vehicle, this delivery problem may be for-
mulated as a single-vehicle Dynamic Traveling Repairperson
Problem. In this formulation, , where the factor
2 reflects the two onsite service times required for pickup and
delivery in the original system. Applying the DTRP results of
Theorem 3 to this formulation, we obtain the average delay for
messages served by a single vehicle with message arrival rate

:

(20)
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This DTRP result lower bounds the delay achievable by any ser-
vice policy to serve the messages assigned to a single vehicle at
a fixed rate . Using this result to focus on assignment policies
only, we then have the following relaxation of the optimization

:

minimizes the weighted sum of lower bounds on the av-
erage delays over all vehicles by the selection of a valid assign-
ment policy. The lower bounds arise by bounding the delay that
may be achieved by any service policy given the fixed assign-
ment policy. The weights are given according to a joint con-
straint on the policies used by the individual vehicles. If the min-
imum is finite, each of the must be finite as well and the
system is stable.

To lower bound the average delay over all messages, we may
then bound the solution of by further optimizing over
the collection of of valid assignment policies:

Note that the optimization over the set of all has
been replaced by the relaxed restriction on the sum of the .
This relaxation certainly provides a lower bound to the original
optimization .

Removing constant terms and noting that
, this is equivalent to

This optimization is straightforward to solve, using Lagrange
multipliers, for example. We find that the optimal solution is

. In this case, and the max-
imum service time allowed for stability of the service policies
on each of the vehicles is then . Therefore, we
have the following lower bound on the average delay over all
vehicles:

(21)

If , the first term in (21) dominates the second. For
, however, this delay shrinks to 0, and the scaling

bound from Theorem 7 dominates. Combining these two results,
we have therefore proven Theorem 1(a).

B. Lower Bound: Source-Destination

If both the Source and Destination locations are known upon
message arrival, assignment policies may exploit this informa-
tion to limit the area covered by each vehicle in making its
pickups and deliveries. We show that this has the effect of re-
ducing the minimum average delay of messages in the system.

Theorem 2(a): For any policy in under the Source-Des-
tination information structure, the average delay per message
is finite only if . In that case, the fol-
lowing lower bounds hold. If both and

, then

Proof: Consider a fixed stable assignment and service
policy in based on source-destination information. Given
the source and destination assignment distributions induced
by this policy, we will again construct a set of simplified
single-vehicle DTRP systems, the average delay of which will
lower bound the delay encountered by messages in the original
DPDP system.

As in the previous section, examine the service policy of a
single vehicle and consider the queue induced by messages that
are assigned to this vehicle. The DTRP demand location associ-
ated with each message is selected uniformly at random between
the source or the destination location of the message.
That is, instead of performing both pickup and delivery as in the
DPDP or delivery only as in the proof of the Source Only lower
bound above, this DTRP visits exactly one of the pickup and
delivery locations for each message, with either location being
chosen with probability 1/2. Therefore, the distribution of de-
mand locations arriving to this DTRP queue is the same as the
normalized density of vehicle ’s pickup and delivery locations,
i.e., . Again assume that the onsite service time required to
perform the message service is . Note that since the DTRP
queue ignores either the pickup or delivery requirement of each
message, the delay of the demands in the DTRP queue is less
than that of messages in the original system.

This DTRP queue fits the framework of the single vehicle
Dynamic Traveling Repairperson Problem with generalized de-
mand distributions. Then, according to Theorem 4, we have the
following bound on minimum delay for a single vehicle policy
with demand distribution , arrival rate , and

(22)

Recall the relation of to and the constraints im-
posed by the delivery requirement on from (8)–(10).
First, the have the following basic constraints:

(23)

(24)
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Then (10) implies the following two lower bounds:

(25)

(26)

We may take a convex combination the two lower bounds above
to form the following optimization problem which will
then be used to lower bound the delay of a single vehicle policy
with fixed arrival rate

Consider a convex combination of two densities satis-
fying (23) and (24), i.e.,

. It is easy to see that the set of valid
probability distributions satisfying (23) and (24) is convex.
Further, by the concavity of , both of the lower bounds
(25) and (26) are concave in and so is their sum. Thus,

is a concave minimization over a convex set. Hence, it
must attain its optima on the boundary of the feasible bounded
convex set.

The boundary of the constraint set defined by (23)–(24) im-
plies that for all (almost surely
w.r.t. Lebesgue measure). Condition (24), along with this im-
plication, will provide the following complete characterization
of boundary:

for all
otherwise

(27)

with of areas such that .
To minimize the cost function in , we must select the

boundary points where the areas of and are equal, i.e.,
both are equal to .

