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in Input-Queued Switches
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Abstract—Input Queued (IQ) switches have been well studied
in the past two decades by researchers. The main problem con-
cerning 1Q switches is scheduling the switching fabric in order to
transfer packets from input ports to output ports. Scheduling is
relatively easier when all packets are of the same size. However, in
practice, packets are of variable length. In the current implemen-
tation of switches, variable length packets are segmented into fixed
length packets—also knowns as cells—for the purpose of sched-
uling. However, such cell-based switching comes with some sig-
nificant disadvantages: (a) loss of bandwidth due to the existence
of incomplete cells; and (b) additional overhead of segmentation
of packets and re-assembly of cells. This is a strong motivation
to study packet-based scheduling, i.e., scheduling the transfer of
packets without segmenting them.

The problem of packet scheduling was first considered by
Marsan et al. They showed that under any admissible Bernoulli
IID (independent and identically distributed) arrival traffic, a
simple modification of the Maximum Weight Matching (MWM)
algorithm achieves 100% throughput. In this paper, we first show
that no work-conserving (i.e., maximal) packet-based algorithm is
stable for arbitrary admissible arrival processes. Thus, the results
of Marsan et al. are strongly dependent on the arrival distribution.
Next, we propose a new class of “waiting” algorithms. We show
that the “waiting”-MWM algorithm is stable for any admissible
traffic using the fluid limit technique.

We would like to note that the algorithms presented in this
paper are distribution independent or universal. The algorithms
and proof methods of this paper may be useful in the context of
other scheduling problems.

Index Terms—Cell switching, packet switching, scheduling, vari-
able length packets.

I. INTRODUCTION

WO important design criteria for switching architectures

are: (a) throughput of the system, and (b) average delay
of packets. Among different switching architectures, the Input
Queued (IQ) switch architecture has been very attractive due
to its low memory bandwidth requirements compared to other
known architectures. The crossbar constraints of an IQ switch
require it to schedule packets to be transferred between inputs
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and outputs. The scheduling algorithm used to transfer packets
affects the throughput and delay in an IQ switch. A tremendous
amount of research has been done on the design of scheduling
algorithms for IQ switches [1]-[3], [8]. All these studies make
an implicit assumption that the switch works with fixed-size
cells. In other words, they all assume that whenever a packet ar-
rives to the system, it is divided into equal-sized cells, and after
the switching is done, the cells are re-assembled in the form of
the original packet before leaving the system. Contrary to this
common assumption, we consider systems in which the switch
directly works on packets without breaking them into cells. We
call such a switching system a packet-based system, compared
to traditional cell-based systems. Using fixed-size cells in the
switch makes the implementation of the scheduling algorithm
easier compared to the variable-length packets. However, cell-
based switching has the following major disadvantages:

i) Packets arriving at input side need to be segmented into
cells, requiring a special input segmentation module.
Also, at the output side cells need to be re-assembled.
This induces significant implementation overhead.

i) Segmentation of packets can result in generation of
some incomplete cells since a cell cannot contain data
belonging to two different packets. This can cause a
significant bandwidth loss. For instance, if the cell size
is 64 bytes and packet size is 40 bytes then the amount
of bandwidth loss is 24/64 =~ 37%.

Packet-based scheduling algorithms have been studied before
[7]. It is important to first understand the stability region for the
case of packet-scheduling algorithms. Naturally, there is some
similarity between packet-based and cell-based scheduling.
Cell-based scheduling is known to keep the system stable
under the Maximum Weight Matching (MWM) algorithm
[1]-[6] for any admissible traffic. In [7] it has been shown
that canonical modification of the cell-based MWM algorithm
into a packet-based algorithm, which we denote as PB-MWM,
achieves 100% throughput for any admissible Bernoulli IID
traffic with IID packet lengths having finite mean and variance.

In this paper, we first show a straightforward result that the
PB-MWM is rate stable (see Section II) for any IID admissible
traffic with IID packet lengths having finite mean and variance.
We use the fluid model technique to prove the rate stability [6].
Surprisingly, when packet lengths are not IID, we find that any
work-conserving packet-based scheduling algorithm, in partic-
ular PB-MWM, is not always stable. This observation suggests
that there is a fundamental difference between packet-based and
cell-based scheduling algorithms. Hence, we need to design a
different type of packet-based scheduling algorithm in order to
obtain stability for an arbitrary class of arrival processes.

