IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011 845

Distributed Averaging in Dynamic Networks

Shreevatsa Rajagopalan and Devavrat Shah

Abstract—The question of computing average of numbers
present at nodes in a network in a distributed manner using gossip
or message-passing algorithms has been of great recent interest
across disciplines—algorithms, control and robotics, estimation,
social networks, etc. It has served as a non-trivial, representative
model for an important class of questions arising in these disci-
plines and thus guiding intellectual progress over the past few
decades. In most of these applications, there is inherent dynamics
present, such as changes in the network topology in terms of
communication links, changes in the values of numbers present
at nodes, and nodes joining or leaving. The effect of dynamics
in terms of communication links on the design and analysis of
algorithms for averaging is reasonably well understood, e.g.,
J. Tsitsiklis, “Problems in decentralized decision making and
computation,” Ph.D. dissertation, MIT, 1984; D. Bertsekas et
al., “Convergence theories of distributed iterative processes: A
survey,” MIT, 1983; A. Jadbabaie ef al., “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Trans. on Automatic Control, vol. 48, no. 6, pp. 988-1001, 2003;
S. Boyd et al., “Gossip algorithms: Design, analysis and applica-
tions,” Proc. IEEE INFOCOM, 2005, pp. 1653-1664. However,
little is known about the effect of other forms of dynamics. In this
paper, we study the effect of such types of dynamics in the context
of maintaining average in the network. Specifically, we design
dynamics-aware message-passing or gossip algorithm that main-
tains good estimate of average in presence of continuous change
in numbers at nodes. Clearly, in presence of such dynamics the
best one can hope for is a tradeoff between the accuracy of each
node’s estimate of the average at each time instant and the rate
of dynamics. For our algorithm, we characterize this tradeoff and
establish it to be near optimal. The dependence of the accuracy of
the algorithm on the rate of dynamics as well as on the underlying
graph structure is quantified.

Index Terms—Averaging, consensus, dynamic, gossip.

I. INTRODUCTION

YNAMICS is inherent to any networked control and pro-
D cessing system. Typically, the observed or sensed state of
the system is summarized in form of parameters that change
over time. To achieve desired functionality of the system, it is
necessary to continually or periodically evaluate or compute

Manuscript received July 30, 2010; revised October 27, 2010; accepted Feb-
ruary 02, 2011. Date of publication February 14, 2011; date of current version
July 20, 2011. This work was supported in part by theNational Science Foun-
dation (NSF) under Projects CNS 0546590, TF 0728554 and in part by a Air
Force Office of Scientific Research (AFOSR) Complex Networks project. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Michael Gastpar.

The authors are with the Laboratory for Information and Decision Systems,
Operations Research Center, and the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: vatsa@mit.edu; devavratvatsa@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2011.2114635

some function of these parameters. For instance, in a commu-
nication network such as the Internet, the problem of routing
is to decide routes based on network parameters such as the
load on the links, the connectivity of the network, etc.; pop-
ular Border Gateway Protocol (BGP) for routing does precisely
the same [5], i.e., to update routes continually based on mea-
sured link loads, connectivity, etc. More generally, to share net-
work resources in a generic constrained data network modeled
as a queueing network, a theoretically well-accepted algorithm,
known as the maximum weight or pressure [6], makes decision
at each time instant based on the network state summarized via
queue-sizes. In summary, the generic problem of interest is of
the following form: the system has external input which is ob-
served, and an appropriate algorithm is devised by a “controller”
that often performs some form of optimization. Subsequently
“control” or “action” is fed back into the system, and the goal is
to keep the system “stable”—close to some “desired” state. In
a networked setup, this task has to be performed in a decentral-
ized manner by means of simple algorithm. This is because of
the need of scalability as well as engineering constraints. This
has led to the study of simple, distributed or gossip or mes-
sage-passing algorithms across disciplines in the recent years.

Most of the known results implicitly or explicitly assume a
certain time-scale separation in the system dynamics: the feed-
back is assumed to be instantaneous or equivalently, the al-
gorithm is assumed to be executed at a much faster timescale
than the timescale at which changes happen in the system state.
Thus, while algorithm designed with such a timescale separa-
tion assumption works well when the system is static or slowly
changing, it may not work properly when the system is dy-
namic, which is the case in practice. For example, this is the
primary conceptual reason why routing protocols like the BGP
suffer from instability: BGP updates routing tables to reflect
changes in the network, but the network state changes at the
same timescale and subsequently, this results in the instability
of BGP, known as route flapping—a major limitation of existing
Internet architecture [7].

Therefore, it would be ideal to have algorithms that can deal
with the dynamics. It is to be expected that robust algorithms
come at a cost in terms of performance—algorithm becomes re-
sistant to changes in the system by trading off exactness in per-
formance. That is, it is reasonable to expect a trade-off between
the accuracy of the algorithm and the degree of system dynamics
that it can handle. Therefore, the goal is to design robust al-
gorithms that are “dynamics-aware.” An ideal algorithm would
work across a range of dynamics, adapting itself according to
what is feasible. And it would achieve as good a tradeoff be-
tween dynamics and performance accuracy as possible. Now
roughly speaking, there are three categories of dynamics: highly
dynamic scenario, moderately dynamic scenario, and static or
slowly changing scenario. Goal is to investigate performance of

1932-4553/$26.00 © 2011 IEEE



846 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011

averaging algorithms in this entire range of scenarios and under-
stand the interplay between dynamics, network structure, and
performance.