For any satisfying the above properties we have

and therefore the bound (25) on becomes

(28)

Cubing (28) and then substituting this bound into (22), we thus
have the following bound on minimum delay for messages
served by vehicle :

(29)

This result lower bounds the delay achievable by any service
policy for a single vehicle serving messages at rate with an as-
signment density that is valid for a single vehicle in the
original DPDP system. We may again lower bound the solution
of by further optimizing over the collection of .
Repeating the analysis that led to the optimization problem (21),
the corresponding optimization here is

(30)

(31)

As above, this average delay is minimized with all equal to
and again . Therefore, we have the

following lower bound on the average delay with Source and
Destination information:

(32)

Since was required for the application of
the DTRP theorem with generalized demand distributions, this
bound may only be valid for . However, for

, this delay shrinks to 0, and the scaling bound from
Theorem 7 again dominates. We have therefore proven Theorem
2(a).

IV. POLICIES

In this section, we describe policies that achieve the delay
performance claimed in Theorems 1 and 2 for Source Only
and Source Destination information respectively. These policies
provide additional insight into the effect of information struc-
ture on achievable delay. Furthermore, both policies achieve the
lower bounds presented in the previous section.

A. Source Only Policy

In the Source Only information structure, vehicles do not
know the destination of messages before they are picked up,
thus this information may not be used by vehicles in deciding
which messages to pick up. In fact, in the source only policy de-
scribed below, each message is assigned to any of the vehicles at
random. We note that ”smarter” message assignments are pos-
sible to minimize the vehicles’ time spent in picking up mes-
sages. For example, a vehicle could be assigned all messages
that arrive in a given limited area. However, since the vehicles
must still traverse the whole region to deliver messages, regard-
less of assignment policy, the vehicle deliveries will dominate
the delay and no message assignment process with only source
information can improve the order of the performance for large
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arrival rates. A more complete description of the policy is given
below.

a) Message Assignment. Upon arrival, each message is as-
signed to one of the vehicles uniformly at random. The
message is not immediately picked up, but the vehicle is
notified of the message assignment. Since the message
assignment is a uniform splitting of the Poisson arrival
process, the assignment of messages to each vehicle is
Poisson with an arrival rate of . All messages assigned
to a single vehicle that arrive in the interval
form a batch, where , the batch time interval, is a param-
eter to be determined. Each batch is deposited into a queue
for its assigned vehicle upon formation at time .

b) Message Service. Batches for each vehicle are served in
First Come, First Serve order from the vehicle’s batch
queue. Pickups are performed along a TSP tour through
the source locations which is computed at the beginning
of the interval. Once pickups are complete and destination
information is collected, a TSP tour through the delivery
locations is computed and the deliveries are performed
accordingly. To perform each service, the vehicle stops at
the source (destination) location for time to pickup
(deliver) the associated message.

Theorem 1(b): Further, if then there exists a policy
using Source Only information, for which the average delay is
finite and is upper bounded as

for all . Therefore the lower bound scaling is achievable,
and is necessary and sufficent for stability.

Proof of Theorem 1(b): Consider the queue of batches as-
signed to a randomly selected vehicle . Note that by the sym-
metry of the vehicle policies, the average delay of messages at a
single vehicle is the same as the average delay over all vehicles.
Since the batch interarrival time is fixed at , the batches form
a D/G/1 queue. This batching protocol is stable if and only if
the expected time to service each batch of messages, , is less
than , the expected time between batch arrivals. The first part
of the proof bounds in terms of the system parameters so that
this stability condition is met.

The batch service time requires two TSP tours, one for pickup
and one for delivery, plus the associated onsite service times to
perform each service. Let be the number of messages ar-
riving in that are assigned to vehicle . There-
fore, using Theorem 5 to bound the travel time required for each
of the shortest paths (pickup and delivery), the total expected
service time required to service the messages accumulated in

is

(33)

(34)

(35)

(36)

where (34) is by Theorem 5, (35) is by concavity of , and (36)
is given by the Poisson distribution of .

Therefore the following bound on is sufficient for stability:

(37)

(38)

With , the number of messages served by each
vehicle is large and by Theorem 5, .