1063-6692/$20.00 © 2005 IEEE
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We propose a new class of scheduling algorithms which
we call “waiting” algorithms. In particular, we show that the
“waiting” modification of PB-MWM is stable for any ad-
missible traffic such that the distribution of packet lengths is
stationary and ergodic with finite mean and variance. We would
like to note that the class of “waiting” algorithms is universal
in the sense that they do not require knowledge of the packet
size distribution nor do they try to learn the distribution.

In summary, the main contributions of this paper are as fol-
lows.

1) Work-conserving packet-based scheduling algorithms are
not always stable.
2) Waiting algorithms are stable.

The structure of this paper is as follows. In Section II, we
briefly describe the input-queued switch architecture, compare
the packet-based and cell-based scheduling algorithms, and
briefly describe the cell-based maximum weight matching
(MWM) algorithm. In Section III we introduce the fluid model
for the switch, and the dynamics of the switch. In Section IV,
we obtain a general condition for rate stability (see Lemma
1). In Section V, we present a counter-example that motivates
us to study a new type of packet-based algorithm, denoted as
“waiting” algorithms. In Section VI, we introduce a simple
waiting algorithm, which is proved to be stable. Finally, we
conclude the paper in Section VII.

II. INPUT-QUEUED SWITCH

In this section we describe the Input-Queued (IQ) switch ar-
chitecture along with useful definitions and notations.

Model of an IQ Switch: Fig. 1 shows the logical structure of
an 1Q switch. We assume that the switch has the same number
of input and output ports,' denoted by N. Time is slotted. We as-
sume that all the incoming and outgoing line-rates are the same.
Let data that can arrive/depart in a time slot be denoted as “cell”.
Thus, in a given time slot at most one cell can arrive at and/or de-
part any port. A packet may consist of multiple cells and hence
the first cell and the last cell belonging to a packet may arrive at
different time slots.2

In order to eliminate the well-known head-of-line blocking
problem, each input maintains N separate FIFO buffers one
for each of the IV outputs, denoted by “Virtual Output Queues”
(VOQ). Data arriving at input ¢ destined for output j is stored
in VOQ,;.

Switching Constraints and the Scheduling Problem:
A switching unit, which is a cross-bar fabric, is required to
transfer data from input ports to appropriate output ports. We
say that a switch has speed up S, if at each time slot at most .S
cells can be removed from each input and at most S cells can
be transferred to each output. The cross-bar fabric imposes the
following scheduling constraints: In a given time slot

ITn practice, one input and one output interface reside on the same line card,
thus the numbers of input and output ports are the same.

2Similar to the assumption made in [7], we assume that a packet contains an
integer number of cells. We would like to note that the results of [7] are crucially
dependent on this assumption; our results for waiting algorithms (Theorems 2
and 3) can be easily extended for packet-sizes which are nonintegral.
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Fig. 1. An input-queued switch.

i) each input port can be connected to at most one output

port; and

ii) each output port can be connected to at most one input

port.

The “scheduler” determines which inputs and outputs are
connected during each time slot. The scheduling problem can
be viewed as a bipartite graph matching problem. A matching
is represented by an N x N matrix m = [m;;] where m;; = 1
if input ¢ is connected to output j, and m;; = 0 otherwise. The
set of all possible matchings is denoted by M. A scheduling
algorithm is “work-conserving” or “maximal”, if an input is
never left unmatched when it has data for an unmatched output.

Arrival Process: Let A;;(n) denote the number of cells that
have arrived at input ¢ destined to output j up to time n. We
adopt the convention that 4;;(0) = 0. We assume that the ar-
rival processes A(n) = [A;;(n)] satisfy the strong law of large
numbers (SLLN), i.e., forany ¢, 57 = 1,..., N, almost surely,

?

lim M = )\LJ (1)
n—oo n

We call A;; the arrival rate at VOQ,;. Note that this is
a very mild restriction on the arrival process. The process
A(-) = [A;;(+)] summarizes only net data arrived at ports. To
completely describe the arrival process we additionally need:
(i) Packet length distribution, (ii) Dependence between arrival
times of packets over time, and (iii) Dependence among arrival
times across the input ports.

In case of Bernoulli IID traffic, it is assumed that the packet
lengths are IID; the arrival time of a new packet, after the com-
pletion of the previous packet, is independent and identically
distributed; and the traffic is independent across inputs. A less
realistic modification of this traffic was considered in [7], where
a packet was assumed to arrive in a time slot containing multiple
cells.