A. Related Work

Tsitsiklis [1] initiated the inquiry of interplay between net-
work dynamics and performance of decentralized algorithm in
the context of networked control. Specifically, in [1] the ques-
tion of reaching consensus among a collection agents is studied.
The algorithm proposed performs linear iterative averaging. The
effect of network dynamics in terms of link connectivity on per-
formance of algorithm was studied. This seemingly simple task
of (weighted) averaging is used as a “subroutine” for performing
estimation as well as solving a class of optimization problems
in a distributed manner. An interested reader is referred to book
by Bertsekas and Tsitsiklis [8]. In the above-mentioned work as
well as in the more recent works (see Jadbabaie, Lin, and Morse
[3], Blondel et al. [9]), the dynamics in terms of the network
link connectivity or topology was addressed in a bounded ad-
versarial setup. In a nutshell, the above results established that
asymptotically, the algorithm will find the correct average at all
nodes (or consensus will be reached) if and only if the network,
formed by links that are present infinitely often over time, is con-
nected; the rate of convergence depends on the “how often” each
link is present. Similar concerns and many more applications
have brought this question to /ife in recent years—for example,
work by Boyd et al. [4] on gossip algorithms considers effect of
such topological dynamics in a randomized model inspired by
peer-to-peer networks. All of these models consider dynamics
in terms of the topology, but not in terms of 1) the values at the
nodes, or 2) node arrival and departure. In this paper, we shall
focus on the effect of dynamics of type 1) and 2) on the perfor-
mance of algorithm.

Before we proceed towards the content of this paper, it is
worth noting similar aspects of dynamics captured in online and
streaming algorithms as well as stochastic networks. Now on-
line and streaming algorithms can be viewed as setup in which
the state of the system is gradually revealed. However, it is
different from the setup where the system state is continually
changing with time. Generically, such algorithms are studied in
centralized setup and hence the network structure does not play
any role in determining performance. In the context of stochastic
queueing networks, dynamics is inherent. Here, the primary per-
formance goal is the stochastic stability. This is an asymptotic
and it usually does not quantify the precise tradeoffs between
performance and dynamics that can be achieved by designing
dynamics-aware algorithms.

We take note of recent survey by Dimakis et al. [10] on the
state of art of consensus and gossip algorithm, a recent mono-
graph of Gossip algorithms by Shah [11] and work on dynamic
linear estimation in sensor networks by Kar and Moura [12].

B. Our Contributions

In this paper, we address the question of designing dynamics
aware algorithm for the problem of estimating the sum (or
equivalently average) in a network, where the values of nodes
are changing continually with time. This problem is chosen
because it is the simplest nontrivial problem. As noted above,

it is also a well-studied problem and of great interest in control
theory, computer science, and networks, both independently
and as well as a subroutine for many applications such as linear
estimation, consensus, projections for dimensionality reduc-
tion, maintaining “sketches,” computing gradients in convex
optimization, etc. An interested reader is referred to a recent
monography by Shah [11].

In order to study this problem, design algorithms for it, and
analyze their performance, we introduce a natural model for
the dynamics in terms of changes in the values or numbers
present at nodes in the network. These changes may involve ei-
ther high dynamics or moderate dynamics. We model the former
as multiplicative changes in the values, and the latter as ad-
ditive changes. As the main result, we design algorithms for
both of these scenarios that are dynamics-aware and analyze the
tradeoff it induces in terms of accuracy of estimation and the rate
of dynamics.

For the high or fast dynamics, modeled as “multiplicative
changes,” we design an algorithm using extremal properties
of the exponential distribution, relation between exponential
random variables of different rates and a novel distributed
algorithm to maintain minimum of numbers in a network in
dynamic setup. This algorithm can be viewed as a (nontrivial)
generalization of the algorithm by Mosk-Aoyama and Shah
[13] to compute summation in a static network. Specifically,
the algorithm of [13] does not extend to dynamic setup readily
for two reasons: 1) the algorithm of [13] requires estimation of
minimum of numbers in the network and the obvious scheme
used does not work in dynamic setup (see Section I-C for
details); 2) the natural extension of algorithm of [13] would
require drawing new random numbers every time nodes change
their values. This will lead to a situation where some form of
“time-stamp” would be required associated with each random
number and destroying elegance (as well as distributed prop-
erty) of the algorithm. Our algorithm is presented in Section III
and its near optimality properties are stated in Theorems 1 and 2.

For the moderate or slow dynamics, modeled as “additive
changes,” we study the property of the known linear iterative
averaging algorithm. We find that the error in the estimation
in such a scenario is bounded in terms of the spectral gap
of the communication matrix. The precise result is stated in
Theorem 3.

In both cases, the accuracy of the algorithm depends on the
“rate of dynamics” and the graph topology. For multiplicative
changes, the network diameter and for additive changes, the
spectral gap of the “averaging matrix” affects the accuracy.

C. Dynamic Minimum

As mentioned earlier, an important hurdle that one needs to
overcome to adapt algorithm by [13] in the presence of mul-
tiplicative changes, is to estimate minimum of these dynamic
numbers in the network in a distributed manner. While this
question of “dynamically computing minimum” is not the main
result of this paper, it is an interesting byproduct contains the
essence of the challenges encountered in designing algorithms
in presence of dynamics. Therefore, we shall describe the
problem and challenges involved here. Appropriate algorithm
is described in Section III-A.



RAJAGOPALAN AND SHAH: DISTRIBUTED AVERAGING IN DYNAMIC NETWORKS

Now, the problem. Given a network with connectivity graph
G = (V,E), value Y, (t) at node v € V that changes with
time which is indexed by ¢ € {0,1,2,...}. We wish to maintain
Yinin(t) = min, ey Y, (¢) at each node using simple, distributed
algorithm. That is, an algorithm that can only maintain limited
data structure (does not scale with network size |V|), communi-
cate with its neighbors as per GG and preferably does not utilized
global network structure.

Now when Y, (t) = Y, for all ¢, i.e., values at nodes
does not change, an obvious algorithm for this is as fol-
lows: each node v € V maintains estimate Y, with
initially Y, = Y,; at each subsequent time step, it up-
dates them as Y, = min(f/v./ miny,e N (y) Yu), where
N@w) = {u € V : (u,v) € E} denotes the set of neigh-
bors of v. If G is connected, then within diameter many steps,
each node learns the precise value of the minimum.