The second part of the proof uses the batch interval time
to compute the average message delay. For the remainder of the
proof, arbitrarily select some and fix to be

(39)

Message delay has four components: 1) time waiting for batch to
form, 2) time batch spends in queue, 3) time waiting for service
of other vehicles in batch, and 4) time of own service. Since
batch interarrival time , each message waits at most for
its batch to form, bounding 1). Letting denote the expected
amount of time the batch spends in queue, 2) may be bounded
using the following lemma:

Lemma 2: For the policy in Theorem 1(b) with batch time
for some , the delay of the

batch in the queue is bounded by

(40)

The proof, found in Appendix B, uses Kingman’s Bound from
queueing theory [14], and is largely a matter of algebra.

Delay components 3) and 4) may be bounded by bounding
the expected total batch service time for the batch in which an
arbitrary message arrives. We compute the expected batch ser-
vice time by first conditioning on the size of the batch in which a
message arrives and then taking the expectation over this batch
size. The upper bound on batch service time will be computed
separately for two cases: and . Both cases
begin the same way as below.

If a message arrives in a batch of size , according to the
worst case TSP tour discussion in Section II-C, the total service
time of the batch may be bounded by

(41)

By the law of random incidence, a randomly selected message
arrives in a batch of size with probability
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where the batch sizes are Poisson with parameter . There-
fore, the expected batch service time is

(42)

For , can be bounded by . In that
case, (42) can be bounded by

Combining this with delay components 1) and 2) above, for

(43)

For , is bounded above by 2. In that case,
(42) is bounded by

(44)

Since , . Note also that
implies that for some constants and

Therefore, combining with 1) and 2) above, for

(45)

Therefore

for all , and Theorem 1(b) is proven.

B. Source-Destination Policy

In the Source-Destination information structure, destination
information may be used by vehicles in deciding which messages

to pick up. By exploiting this information, vehicles need not tra-
verse the entire geographical region when servicing messages,
but may instead only pick up messages that have both source and
destination locations in a limited area. In the source destination
policy described below, each vehicle is assigned a pickup region
and a delivery region. Messages are not assigned to a random ve-
hicle as above, but are instead assigned to the vehicle that has the
message’s source location in its pickup region and the message’s
destination location in its delivery region. Even though the mes-
sageservicepolicyissimilar to thatusedin theSourceOnlypolicy
above, Theorem 2(b) shows that the change in assignment policy
made possible by using both source and destination information
has a significant effect on message delay. A more complete de-
scription of the policy is given below.

a) Message Assignment. Divide the geographical region into
an grid of subregions, each of area

. To each of the ordered pairs of subregions, as-
sign exactly one vehicle to service that pair. Each vehicle
is assigned to pickup all messages that originate in the first
subregion of its assigned ordered pair that have a destina-
tion location in second assigned subregion. As before, all
messages assigned to a single vehicle that arrive in the in-
terval form a batch, where , the batch time
interval, is a parameter to be determined. Each batch is de-
posited into a queue for its assignedvehicle upon formation
at time for appropriate .

b) Message Service. As before, batches for each vehicle are
served in First Come, First Serve order from the vehicle’s
batch queue. Batch pickups and deliveries are performed in
the same way as in the policy with Source only information
with the notable addition of possible interregion travel time
between source region and destination region.

Theorem 2(b): Further, if then there exists a policy
using Source and Destination information for which the average
delay is finite and is upper bounded as

for all . Therefore the lower bound scaling is achievable
and is necessary and sufficient for stabilty.

Proof: Theorem 2(b): Service of assigned messages is the
same as in the Source only policy described above except that
the TSP tours are performed over possibly distinct subregions of
the environment. Each TSP tour now ranges over a subset of the
geographical region with area . Travel time between
subregions must also be included in the batch service time anal-
ysis. Since the total geographical region is a square of area ,
this interregion travel time may be upper bounded by .

Therefore, as before, the total expected service time required
to service the messages accumulated in is

Again, if , else a worst case tour may be
used to prove the above for .
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Therefore the following bound on is sufficient for stability:

(46)

This equation is quadratic in and may be easily solved for
. Specifically, the following is sufficient for stability:

(47)

As before, the total message delay as a function of the batch
time may be bounded by fixing a batch scaling constant

and then using Kingman’s bound with and

. Therefore,
similar to the Source Only case with the altered scaling of the
area and the addition of the constant interregion travel time

V. CONCLUSION

In this paper, we have presented a dynamic vehicle routing
problem, the DPDP, and obtained lower and upper bounds on
the scaling of the average message delay. These results are a
significant extension of the existing results on the DPDP. Fur-
thermore, the information that is available in making assign-
ment decisions has a significant effect on the delay scaling. In
the case that Source Only information is available, the average
delay scales as . In the case that both Source and
Destination information is available, the average delay scales as

which is an additional improvement
over the case where only source information is available. From
a system design standpoint, these scalings quantify the perfo-
mance improvements achievable by adding additional informa-
tion gathering capabilities to the vehicles.