Next we define an admissible arrival process as follows.

Definition 1: The arrival process with arrival rate matrix A =
[Aij] is called “admissible” iff (1) holds and no input or output
is overloaded, in other words,

N
Y A<l Vi=1,...,N )
1=1
N
ZA,;jgl Vi=1,...,N. (3)
j=1

If all the inequalities are strict, then the arrival rate matrix is
called strictly admissible.
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Switch Throughput: Let D, ;(n) be the number of departures
from VOQ,; up to time n. Again, let D;;(0) = 0 and D(n) =
[Dij (n)]-

Definition 2: A switch operating under a matching algorithm
is said to have 100% throughput or is called rate stable if for
any admissible arrival process A(n) = [A;;(n)] with rate \;;,
almost surely,

nlirlgo%:Aij Vi, j=1,...,N. 4)
Scheduling Algorithms: Let Z;;(n) be the number of cells in
VOQ,; at time n, including any arrival at time n, and Z(n) =
[Zij(n)].

Definition 3: For any matching m € M the “weight”
W(n) of the matching at time 7 is defined as

Win(n) = (m, Z(n)) (5)

where (A, B) = 3°,. A;; B;; for two matrices A and B of the
same size.

Intuitively, the weight of a matching is the sum of the sizes of
the queues that are being served by this matching. Next, we de-
fine two different types of scheduling algorithms: cell-switching
and packet-switching.

Definition 4: A packet-based scheduling algorithm is a
scheduling algorithm such that once it starts transmitting the
first cell of a packet to an output port, it continues the trans-
mission until the whole packet is completely received at the
corresponding output port. In other words, an input-output pair
remains connected till all the cells corresponding to a single
packet are transmitted.

Definition 5: A cell-based scheduling algorithm, in con-
trast to a packet-based scheduling algorithm, can change the
matching even though some of the cells belonging to a packet
are already transmitted to the corresponding output port while
some are still at the input port.

We note that a packet-based scheduling algorithm avoids the
problem of segmentation at input ports and reassembly of cells
at output ports in a switch. In any cell-based switching system,
different cells of the same packet may observe different delay
values before leaving the system. It is reasonable to assume that
the delay seen by the user is the same as the delay observed by
the last cell of any packet. Therefore, a scheduling algorithm
that transfers the last cell of a packet with larger delay performs
poorly even if it performs well on all other cells of the packet.
Most of the known cell-based scheduling algorithms are not
aware of the existence of packets, and therefore there is a chance
that a packet-based scheduling algorithm which is aware of the
entity of a packet can use this information to do a better sched-
uling (in the sense of the waiting delay observed by the users).
Authors in [7] gave similar reasoning in favor of packet sched-
uling.

Let us consider a natural way to convert a known cell-based
algorithm into a packet-based algorithm. Let X be any cell-
based scheduling algorithm, e.g., MWM, maximal matching.
The packet-based version of X', denoted by PB-X is as follows:
PB-4:

1) Let m(n) denote the schedule used at time 7.
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2) Attimen + 1
a) if all ports are free then use m(n + 1) = X(n + 1).
b) else set m(n + 1) = m(n).

Next, we describe an important cell-based scheduling algo-
rithm, known as the Maximum Weight Matching (MWM) algo-
rithm. In this paper, we will be interested in PB-MWM and its
variants.

Maximum Weight Matching (MWM) Algorithm At each
time slot, the MWM algorithm selects the matching with the
maximum weight among all matchings in M. If there are mul-
tiple such matchings, one of them is selected arbitrarily. Clearly,
the MWM algorithm is a cell-based scheduling algorithm in this
setting. We denote the maximum weight matching and its corre-
sponding weight at time n by m*(n) and W*(n) respectively,
ie.,

m’(n) = arg max Wi (n) (6)
W*(n) = Inax Win(n) = W« (n). ™)

In [1]-[3], it was shown that under any admissible Bernoulli
IID traffic, MWM algorithm is stable. This result was extended
by Dai-Prabhakar [6] for a larger class of admissible arrival
traffic using the fluid model technique (for a weaker notion of
stability). In this paper, we use fluid model techniques and adopt
the notion of stability similar to [6] for the packet-based sched-
uling algorithm.