However, this simple algorithm does not work when the
values are changing. The reason is that once the values Y, (t) all
become small (e.g., if all Y,,(¢) remain O for some time), then,
even if the Y, (¢) increase unboundedly, the small estimates Y,
will continue to remain small! In essence, this approach forever
“remembers” the lowest value ever attained. Conceptually,
the algorithm needs to “forget” the history quickly enough.
At the same time, since the algorithm is distributed, it cannot
“forget” it too quickly or else it may not even be good in the
static case! In other words, an appropriate algorithm must learn
discounting of old information, while not entirely discarding
it. This is a general problem for online algorithms dealing
with dynamic systems. For instance, consider the updating
rule (used by, e.g., Kalman filtering) which maintains a model
y(t), and, on obtaining new information n(t) at time ¢, updates
y(t+ 1) = ay(t) + (1 — a)n(t) for some «. In this case, we
have y(t + 1) = 3,5, af(1 — a)n(t — k). By doing so, the
effects of older n(s), s < t, are dampened; for instance the
contributions of {n(s) fors < ¢t—1/(1—«)} can effectively be
ignored. Of course, in our setup finding such proper « requires
knowledge of entire network structure and such property o may
not even exist in our setup.

Indeed, there is an elegant (and different) way to resolve this
question as explained in Section III-A. The algorithm presented
maintains an estimate of the minimum to within an accuracy
that depends on the diameter of the network and it is (order)
optimal. In general, devising similar function-dependent dis-
counting procedures for other functions would be an interesting
direction of future research.

II. MODEL AND RESULTS

This section describes setup and problem statement followed
by main results.

A. Setup

We have a network with an underlying connectivity graph
G = (V,E) that has n = |V| nodes. We shall assume that
network graph G is connected and has D as its diameter. At
each node v, there are variables X, (¢) taking non-negative real
values that depend on time ¢ > 0 with initially £ = 0 and
X,(0) = 1 forall v € V. We shall consider deterministic

847

communication with synchronous time: time is discrete with ¢ €
{0,1,2, ..., } and communication is synchronous. At each time
t, each node can communicate with all of its neighbors, and
exchange one number! per unit time. That is, if (u, v) € E then
nodes v and v can send a number to each other. The values of
the nodes change over time and at most once each discrete time.
Specifically, values at nodes change in a bounded manner either
additively or multiplicatively: let 6 > 0 be fixed and given.

1) Additive change: forany v € V, | X, (t + 1) — X, (t) < §]

forany ¢t > 0.
2) Multiplicative change: for any v € V, e™% <
(X(t+1))/(X(t)) < €® forany t > 0.

It is worth noting here that the above model requires all
changes to be uniformly bounded. As the reader will notice, the
algorithm for multiplicative change even uses the knowledge
of this bound explicitly to obtain desired result. We strongly
believe that these worst case bounds can be replaced by sto-
chastic bounds on changes in value (both in model and the
algorithm). Extending results for more generic dynamic setup
remains important direction going forward.

B. Problem Statement

The goal is to estimate at each node v, using a distributed
(message-passing) algorithm, a certain function of these values
X (t), namely thesum ), i X, () (or equivalently when n is
known, the average), and maintain these estimates as the values
change with time. Ideally, one wishes to minimize the error in
estimation over all times.

C. Results

The results are described separately for multiplicative
changes and additive changes.

1) Multiplicative Changes:

Theorem 1: For any given p € (0,1) and ¢ € (0,0.35),
there exists a randomized algorithm (described in Section IIT)
that maintains estimates X,(¢) at each v € V, so that
under the deterministic communication model and for any

m = [(3In(2/p))/(€*)]

X (t)

1 —€ e—m(D+1)5 < v\
S S S0

< (1 + E)em(D-i-l)é

for all t > m D, with probability at least 1 — p.

Theorem 1 suggests the tradeoff between dynamics rate § and
accuracy which depends on diameter D. Next, we state a lower
bound on the accuracy of estimation achievable by any random-
ized (or deterministic) algorithm.

Theorem 2: Consider class of distributed algorithms as de-
scribed in Section II-A in which each node v can obtain in-
formation only from its neighbors {u € V : (u,v) € E}
and the information communicated by a node u to v only de-
pends on the state of u. Suppose there exists such an algorithm
that maintains estimates X, () for v € V such that e=2 <
(X (1)/(32, Xu(t)) < e forallv € V with probability at
least 3/4, then A > D§.

ITn practice the bit-rate of communication is bounded and a number can be
exchanged only up to some accuracy. We shall ignore this issue here.



848 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011

@,

Fig. 1. Ring graph on n = 7 nodes. Each node communicates with its two
neighbors.

Ignoring the € and p, note that the exponents in Theorems
1 and 2 match, up to a factor of m. This shows that the expo-
nent D¢ is inherent effect of dynamics on the performance of
algorithm.

2) Additive Changes: The algorithm that we study is the well
studied, known linear iterative algorithm. It utilizes a doubly
stochastic (averaging) matrix A = [A,,] € R}*" that is graph
G conformant, i.e., Ay, = 0 if (u,v) ¢ E, and irreducible.
The following result states the accuracy of estimation of the
algorithm in presence of additive changes. This result is ele-
mentary and should be known in literature. We state it here for
completeness.

Theorem 3: The linear iterative algorithm utilizing matrix A
described in Section IV maintains estimate X »(t) at each node
v € V sothatfort > 0

1K(6) - Xl < 22
where X (t) = [X,(t)] is the vector of estimates, Xave(t) =
(1/n) 3>, X,(t) is the actual average at time ¢ and A = A\(A)
defined as

[ Az

el

AA) = sup
Q:GR”:ZU x,=0

D. Examples: Network Graph Models

For concreteness, we apply the results to several graph models
and see how the performance scales under multiplicative model.