The DTRP results in [2], [3] bound the average delay for the
each of the pickup and delivery problems as .
This is an additional improvement over the full infor-
mation case we have examined here. We note that as long as ve-
hicles are required to perform physical pickups and deliveries
at the source and destination locations, the DTRP lower bound
serves as a lower bound on the DPDP problem. It is conjec-
tured that this delay bound can be achieved by removing the
restriction that the same vehicle that picks up a message is the
one that delivers it. In a followup paper [15], we show that this
delay bound can be indeed achieved for the pickup and delivery
problem in relay networks.

Note that the set of policies under consideration is some-
what restrictive. We consider only policies with separable as-
signment and service policies. Assignments are made by a cen-
tralized controller independent of the current service require-
ments associated with each of the vehicles. Further, the use of
the for the assignment policy fails to include any
policies in which batches of requests are collected into a
queue at a centralized depot and served in FCFS order. Such
policies were proposed for the DTRP in [1]. The assignments of

consecutive messages are likely to be correlated due to their col-
lection into a single batch, and therefore the independent assign-
ment property fails to hold. Comparing the delay of the
to the average delay of a collection of G/G/1 queues as in
Section IV, the assignment and service policy actually
has a lower average delay than the G/G/1 queues. This dif-
ference disappears as the traffic increases and the probability of
vehicle idleness approaches 0. Therefore, in the limit, our policy
restriction does not seem to hurt us in terms of finding the min-
imum delay scaling, at least for policies.

We also note that the centralized assignment policies pre-
sented in Section IV may be decentralized given appropriate as-
sumptions on inter-vehicle communication. In the Source and
Destination case, message assignments are based only on the
locations associated with each message. After a centralized ini-
tialization period in which vehicles are assigned to pickup and
delivery regions, no centralized decision making or inter-ve-
hicle communication is required. A similar message assignment
policy based on source locations could also be used to decen-
tralize the Source Only policy. We note that these types of de-
centralized policies are not robust to vehicle dropout without the
addition of some recovery mechanism to address vehicle fail-
ures occuring after the initialization period.

APPENDIX A
PROOF OF THEOREM 4

In this appendix, we prove Theorem 4(b) which is a modified
version of Theorem 2 in [3].

The Dynamic Traveling Repairperson (DTRP) problem
refers to the following setup: demands arrive to a closed and
bounded region of area according to a stationary renewal
process. Demands are independently and identically distributed
according to the demand distribution . There are vehicles
traveling in the region with bounded velocity to service these
demands. A demand is serviced when a vehicle arrives at the
demand location and spends a random service time at that
location. The goal is to service the demands with the minimum
average delay between message arrival and service.

Before proving lower bounds on this average delay, [3] pro-
vides a few additonal definitions and assumptions. Let

be the waiting time conditioned on message
service location where it exists. Then the normalized waiting
time function is then defined as

The queue occupancy density is defined to be

(48)

Theorem 4 holds when , and are well-defined.
The proof follows the same sequence of lemmas as in the proof
of Theorem 2 in [3]. Two of these lemmas are stated here
without proof. We will provide the full proof beginning with
the modification of Lemma 5 from [3].

The total service time associated with a demand is defined to
be the onsite service time plus the incremental travel time be-
tween the demand and the next demand to be serviced. Denoting
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the distance to be traveled after the th demand as , the total
service time associated with demand is then .

Lemma 3: The average interdemand travel time is related to
, the expected minimum distance between any two active

demands, according to

Lemma 4: , the expected minimum distance between
active demands, is related to the system parameters as follows:

where .
In [3], Lemma 5 is stated as follows:

Lemma 5 From [3]:

As we are interested in the case with scaling of parameters other
than , we instead prove the following result:

Lemma 5: (Lemma 5 From [3] (Modified)): If both
and also , then

Proof: Consider the following necessary condition for sta-
bility

(49)

Using the fact that from Lemma 3, multiplying
the second term on the left hand side above by and
rearranging implies

(50)

We show in Lemma 7 below that as both
and also . There-

fore, with this scaling, we apply Lemma 4 and

(51)

Squaring both sides of (51) and applying Little’s Theorem,
, we then have

(52)

and the modified lemma is proven.
To complete the proof of Theorem 4, we use the proof of

Theorem 2 in [3] as originally written. This proof solves for
as a function of . Theorem 4

here differs from Theorem 2 in [3] only in the restatement of
the limiting terms as in the modified lemma.