III. FLUID MODEL AND SWITCH DYNAMICS

This section briefly describes the fluid model of a discrete
time switch, which was first introduced in [6]. In [6] the fol-
lowing strong connection between the fluid model of a switch
and the actual discrete time switch dynamics was established:
(Theorem 3, [6]) The stability of the fluid model of the switch
implies the stability of the discrete time switch. An interested
reader can refer to [6] for details of the fluid model. In this paper,
we will prove the stability of the fluid model under algorithms
of interest and use the above result to infer the stability of the
original discrete time switch.

For any m € M, let Ty, (n) represent the cumulative amount
of time that the matching m has been used up to time n under
the scheduling algorithm used. We assume that 7,,,(0) = 0.
Note that Ty, (n) is a nondecreasing function with respect to n
which depends on both the arrival process and the scheduling
algorithm. The following three equations govern the dynamics
of the switch:

Zij(n) = Aij(n) — Dij(n), Vi,j ®)

Dij(n) = > mijlz,;m)>0)(Ten(n)
meM
—Tm(n — 1)) + D”(n - 1)

Z Tm(n) =n.

meM

Vi,j (9
(10)

The first equation simply states that the number of cells in
VOQ),; atany time equals the total number of arrivals minus the
total number of departures. The second equation states that the
number of departures till time 7 equals the number departures
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till previous time slot (time slot n — 1) plus the departures at
time n. Note that Ty, (n) — Ty (n — 1) is either 1 if the matching
m is used at time n, or 0 if it is not. Hence, D;;(n) increases
if the matching used at time 7 connects input ¢ to output j and
the queue VOQ),; is not empty. The third equation simply states
that at each tlme slot, exactly one of the possible matchings is
used.

From [6], the continuous equations governing the dynamics
of the corresponding fluid model of the switch described above
are as follows:

Zij(t) = Nijt — Dij(t) Vi, j (11)
ODy;(t) Tt o o
o —m;m” S i Zy(1) >0 Vi (12)
> Twlt) =t (13)
meM

where the functions Z;;(t), D;;(t), and Ti(t) are called the
fluid limits and are obtained from the discrete random processes
Zij(n), Dij(n), and Tm(n). For example, Z;;(t) is obtained as
follows. First, we create Z;; ;(t) which is a continuous version of
the discrete function Z;;(n)

Zij(t) = Zij([t) + [Zij (1t + 1)) — Zi([EDI(E = [£])- (14)
Then the fluid limit is obtained as follows:
Ziy(t) = tim 2570, (15)

All other fluid limit functions are obtained in a similar
manner, i.e., the time is scaled by  and the function is re-nor-
malized by dividing by r and we let 1 — oo. Thus the fluid

model of the switch is described by vector (Z(-).D(- (), T(-)),
where ) — 12 Do)~ (Dl L) 2 ()L

The following is the main result of [6] that we will use in this
paper.

Theorem 1 (Theorem 3, [6]): A switch operating under an
algorithm is rate-stable if for the corresponding fluid model
Z(t) = 0 for almost all ¢ given Z(0) = 0.

IV. GENERAL STABILITY CONDITION

In this section, we derive a general condition which implies
rate stability of the switch scheduling algorithm. We will first
use this condition to obtain a different proof of rate-stability
of the PB-MWM algorithm. Then, in the following sections we
will use the condition to obtain stability of other packet-based
scheduling algorithms. The condition is stated as follows.

Lemma 1: Consider a switch operating under a scheduling
algorithm A. Let m(n) denote the schedule at time n with W (n)
as its weight. Let W*(n) denote the weight of maximum weight
schedule at time n, with the same weights (queue-sizes). Fur-
ther, let

E{W(n) - W*(n)|} < B (16)
where expectation E{ - } is taken over the probability space con-
taining information about the arrival process and randomness in
A. Then, the algorithm .A is rate-stable.

Proof: We prove this Lemma using Theorem 1. As de-
scribed above, the fluid model of the switch is described by the
vector (Z(-),D(-), T(-)). Under algorithm .A we will show
that Z(t) = [0] for almost all £, given Z(0) = [0].

Define a Lyapunov function L(t) as

=27

We first note the following Lemma.

Lemma 2 (Lemma 1, [6]): Let f: [0,00) — [0,00) be an
absolutely continuous function with f(0) = 0. Assume that
f (t) < 0 for almost all ¢ (with respect to Lebesgue measure)
such that f(t) > 0 and f is differentiable at ¢. Then f(t) =
for almost every £ > 0.