1) Line/Ring Graphs: A line graph (see Fig. 1) consists of
n nodes, say 1,2,...,n, with an edge between 7 and ¢ + 1 for
1 <% < n — 1. A ring graph is similar, with, in addition to
the edges in the line graph, an edge between n and 1. For a line
graph or ring graph with n nodes, its diameter is D = O(n).
Therefore, in Theorems 1 and 2, for the deterministic commu-
nication model, we have, with probability at least 1 — p at all
times ¢

X (t)

e*@(’ﬂ&) S S e@(n&)

v v

ignoring the constants that depend on p and e.

2) Grid Graphs: A grid graph, natural extension of line graph
to two dimensions, consists of n nodes, say 1, 2, ..., n, placed
on an /n X /n grid with each node connected to four of its

&

Fig. 2. Complete graph.

neighbor with exception of nodes on boundary which may be
connected to three or two neighbors. The diameter for such a
graphis D = ©(y/n). Therefore, in Theorems 1 and 2, we have
that with probability at least 1 — p at all times ¢

X,(t)

e~ OWVnd) < < OVnd)

v v

ignoring the constants that depend on p and e.

3) Geometric Random Graphs: A geometric random graph
is the probabilistic analogue of grid graph. Here n nodes are
placed independently and uniformly at random in a two-dimen-
sional square of unit area. Two nodes are connected to each
other if they are within distance r(n) of each other. For the con-
nectivity of the graph with high probability, it is well under-
stood that r(n) > r*(n) is required. Here this critical connec-
tivity radius *(n) = ©(y/logn/n). For graph obtained with
r(n) > r*(n), with high probability the diameter is ©(1/7(n))
and equals O(y/n/logn) when r(n) = ©(r*(n)). In this par-
ticular case, in Theorems 1 and 2, we have that with probability
at least 1 — p at all times ¢

e—@(&y/n/logn) < XU(t)( ) < e@(éy/n/logn)
> X (1) =

v v

ignoring the constants that depend on p and e.

4) Complete Graphs: A complete graph (see Fig. 2) on n
nodes has an edge between each pair of nodes; thus its diameter
is 1. In this case, the theorems give good results, but a straight-
forward algorithm would be even simpler: since each node com-
municates with all nodes at each time ¢, it has all the information
that was in the network at time ¢ — 1, and estimation is therefore
trivial, to within a difference of é or factor of ¢? for additive and
multiplicative changes, respectively. Note that this error exactly
matches the lower bound of D§ = § from Theorem 2:

oo Kol s

220 Xo(1)

5) Star Graphs: A star graph (see Fig. 3) is a graph whose
edges are exactly all those between one fixed node and every

other node. Compared to complete graphs which have (;L)
edges, star graphs are very sparse, having only n — 1 edges.
However, since their diameter is small (D = 2), the behavior
of the algorithms on the star graph is qualitatively the same

as for complete graphs (with deterministic communication).



RAJAGOPALAN AND SHAH: DISTRIBUTED AVERAGING IN DYNAMIC NETWORKS

Fig. 3. Star graph.

This shows that the diameter is the predominant feature of the
topology which affects the performance.

6) Expander Graphs: Expander graphs are graphs that are
sparse but have high connectivity. In expander graphs, the di-
ameter is O(logn) [14]. Since ¢®(°8™) = ) the estimates
can be made to satisfy

X, (t
(1 —e)n=0md < _Xolt) < (1 + €)n®md),

20 Xo(t)

It should be noted that small-world networks [15], [16]
though not necessarily expander graphs, have a diameter of

O(polylog(n)).

III. MULTIPLICATIVE CHANGES

This section describes the algorithm for maintaining estimate
of sum at each node in the presence of multiplicative changes in
nodes.

Our main algorithm, as an important subroutine uses an
algorithm for maintaining minimum (rather than the sum) of
values in a network in presence of dynamics. This is described
in Section III-A. In a way, this answers question posed in
Section I-C.

Next, in Section III-B, we show how the algorithm of
Section III-A can be utilized to estimate the sum with values
changing multiplicatively. We shall present two algorithms.
The first algorithm described in Section III-B1) merely uses the
maximum of the values as an estimate for the sum. The second
algorithm described in Section III-B2 involves transforming
the problem of summation into the problem of minimum
computation by means of randomization. These two algorithms
collectively establish Theorem 1.

Finally, in Section III-C, we establish the lower bound, using
adversarial arguments, on the performance achievable by any
algorithm. This establishes Theorem 2.

A. Estimating the Minimum

In this section, we state an algorithm for maintaining esti-
mates of the minimum of values in the network: let Y, (¢) be
non-negative value at node v € V so that for any v € V and
t>0

ot < Tl D s
S Vo S

849

For this section, consider this as the problem of interest. How-
ever, as mentioned earlier, in Section III-B2, we shall trans-
form the problem of estimating » X, (¢) into the problem of
computing minimum of values Y, (¢), where Y, (¢) will be a
(random) function of the actual value X, (¢).

Let N (v) denote the set of nodes at distance (with respect to
the shortest path metric in G) < k from v. Let N(v) = Ny(v)
denote the set of neighbors of v including v itself, and let d(u, v)
denote the (shortest-path) distance between u and v. Clearly,
diameter of G can be defined as

D = max d(u,v).

u,veV

As discussed in Section I-C, if § = 0 or the case when
Y, (t) =Y, for all ¢, essentially a trivial message-passing algo-
rithm can find the correct minimum in time D: each node main-
tains an estimate Y, (t) of the actual minimum min,, Y;,, and, on
communicating with all its neighbors and receiving their esti-
mates ffv(t — 1), updates its estimate simply as the minimum
of all known values: Y, (t) = min,e N (v) Y, (t — 1). While this
algorithm works for § = 0, it can be arbitrarily bad for § > 0
as explained in Section I-C. We present our algorithm for any
6> 0.