To complete our modifed proof, we must show that
when both and also
in the DTRP system. We first prove a preliminary lemma

on the scaling of the system workload in a DTRP queue where

workload is defined as in the standard definition of workload in
the context of networks:

Definition (Workload): The workload in the system at time
, , is the amount of time it takes the vehicles to serve all

of the messages currently in the system at time .
To show that the average work in system goes to as both

and also , we have the
following lemma.

Lemma 6: For , the average workload in
the system scales as

Proof: Assume the vehicle started serving at time .
Now consider any time, say 0. Let denote the amount of
workload in the system at time 0. Since time 0 is arbitrary,
is distributed like the stationary distribution of workload. Let

denote the minimal amount of time it takes to serve mes-
sages arriving in interval . Then, it is easy to see that

(53)

That is, the work in system is greater than difference between
the amount of arrived work in an interval of length and the
maximum possible work completed by the vehicles in the in-
terval. The (53) is true for all . Further, the time 0 is a randomly
chosen time and hence represents the stationary time. Hence,
we obtain the time average of workload in the system, , is
lower bounded as

(54)

Thus, to compute lower bound on average workload , we need
to compute . That is, we need to compute the average
minimal time required to serve messages arriving to the system
in an interval of length . Let be random number of arrivals
happening in time interval of length . Then, can be lower
bounded by the length of shortest path connecting all source
and destination locations of these messages. The length of
a shortest path through a set of locations is no longer than twice
the length of the shortest cycle through these points, the TSP
tour. Hence, to obtain lower bound , it is sufficient to con-
sider the length of TSP tour through the source and destination
location of points.

Recall the BHH Theorem of Theorem 6 which bounds the
length of a TSP tour. Let denote the length of the TSP tour
through points independently and identically distributed ac-
cording to probability density . Then, for any , there
exists a such that

(55)

where is a finite positive constant. In particular, choose
. Then, Theorem 5 implies that there ex-

ists a such that for all , the following holds:

(56)

We would like to apply (56) to for sufficiently large.
Note that . Due to the Poisson property of the
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arrival process, with probability at least 1/2 for
large enough . Therefore, and

(57)

Assume that is sufficiently large so that and (56) holds.
Substituting in (57), we may lower bound as

(58)

where . From (54) and (58), we obtain

(59)

Consider . Note that the condition of
the lemma that implies that as
required for (56) to hold. Then, from (59) we obtain

(60)

for sufficiently large, and Lemma 6 is proven.
Lemma 7: If both and also

, the average number in queue as
well.

Proof: The first condition of the Lemma 7,
, implies that Lemma 6 holds. With this lemma, the second

condition, , implies as well.
The work associated with each message is upper bounded by

the diameter of the region plus the onsite service time,
. Therefore, because the average work in the system is

going to and the work associated with each message is finite,
the average number of messages in the system, , must be going
to as well.

APPENDIX B
PROOF OF BATCH QUEUEING TIME

In this appendix, we prove the following lemma, bounding
, the time a batch spends in queue for the Source Only Policy

given in Section IV-A.
Lemma 1: For the policy in Theorem 2(b) with batch time

for some , the delay of the
batch in the queue is bounded by

(61)

Proof: may be bounded by using Kingman’s bound for
the delay in a G/G/1 queue. That is

(62)

where is the variance of the interarrival times and is the
variance of the service times. In this context, the batch interar-
rival times are deterministic so and , the
arrival rate of batches. With fixed as in (39), .

Bounding requires some additional effort. First note that
. has two parts: 1)

for the pickup and de-
livery tours and 2) for
pickup and delivery. Then

(63)

Compute the terms of (63) individually. First

(64)

(65)

(66)

(67)

(68)

where (65) uses the formulas for iterated variance and iterated
expectation, (66) is by the BHH theorem, Theorem 5, and (67)
is by concavity of .

Next, the second term in (63) is

(69)

(70)

(71)

(72)

(73)

where (71) is by concavity and (73) assumes that
. Note that if , the system is very lightly

loaded and a policy based on the worst case TSP may be used to
again bound in a similar way, without the variance
terms.

The last term in (63) is just the second moment of a Poisson
variable

(74)

Finally, put all of these terms together

Substituting this into (62) above

Therefore, given the batch time ,
we see that .
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