In [6] the authors showed that for algorithm MWM, L(t) < 0
whenever L(t) > 0 (equivalently, if any of ZL-]' > 0). Then,
using Lemma 2 and Theorem 1, they concluded that MWM is
rate-stable. Hence, in our case, we need to show that L(t) <0
for almost all ¢ whenever L(t) > 0 and L(¢) is differentiable at
t, under algorithm A to prove the rate stability of .A.

Consider all ¢ such that the fluid quantities are differentiable
and hence L(t) is well defined. By definition,

L(t) = (Z(t), Z(t) (17)

- __OD(t
=2(A,Z(t)) — 2 <Z(t), 7)> (18)
Substituting (12) we obtain
_ oD\ - OTm
<Z<t>7 ot > - m;\/l<z( )7 >W
~ 0T
=D Wml)—3" (19)
meM

where Wiy (t) = (Z(t), m).

Let us define A(n) as the difference between the weight of the
MWM and the weight of the matching obtained by scheduling
algorithm at time 7. We know that E(A(n)) is bounded by some
constant B which does not depend on n, and A(n) is a positive
random variable. Hence, A(n) is bounded almost surely. Thus,
on the fluid limit scale we obtain that

. B
< lim — =0.

r—oo T

A(t) = lim Ar)

r—o0 T

(20)

Thus, in the fluid scale the weight of the MWM and the weight
of the matching used by the scheduler will be the same, i.e.,

Wn(t) = W(1). @1

Therefore, the algorithm will only use the matchings that have

the same weight as the maximum weight matching. If we denote
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the set of matchings used by the scheduling algorithm by M/,
we get

(22)

Note that although M’ C M since M is the set of matchings
used by the scheduler, we can modify (13) to

(23)
meM’

changing m € M tom € M’. Now combining this result with
(22) we obtain

N oD N
<Z(t)./ W> = W*(t). (24)
Hence, from (18) the derivative of L(¢) will be
%ﬁt) = 2(A,Z(t)) — 2W*(t). (25)

From Birkoff-von Neumann’s theorem we know that any
doubly sub-stochastic (admissible) traffic matrix A can be ma-
jorized by a weighted sum of finite permutation (matching) ma-
trices, i.e., we can find v, > 0and my € M fork=1,... . K
such that

K
A=Y pmy, (26)

k=1

K
Z% <1
k=1

where A = B iff VvV i,jai]- < bi]' (A = [aij] and B = [b“])
By definition of the maximum weight matching, we get
(Z(t), mg) < W*(2). 27)

Combining (26), (25), (27), we obtain

~

82? S 2 <Z(t) Z’ykl’nk> — ZVV*(t)

(28)

Hence, if any Z;; > 0 then W*(£) # 0 and therefore L(t) <
0, and this completes the proof. [ |

Next, we apply Lemma 1 to prove the rate stability of
PB-MWM. Formally, we state the following theorem.

Theorem 2: Under any admissible Bernoulli IID arrival
pattern (IID packet lengths of finite mean and variance) the
PB-MWM algorithm is rate-stable.
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Proof: To use Lemma 1, we need to show that under
Bernoulli IID arrival, for the PB-MWM  algorithm, for
any time n

E{W(n) —W*(n)|} < B

where W (n), W*(n) are weights of matching used by
PB-MWM and the MWM matching respectively; and B is
some finite constant. Due to stationarity of the arrival process
and PB-MWM being a discrete deterministic function of arrival
process, the W (- ), W*(-) are stationary. Hence, we consider
a stationary time n = 0 with the switch assumed to have started
attime —oo. Let--- < T 1 <Tp <0< Ty <T5 < ---denote
the random time instances when PB-MWM re-configures its
matchings. For Bernoulli IID traffic, the random variables
S; = T; — T;_1,1 € Z are identically distributed. Further,
Lemma 2 of [7] shows that under Bernoulli IID traffic (with
finite mean and variance of IID packet lengths), E{S?} < C,
where C is a constant that depends on the packet length distri-
bution and N (size of the switch).