1) Algorithm: Each node v maintains an estimate Y, (t) of
min,, Y, (t). At the beginning of each time ¢, each node v ex-
changes its current estimate Y, (t — 1), from time ¢ — 1, with all
its neighbors, and similarly receives all their estimates. Then,
the new estimate Y, (¢) is computed as

f/u(t) = min {Yv(t), min }N/u(t — 1)65} . )
u€N (v)

In other words, the new estimate of node v, at time £, is the min-
imum of its own new value, and the estimates of all its neighbors
attime ¢t— 1, scaled up by e®. This last factor is the essential com-
ponent of the discounting. We shall assume that initially, ¢ = 0
and Y,,(0) = Y,,(0). And we shall use the definition Y,,(s) = oo
for s < 0.

Theorem 4: Under the above setup, for any ¢t > D

(min V., (£)) < V() < e (min Vi, (1)), )

Proof: To start with, we claim the following identity: for
anyv € Vandt >0

Y/v £ = mi .

= mj in {Y,(t —k)e"}. 4
min, moin {Ya(t = k)e™} @

Yy(t — k)e*} 3)

In the above, we use definition Y, (s) = oo for s < 0. To
establish this identity, observe that the two expressions (3) and
(4) are equal—only the order of the mins is reversed; they both
evaluate the minimum over the same set of pairs (u, k). Thus, it
is enough to prove the first equality.



850 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011

The equality follows by recursive application of the update
rule (1). To that end, application of the rule once and twice re-
spectively, we obtain

Y,(t) = min {Yv(t), mj&?)ffu(t - 1)e5}
ue v

min Y, (t — 1)e®
uEN (v)

= min {Y,, (1),
min Y, (t — 2)625} .
wEN>(v)

More generally, for any m > 1, it follows that
k)e™},

ff'ln(t —m — 1)e(m+1)6} .

f/v t) = min mn;n min {Y,
( ) {k 0 ueNy (v){ (
min
WEN,41(v)
By definition, we assume Y., (t) = oo for t < 0. Therefore, by

taking m — oo and with notation Y, (s) = oo forany u € V
and s < 0, we obtain

Y, (t) = Y, (t — k)eF}.
=g, a0, el = e
This establishes identity (3) [and hence (4)] as desired.

Now, we shall utilize (4) for Y, (t) to establish (2) for any
given v € V. To this end, for a given v € V using (4) it follows
that

Y, (t) = min {Yalt = d(u,0))et? L )
This follows immediately from (4) and the fact that the value
Y, () increases (re. decreases) by multiplicative factor e (re.
e~%) in unit time.

Now we are ready to establish (2). Observe that due to bound
on multiplicative change, Y, (t) < Y,(t — d(u,v))ed(®)?,
Therefore, from (9), it follows that for any ¢t > 0

(min Y, (1)) < Y, (t). (©6)

ueV

Similarly, due to bound on multiplicative change, it follows that
Y, (t — d(u,v)) < Yy(t)e?™)® for t > d(u,v). Therefore,
from (5) it follows that for £ > D

Y, (t) < min {Yu(t)ew(u,v)é}

ueV
< (s
min {e*P°V,, (1)}
< e2PP(min Y, (t)). (7N
ueV
From (6) and (7), the desired result (2) follows. [ ]

Note that the error is one-sided, but by taking the estimate to
be Y, (t)eP? instead, the guarantee within a factor ¢”® can be
provided. In fact, it can be shown using argument similar to that
used in Section III-C, that this is the best possible bound that
any algorithm can guarantee.

Although we proved these results about estimating the min-
imum for multiplicative changes, since that is the form in which
we will use this algorithm, it is worth noting that a similar

bound, simpler in form, holds for estimating the minimum
under additive changes. This requires using an update rule
analogous to (1).

Theorem 5 (Additive Version): Suppose value at node v € V
at time ¢ be Y, (t). Forall t > 0 and v € V, let

Yo(t+1) = Yy (t)] < 6.

Let the estimation at node v at time ¢ > 0, denoted by Y, (t) be
updated as

Y, (t) = min {Yu(t), min f’u(t -1+ 5} , )

uEN (v)

with }7”(5) = oo for all s < 0. Then, forall t > D

(min Y, (1) < Yo(t) < (minYu(t)) +2D6. (9

Proof: Define Z,(t) = exp(Y,(t)) and Zy(t) =
exp(Y,(t)). Observe that then 7, (- ) and Z,( -) are similar to

the setup of multiplicative change. Therefore, by Theorem 4, it
follows that

(min Z, (1)) < Z, () < €*P° (min Z,(t)).
u€eV u€V
This is equivalent to (9). [ |

It is easy to see that similar algorithm can be devised to estimate
the maximum instead with similar guarantees, a fact which we
shall use in the next section.

B. Estimating the Sum

In this section, we describe our algorithms for maintaining
estimates of the sum, under multiplicative changes. We shall
start with a simpler algorithm, that maintains maximum as an
estimate of the summation. This will be followed by a more in-
volved algorithm that builds on the algorithm of Mosk-Aoyama
and Shah [13].

1) A Simple Estimator Using Maximum: An estimate for the
sum, that would be within a factor of n, is the maximum. This is
because the sum of a set of n positive numbers is larger than
the maximum of the numbers, but no more than n times the
maximum. Therefore, \/n times the maximum provides an es-
timator of summation that is within factor 1/+/n and /n of the
summation. In Section III-A we described an algorithm to main-
tain estimation of minimum within multiplicative factor e”%. A

similar algorithm (with min replaced by max and e® by e~? in

(1)) for maximum provides its estimation within factor e?® as
well. Therefore, effectively we have an estimation of summation
within factor \/ﬁeD 4 Next, we shall describe a more involved
algorithm for which the estimation will be within factor e®(”%)
of summation. Now, when § is large enough, i.e., /n < eP?
both the naive maximum-based estimation and the more in-
volved algorithm perform similarly. However, when eP? «
\/n the more involved algorithm dominates the naive maximum
based estimator. In general, the randomized algorithm described
next has essentially the best possible performance with error
within factor ¢®(P%).