Under PB-MWM, the weight W (0) is the weight of the
matching that was MWM at time 7. Since at most one cell
arrives (departs) at each input (output) port (i.e., N cells ar-
rive/depart in the whole switch) in a time slot, the following is
easy to obtain:

W(0) > W*(0) — 2(~To)N

> W*(0) — 2(Ty — To)N (29)
where 77 > 0 by definition. Thus,
[W*(0) — W(0)| < 28, N. (30)

The above bound (30) is conditional on the event that O lies in
the interval (T, T1]. The stationary point 0, lies in this interval
with probability proportional to S;. Hence, the average time-
stationary bound on the quantity of interest is given as

E{[W*(0) - W(0)[} < 2E {S3} N

< 2CN. (31)

Inequality (31) satisfies the desired condition of Lemma 1,
which in turn implies the statement of Theorem 2. [ |

V. INSTABILITY OF WORK-CONSERVING ALGORITHMS

In [6], the authors showed that the cell-based MWM algo-
rithm is rate stable under any admissible arrival process as long
as it satisfies the SLLN property as in (1). As shown in [7] (and
Theorem 2), the PB-MWM is stable for Bernoulli IID arrival
traffic. A natural question is whether the PB-MWM is stable for
arbitrary admissible arrival processes. In this section, we show
that any work-conserving packet-based scheduling algorithm is
not always stable. This in turn implies that the PB-MWM algo-
rithm is not necessarily stable.

Counter-Example for PB-MWM: Consider a switch oper-
ating under PB-MWM with input traffic pattern as shown in
Fig. 2. The A;; (i,j = 1,2) shows the arrivals to VOQ,; over
time. The traffic pattern is periodic with period equal to 10.
Note that no input or output is overloaded. In fact A1 ; = 0.8,
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. L,_ﬁ "L'_J‘“‘"

Fig. 2. The above figure depicts the exact traffic pattern under which
PB-MWM algorithm is not stable.

A2 = 0.1, A9y = 0.1, and Az » = 0.8. The switch can use
one of two possible matchings, namely m; which is called the
parallel matching and my the cross matching, i.e.,

w10 e |01
Y=lo 12 2701 ol

When the first packet arrives to the switch, the PB-MWM uses
parallel matching (my ), and then the scheduler is forced to keep
the same matching for 3 time slots till the packet finishes. Be-
fore this packet is finished, a packet of length 2 comes to input 1
and it is scheduled for output 1 under the scheduling algorithm.
In this way, under this traffic pattern, it is easy to see that when-
ever one input port is free, the other input port is busy serving a
packet. In other words, the two ports are never free simultane-
ously. This forces the scheduling algorithm to use the parallel
schedule all the time. Therefore, none of the packets arriving at
VOQ;, and VOQ,; will ever get the chance to depart. Thus,
the switch is unstable. Note that cell-based MWM will be able
to handle this traffic.

Classification of Packet-Based Algorithms: The counter-
example described above also shows that any work-conserving
or maximal algorithm is not stable for that particular traffic pat-
tern.

Theorem 1: There is no work-conserving packet-based
scheduling algorithm that is rate stable for arbitrary admissible
arrival processes.

The next question is if there is any packet-based algorithm
that is stable? The above theorem suggests that to obtain a stable
scheduling algorithm, if any, we need to consider nonwork con-
serving algorithms. Broadly speaking, the following are the two
class of packet-based algorithms:

(32)

1) Work-conserving (nonwaiting) algorithms: under these al-
gorithms an input is never left un-matched when it has a
packet for any unmatched output port.

2) Waiting algorithms: these algorithms are not always
work-conserving, i.e., they wait (do not start sending the
packet although both input and output ports are free) for
an indefinite number of time slots.

Note: The above result shows a fundamental difference between
packet-based switches and cell-based switches. For cell-based
switches being work-conserving is generally considered to be a
good property. We know that MWM, which is generally stable,
is work-conserving. Theorem 1 states that a generally stable
packet-based scheduling algorithm should not be work-con-
serving. In other words, waiting has an essential role in the
design of generally stable packet-based algorithms.

Fig. 3. Time segments in PB-wMWM. The algorithm simply waits in the
second portion (of length L) of each interval.

VI. STABLE WAITING ALGORITHM

In this section we describe MWM based waiting algorithms
that achieve 100% throughput for any admissible traffic pattern.
In particular, this algorithm is for the traffic pattern described in
the previous section for which PB-MWM or any packet-based
work-conserving scheduling policy was unstable.

The waiting algorithms are motivated by the counter-ex-
ample described in the previous section for work-conserving
algorithms. The main problem is that the work-conserving al-
gorithm greedily matches the ports whenever possible, forcing
it to always keep the parallel matching in the counter-example
of Fig. 2. One way to overcome this problem is the following:
when a packet gets served, do not schedule the freed ports till
all ports become free and schedule according to a full MWM
schedule. The waiting synchronizes the weight of the schedule
to the weight of the MWM schedule. Hence, if waiting is done
frequently enough, then, similar to the reasoning in the Proof
of Theorem 2, we can verify that the weight of the schedule is
always not more than a bounded constant away from MWM.
However, we note that during the waiting period some ports
lose bandwidth. Hence, if waiting is done too aggressively
then the algorithm can not utilize the full bandwidth. These
observations lead to the following waiting algorithm which we
denote as PB-wMWM.

PB-wMWM:

* The switch runs at speedup (1 + ¢€) for an arbitrarily small

positive constant € > 0.

e Let the maximum length of any packet be bounded above

by L.

* Divide the time into intervals of length ﬁ units, where

6(e) = (f); ie., time-intervals are [0, %], [% +

1, 2%], and so on.

* Atanytimen € [kZ + 1, (k + 1)L] if all ports are busy

serving previously scheduled packets, then do nothing.

Else do the following:

) Ifn € [k% + 1,(k + l)% — L] use the usual
PB-MWM to match the free ports as before.

2) Else, wait till all packets currently scheduled to be ser-
viced get served, which happens before the end of the
current interval. Once all ports are free, use MWM to
re-schedule all the ports.

Fig. 3 pictorially describes the induced time intervals by al-
gorithm PB-wMWM.

The following Theorem proves the rate stability of
PB-wMWM.

Theorem 2: The PB-wMWM algorithm is stable (rate stable)
under any admissible traffic (with property (1)) with a known
bound on maximum packet length at speedup (1 + €) for any
e > 0.
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Proof: The algorithm PB-wMWM is of waiting type, and
therefore loses some bandwidth. This may result in instability.
To prove the claimed result we show that the speedup compen-
sates for the lost bandwidth and schedules of PB-wMWM sat-
isfy the conditions of Lemma 1.

Loss of Bandwidth and Speedup: In PB-wMWM each port
is maintained idle (not scheduled) by the algorithm for at most L
time slots in every interval of length L/6(¢). That is, the fraction
of the bandwidth lost is 6(€). Equivalently, each port is sched-
uled (may be empty) at least 1 — 6(¢) = 1/(1 + ¢) fraction of
the time.

Under speedup (1 + €), if an algorithm schedules all ports all
the time, (13) changes to

> Tm(t) = (1+e)t.

meM

(33)

But since our algorithm is waiting, the above equation may
not be true. But at worst, our algorithm schedules 1/(1 + ¢)
fraction of the time. Hence, (13) or (33) can be re-written as

> Twm(t) > t. (34)
meM
That is,
T (t)
>
Z TR (35)
meM

PB-wMWM Approximates MWM:

Note that every L/é(e) time slots, the algorithm PB-wMWM
re-configures itself to MWM schedule. Hence, using arguments
similar to those in the Proof of Theorem 2, it is easy to see that
for any time n

(W(n) = W*(n)| < 2LN/é(e) (36)
where W(n) and W*(n) are the weights of PB-wMWM
matching and MWM, respectively.

Finally, using (35), (36) and Lemma 1 implies that
PB-wMWM is rate stable. This completes the Proof of
Theorem 2. [ |

Note: As ¢ — 0, the PB-wMWM becomes PB-MWM. Thus,
there is a “discontinuity” at ¢ = 0.

A. Universal Stable Algorithm

The PB-wMWM assumes that the packet lengths are bounded
and the bound is known to the algorithm. In reality this might
not be the case. To address this issue, next we present a modi-
fication of the PB-wMWM algorithm, which is universal in the
sense that it does not require any knowledge of the packet length
distribution. We denote this algorithm by PB*-wMWM.

PB*-wMWM:

* The switch runs at speedup (1 + ¢) for an arbitrarily small
positive constant € > 0.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 4, AUGUST 2005

 [Initialization:

1) Schedule the packets according to the MWM algo-
rithm.

2) If a packet on any port gets served, do not schedule a
new packet on that port and wait until all ports finish
their first set of scheduled packets.

3) The maximum amount of idling done by any port is
at most the maximum length of the packets that were
scheduled initially, let it be L.(1).

4) Set M(1) = 5.

5) Set K = 1.

e For all K, repeat the following:

1) Run PB-MWM for next M (K) time slots, and after
M (K) time slots, wait on any empty port till all ports
are free.

2) Let L.(K + 1) be the maximum length of the packets
under schedule when waiting starts at the end of M (K)
time slots.