2) Randomized Estimator: We now turn to our algorithm for
estimating the sum of values in a network, using a combination



RAJAGOPALAN AND SHAH: DISTRIBUTED AVERAGING IN DYNAMIC NETWORKS

of the algorithm for estimating the minimum found in the pre-
vious section, and an appropriate transformation on exponen-
tially distributed random variables.

Recall that X, (¢) denote the non-negative values at nodes
v € V at time {. Without loss of generality, let us assume that
X,(0) = 1 for all v € V. We shall assume that for any ¢ > 0
andv € V

e b < M < el
STX0 S
We shall associate an auxiliary variable Y, (¢) to each node as
follows: Y, (t) is a random function of X, (t), distributed as
an exponential random variable with parameter X, (¢), denoted
Y, (t) ~ Exp(X,(t)). That is,
P(Y,(t) 2 ¢) = 70, forany ¢ > 0.

As we shall see, Y,,(t) will also change dynamically so that for
anyv € Vandt >0

- Yl D s
S Vo S

Let Y, (t) be estimation of min, ey Y, () node v as per algo-
rithm described in Section III-A using the multiplicative factor
e®. Using Y,(t), we shall obtain estimate X,(¢) of the sum
> ueyv Xu(t). Next, we describe key intuition behind such an
algorithm followed by precise algorithm.

The basic idea behind the algorithm, which enables us to
transform the problem of computing the sum to that of the
minimum, is the following elementary but unique extremal
property of the exponential distribution: The minimum of a
set of exponential random variables is an exponential random
variable whose rate is the sum of their rates. Therefore, if
we had random variables Y, (t) ~ Exp(X,(t)), then their
minimum is distributed ~ Exp(}, oy Xu(t)). Therefore, the
inverse of mean (or average) of minimum min,cy Y, (%) is
> wev Xu(t). Therefore, by computing several independent
samples of minimum min, ey Y, (t), we can obtain reasonable
estimate of )\ X (t).

The above is precisely the idea (and algorithm) used by [13]
for static setup. However, its adaptation to dynamic scenario is
not immediate. Specifically, we need to make sure that Y,,(¢) ~
Exp(X,(t)) for all ¢t and v € V while ensuring that Y, (¢ +
1)/Y,(t) is within factor =% and e® with probability 1 for all
t. This is where another property of exponential distribution
comes to our rescue. Specifically, consider the following rule
for generating Y,,(¢) forallt > O andv € V:

at t=0, YU(O) ~ EXP(XU(O))7
for t>0, Y,(t+1)= %Yv(t) (10)

Thus, the variable Y, (0) is randomly generated once at ¢t =
0, and for all subsequent ¢, Y, (¢) is a deterministic function
of Y, (0) and changes in X, (-). It is easy to check that this
achieves Y,,(¢t) ~ Exp(X,(t)). Further, we have
Y.
et < 41,(15) <.

Y, (t+1) ©

Next, we shall describe the precise algorithm.

a) Algorithm: Given p € (0,1) and € € (0,0.35), let
m = [(3In(2/p))/(€*)]. For each v € V and ¢t > 0, define
Y,.,i(t) with 1 < i < m as follows:

» fort = 0, generate Y,, ;(0) independently of everything
else and as per exponential distribution with parameter
X,(0);

o fort > 1,update Y, ;(t + 1) = X, (t)Y,,:(¢)/Xo(t + 1).
As discussed above, Y, ;(t) ~ Exp(X,(t)) for all (v, ) and for
all £. The m different indices ¢ can be thought of as m indepen-
dent copies of the algorithm running in parallel. The update rule
involves the different ¢’s “taking turns” in round-robin fashion:
at each time ¢, if ¢ = 4 mod m, then the nodes exchange their
i-values and update them as

} . (11)

f/w'(t) = min {Ym(t), min Y, it —1)e™

uGN(u)
Define
1 m
—Z (12)
m =1
Then, the estimate of )\ X, (t) at node v is given by
N em(D—i—l)é
Xo(t) = —=—+— (13)
Y, (t)

Next, we establish the bound claimed in Theorem 1 for this
algorithm.

Proof of Theorem 1: As Y, ;(t) changes only at t =
1 mod m, wehavef/ﬂﬂ;(t—l) = f/q,,,;(t—Z) =...= fﬁ,,i(t—m).
In addition, e™™® < (Y,.i(t))/(Yo,i(t —m)) < €™, so fo-
cusing on the index ¢ and times ¢ = ¢ mod m, (11) is simply the
update rule (1) for the values Y, ;(¢) and associated estimates

Y,.i(t):
Y, i(t — m)emﬁ}.

min Y,
uweN (v)

Ym(t) = min {Ym(t),
Therefore, from Theorem 4 of Section III-A, we have that for
t = 7 mod m and for each ¢

(min Y, ;(t)) < Yai(t)

< e2Dm5(mm Y...i(1)).
uevV

ueV (14)

Therefore, for any ¢ > mD and each ¢

Yyi(t) < e@PHUmS (1minY, ,(1)).

e ™ (minY,, (1) < i
(15)

ueV

For ease of notation, let Z; = min,ecv Y, ;(t) with1 <7 <m
and Z = (1/m) >""" | Z;. Summing up the inequalities in (15)
over ¢, and using (12), we can write

A < Y ( ) < Z6(2D+1)m6

The Z;s are indepenent and identically distributed (i.i.d.)
random variables, each exponentially distributed with rate
A = >, cv Xo(t), which is the sum we want to estimate.



852 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011

By large deviation estimation for exponential distribution, it
follows that

P (Z > ;) <exp(—m(c—1—1In¢c)) forc>1,
P (Z < ;) <exp(—m(c—1—1Inc)) forc< 1.