3) Set M(K 4+ 1) = L.(K + 1)/6(e).

4) Set K = K + 1.

We can state the following Theorem about stability of
PB*-wMWM.

Theorem 3: The PB*-wMWM algorithm is stable (rate
stable) under any admissible traffic (with property (1)) at
speedup (1 + €) for any € > 0 as long as the maximum packet
length is finite (but unknown to the algorithm).?

Proof: We will use arguments very similar to the ones

used in the Proof of Theorem 2.

The two main properties required in the Proof of Theorem 2
are: (a) The effective speed is at least 1; and (b) The weight of
the schedule used by the algorithm is at most a bounded constant
away from the weight of MWM. In the above algorithm, let us
compute these two quantities as follows:

Loss of Bandwidth: The time is divided into intervals as fol-
lows: For K > 2, the Kth interval starts at the end of M (K —1)
time slots of the algorithm. It contains the time when some
ports are idling subsequently and then M (K) time slots. This
is in contrast to the way intervals were defined in algorithm
PB-wMWM, where idling came at the end of the interval rather
than at the beginning. The time before the beginning of the
second interval is called the first interval.

Since we are looking for the fraction of bandwidth loss
asymptotically, we can neglect the first interval. For K > 2, at
the K'th interval, each port is idle for at most L.(K) time slots
while the algorithm schedules all ports for L.(K)/é(e) slots.
Hence, using arguments similar to the ones used in the Proof
of Theorem 2, we obtain that the fraction of bandwidth lost is
at most ¢/(1 + ¢€). Since the speedup is (1 + ¢), the effective
throughput is at least 1.

PB*-wMWM Approximates MWM: Again, using argu-
ments similar to the ones used in the Proof of Theorem 2, we
obtain that for any time n in the K'th interval

(W(n) = W*(n)] < 2L(K)N/6(e)

< 2LN/5(e) (37)

3Theorem holds even for packet length with ergodic distribution of finite
mean and variance.
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where L is the bound on the maximum packet length, which is
not known to the algorithm.

The above discussion and (37) imply the statement of the The-
orem 3 by following the line of arguments as in the Proof of
Theorem 2.

B. PB-MWM With Known A

If the arrival rate matrix A is known and strictly admissible,
then we can find a stable algorithm which runs with speedup
one. Let o be defined as follows:

N o= N o=
0 = max ma,lxg /\ijﬂl.laf( E Aij (38)
1= 1=
=1 T =

In other words, o is the maximum arrival rate to any input
port or leaving any output port. For any strictly admissible ar-
rival traffic, o is strictly less than 1. Then, on average, any input
or output port is required to be busy for at most ¢ fraction of
time slots in order to have stability. That is, on average an algo-
rithm can idle any input/output port for ¢ < 1 — o fraction of
the time and still be stable. This leads to the following speedup
1 waiting algorithm, also denoted by PB-cowMWM, which is a
straightforward modification of PB-wMWM. Similarly, we can
obtain the speedup 1 algorithm, PB*-cwMWM, which is a mod-
ification of the universal algorithm PB*-wMWM.

PB-cwMWM:

* Let L be a bound on the maximum packet length and let
M > L be an integer such that ﬁ <1-—o,ie,
M > &2t

* Use the algorithm PB-wMWM with length of time in-
terval as M at speedup 1.

The following is a straightforward corollary of Theorem 2.

Corollary 1: The PB-owMWM algorithm is stable (rate
stable) under any strictly admissible traffic (with property (1))
with known bound on maximum packet length and known o,
the maximum loading on any input/output port.

VII. CONCLUSION

In this paper we considered the packet-scheduling algorithms
for IQ switch architectures. The results of [7] showed that modi-
fication of cell-based MWM for packet scheduling yields 100%
throughput for any admissible Bernoulli IID traffic with inde-
pendent packet lengths of bounded mean. We generalized this
result for a somewhat broader class of arrival traffic pattern. We
showed that there exists an admissible traffic pattern for which
no work-conserving or maximal algorithm is stable. To over-
come this problem we proposed a new class of waiting algo-
rithms. Under the waiting algorithm the switch becomes stable
for any admissible traffic. This was proved using the fluid limit
technique. It is interesting to note that, unlike cell-based sched-
uling, work-conservation for packet scheduling is not always
beneficial in this sense. This observation suggests that packet-
based scheduling is quite different from cell-based scheduling.
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