Therefore, it can be verified that for any € € (0, 0.35)

Thus, for any ¢ € (0,0.35) and p € (0,1), if m =
[(31n(2/p))/(€?)], then with probability at least 1 — p

efmé < 7m6Z
— (&
AMl+4+¢€) —

<Y, (1)
< (2D+1)mé 5
@D 41)ms

Al —¢)

IN

Finally, since the estimate of node v is X,(t) =

(em(P+1)8) /(Y,(t)), it follows that with probability at least

1 —pandfort > mD

X, (t)
A

This completes the proof of Theorem 1. [ |

(1 + 6)em(D-|—1)6 > > (1 _ 6)6_(1+D)m6.

C. Lower Bound

This section establishes lower bound on the accuracy for any
algorithm operating under multiplicative changes. Specifically,
we shall prove Theorem 2.

To that end, suppose we have an algorithm that, for any values
X, (t) with the promise that

-5 < Xo(t+1) b
S X S

can maintain estimates X, (t) with the guarantee that for any
givent > 0 and all v

A < Xo(1) <A

2o Xu(t)
with probability at least 3/4.

We observe that the estimate X,(¢) can depend only on
X,(t), Xu(t —1),u € N(v), and X,,(t — 1),u € N(v), and
not on X, (t). (Formally, X, (#) is independent of X, () when
conditioned on X, (¢t — 1) and X, (t — 1), for u # v.) More
generally, X, (t) can depend on X, (t — k) or X, (t — k) only
if & > d(u,v), since any information at node u takes time at
least d(u, v) to reach node v.

Let u, v be any two nodes, with d(u,v) = k. Consider the
following scenario. For all times ¢ up to a certain time (say
some large enough time ¢), let X,,(¢) = 1 for all w # u, and
Xu(t) = M where M is some sufficiently large constant. Now
consider the following two cases for ¢ > .

1) Values at all other nodes remain the same and X, (t) in-

creases by e® at each t > t.

2) Values at all other nodes remain the same and X,,(¢) de-
creases by factor €?, i.e., multiplied by e~° at each t > t;.
In either case, at time ¢ = ty + k, the information that is made
available at node v (including that about node w) is exactly the
same. Therefore, the (randomized) decision taken by the algo-
rithm is the same (distributionally) in either case. Since algo-
rithm can predict the correct value within factor e® with prob-
ability at least 3/4, it must be that €22 is at least the ratio of
the summation of values at node « in the above two cases. Now
in the first case, the summation could be as large as M ekt
(n — 1) and in the second case summation could be as small as
Me=" 4+ (n — 1). Therefore,

NG Mer® + (n —1)
T Me R4 (n—1)

e

Applying this argument for pair (v, ) so that d(u,v) = D and
taking M arbitrary large, we obtain that

A > Dé.
This establishes Theorem 2.

IV. ADDITIVE CHANGES

Here we consider the scenario with additive changes. As men-
tioned in Section II-C2, we shall study the known linear iterative
algorithm and establish Theorem 3.

To that end, let X, (¢) be value at node v € V at time ¢ > 0.
Let A(t) = X(t+ 1) — X(t) denote the vector of changes in
the values at nodes from time ¢ to ¢ + 1. By the definition of
additive change model, forallt > O andv € V

1A, ()] = | X, (t+1) — X,(1)] < 6.

The aim here is to estimate average X ,vo(t) where
1 n
Xt = = 3 Xi(t).
0= X0

Note that this is equivalent to computing summation assuming
n is known. In what follows, we describe the known algorithm
maintains estimate X, (£) of Xave(t) at each node v € V for
all ¢ > 0. The algorithm utilizes a doubly stochastic, graph G
conformant and irreducible matrix A = [A,,,] € Rixn. That is,
A satisfies the following properties:

1) Ayy = 0if (u,v) ¢ E;

2) >, Au =1forallu € V;

3) Yo, Auw = 1forallv € V;

4) directed graph G(A) = (V, E(A)) is connected where a

directed edge (u,v) € E(A) iff A,, > 0.

A. Algorithm

In word, the algorithm is simple: at each time, each node
communicates with its neighbor and exchanges their current es-
timates. Subsequently, each node updates its own estimate as
weighted summation of the estimates received from its neigh-
bors and the change in its value. Specifically, for any node v €
V, its estimate Xq,(t + 1) is updated as

Xo(t+1) =" A Xu(t) + Ay(). (16)



RAJAGOPALAN AND SHAH: DISTRIBUTED AVERAGING IN DYNAMIC NETWORKS

Equivalently,

X(t+1) = AX(t) + A(2). (17)
This is immediate extension of the known linear iterative aver-
aging algorithm (for static case) whose update rule is given by

X(t41) = AX(¢).

In literature, it is well known that when values at nodes do not
change (static case) and A satisfies properties listed above, then
X (t) — Xave, Where X,y is the average of the node values.
Here, node values change and X,.(t) over time. We shall es-
tablish that X (£) remains “close t0” X aye(#)1.

B. Example of A

There are many ways to design such doubly stochastic, graph
conformant and irreducible matrices A. A simple choice, that
requires only a known upper bound d on the max-vertex degree,
i.e., d > max, d,, is derived from the Metropolis—Hastings rule
[17]. As per this, define A as

0, if v is not a neighbor of u
Auy = %-, if v # u is a neighbor of u
1-— %“7 if v =u.

Since row u or column u has exactly d,, entries equal to 1/d,
and one (diagonal) entry equal to 1 — d,, /d, it follows that A
is doubly stochastic. It is graph G' conformant by definition and
since G(A) = G, if G is connected (which we assume here)
then so is G(A).

C. Analysis

Here, we establish Theorem 3. Define Y (t) = X(t) —
Xave(t)1, the error vector in estimation at time ¢. Initially, we
assume that X,,(0) = 1 for all v and X,(0) = X,(0) = 1.
Therefore, Y (0) = 0. Also define

Avelt) = = ST A

Observe that, since A is doubly stochastic, A(¢#)1 = 1. There-
fore, using (17) it follows that

Y(t+1)=X({t+1) - Xawe(t+ 1)1

(18)

where e(t) = A(t) — Aave(t)1. The goal is to bound ||Y (-]
using identity (18). To that end, consider e = e(t) for any t.
Under additive change model |e,| < 26 for all v € V and
>, €» = 0. This means that

el = el <48 = dné”.

v

19)

853

Using this, we shall bound ||Y( - )||. By recursive application of
(18), it follows that

t

Y(t+1) =Y Afe(t— k) +Y(0) = zt: Ake(t — k).
k=0

k=0
Therefore, using triangle’s inequality
t
¥ e+ D)< Y A%t = B
k=0
@ &,
<Y M28y/m
k=0
< 26\/n
“1-A
where recall that A = A(A) is defined as
Az

zGR”:ZU x,=0 ||J}|| .

AA) =

To obtain (a), we have used the fact that if x € R™ such that
>,y =0,then )" =z, =0 where z = Az since A is doubly
stochastic. This completes the proof of Theorem 3.

V. CONCLUSION

In this paper, we presented “dynamics-aware” distributed al-
gorithms for estimating the sum or average of values in a net-
work, under dynamics. The algorithm described exhibit near op-
timal tradeoff between accuracy of estimation and rate of dy-
namics. Specifically, the error in accuracy depends on network
topology. Going forward, developing such dynamics-aware al-
gorithm for generic distributed function computation remains
an important research challenge.

REFERENCES

[1] J. Tsitsiklis, “Problems in decentralized decision making and computa-
tion,” Ph.D. dissertation, Dept. of Elect. Eng. and Comput. Sci., Mass.
Inst. of Technol., Cambridge, MA, 1984.

[2] D. Bertsekas, J. Tsitsiklis, and M. Athans, “Convergence theories of
distributed iterative processes: A survey,” Lab. for Inf. and Dec. Syst.,
Mass. Inst. of Technol., Cambridge, MA, 1983.

[3] A.Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transa. Autom.
Control, vol. 48, no. 6, pp. 988—1001, Jun. 2003.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:

Design, analysis and applications,” in Proc. IEEE INFOCOM, Mar.

2005, vol. 3, pp. 1653-1664.

Y. Rekhter et al., RFC 1771: A Border Gateway Protocol 4 (BGP-4),

Mar. 1995.

L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,

pp- 1936-1948, Dec. 1992.

[7]1 T. Griffin and G. Wilfong, “An analysis of BGP convergence prop-

erties,” ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp.

277-288, 1999.

D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Upper Saddle River, NJ: Prentice-Hall, 1989.

V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Conver-

gence in multiagent coordination, consensus, and flocking,” in Proc.

IEEE Conf. Decision Control, 2005, vol. 44, p. 2996.

[10] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “Gossip

algorithms for distributed signal processing,” Proc. IEEE, vol. 98, no.
11, pp. 1847-1864, Nov. 2010.

[5

[ty

[6

e}

[8

—

[9

—



854 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 4, AUGUST 2011

[11] D. Shah, “Gossip algorithms,” in Foundations and Trends in Net-
working. Delft, The Netherlands: Now Publishers, Jun. 2009 [On-
line]. Available: http://web.mit.edu/devavrat/www/Gossipbook.pdf

[12] S. Kar and J. F. M. Moura, “Distributed linear parameter estimation
in sensor networks: Convergence properties,” in Proc. 42nd IEEE
Asilomar Conf. Signals, Syst., Comput., pp. 1347-1351.

[13] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” in Proc. 25th Annu. ACM Symp. Principles Distrib. Comput.,
2006, p. 122, ACM.

[14] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull.-Ameri. Math. Soc., vol. 43, no. 4, p. 439, 2006.

[15] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature, vol. 393, no. 6684, pp. 440442, 1998.

[16] J. Kleinberg, “The small-world phenomenon: An algorithm perspec-
tive,” in Proc. 32nd Annu. ACM Symp. Theory of Comput., New York,
2000, pp. 163-170, ACM.

[17] S. Chib and E. Greenberg, “Understanding the metropolis-hastings al-
gorithm,” Amer. Statist., vol. 49, no. 4, pp. 327-335, 1995.

Shreevatsa Rajagopalan received the B.S. degree in computer science and
mathematics from Chennai Institute of Mathematics, Chennai, India, in 2007
and the ML.S. degree in operations research from Massachusetts Institute of Tech-
nology, Cambridge, in 2010.

Devavrat Shah received the B.Tech. degree in computer science and engi-
neering from the IIT Bombay. Mumbai, India, in 1999 and the Ph.D. degree in
computer science from Stanford University, Stanford, CA, in 2004.

He is currently the Jamieson Career Development Associate Professor with
the Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (MIT), Cambridge. He is a member of the Laboratory
for Information and Decision Systems (LIDS) and Operations Research Center
(ORC), MIT. His research focus is on theory of large complex networks which
includes network algorithms, stochastic networks, network information theory,
and large-scale statistical inference. He is currently an Associate Editor of Op-
erations Research.

Prof. Shah was co-awarded the best paper awards at the IEEE IN-
FOCOM’04, ACM SIGMETRICS/Performance’06; and supervised best
student paper awards at Neural Information Processing Systems 08 and ACM
SIGMETRICS/Performance *09. He received the 2005 George B. Dantzig Best
Dissertation Award from INFORMS. He received the ACM SIGMETRICS
Rising Star Award 2008 for his work on network scheduling algorithms. He
was recently awarded the 2010 Erlang Prize from INFORMS which is given to
a young researcher for outstanding contributions to applied probability.



